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Several improvements to the mixed-element USM3D discretization and defect-correction 
schemes have been made. A new methodology for nonlinear iterations, called the 
Hierarchical Adaptive Nonlinear Iteration Scheme (HANIS), has been developed and 
implemented. It provides two additional hierarchies around a simple and approximate 
preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact 
linearization of Reynolds-averaged Navier Stokes (RANS) equations and a nonlinear control 
of the solution update. Two variants of the new methodology are assessed on four 
benchmark cases, namely, a zero-pressure gradient flat plate, a bump-in-channel 
configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. 
The new methodology provides a convergence acceleration factor of 1.4 to 13 over the 
baseline solver technology. 

I. Introduction 
 USM3D flow solver is a component of the NASA Tetrahedral Unstructured Software System (TetrUSS) [1, 2] 
that was developed during the 1990s to provide a rapid aerodynamic analysis and design capability to applied 
aerodynamicists. The system is comprised of loosely integrated, user-friendly software that enables the application 
of advanced Euler and Navier-Stokes tetrahedral finite volume technology to complex aerodynamic problems. The 
system consists of component software for setting up geometric surface definitions (GridTool) [3], generating 
tetrahedral grids (VGRID) [4-6], computing Euler and Navier-Stokes flow solutions (USM3D) [7-12], and 
extracting meaningful information from analysis of results (SimpleView). The system is also coupled with the 
design tool CDISC [13]. Significant extensions to VGRID and USM3D capabilities are described in Ref. [2]. 
 The USM3D tetrahedral grid flow solver has been widely used over the last two decades within NASA [14, 15], 
other U.S. government agencies [16] and industry [17] as a workhorse for aerodynamic analysis of complex 
configurations. A recent example is its role as a lead CFD flow solver within the Ares project of the NASA 
Constellation Program, furnishing over 7,000 solutions for the vehicles up through supersonic speeds [14,15]. 
USM3D was used in the aerodynamic development of the Crew Exploration Vehicle and its Launch Abort System 
configuration, providing over 1,000 solutions [2]. USM3D is also being used extensively in the NASA Aviation 
Safety Program to generate dynamic stability and control databases for civil transports for stall/post-stall flight 
regimes [18]. 
 Some of the speed of USM3D computations is attributed to an analytical formulation of the spatial differencing 
stencil that exploits invariant features of tetrahedra [8,19], which renders it unnecessary to explicitly compute and 
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store the cell gradients. This advantage is complemented by the VGRID tetrahedral grid generator, which generates 
organized thin layers of tetrahedral cells in the near-wall boundary layer region using Advancing Layer Method 
(ALM) [5]. Unfortunately, the diagonal faces and skewed topology of the highly stretched tetrahedra result in a 
severely distorted spatial differencing stencil for computing fluxes, which may increase the numerical dissipation 
within the near-wall flow solution. Other cell topologies, such as hexahedra and prisms can be exploited to avoid 
this problem. 
 Since many recent USM3D applications have ventured into predominately separated flow regimes, attention is 
warranted on the sensitivity of smooth surface flow separation, such as a wing leading edge near stall, to near-wall 
cell topology. A similar case can be made for computing heat transfer on high-speed bodies. The USM3D 
simulations for such flows can be improved by using more flow-aligned anisotropic hexahedral or prismatic cells in 
the boundary layer and isotropic tetrahedral cells away from the surfaces.  
 Work to expand USM3D support for additional cell topologies, including hexahedra, prisms, and transitional 
pyramids, was presented in Ref. [20]. Extensions to the key elements of solution methodology, such as geometric 
quantities, cell- and face-centered gradients were described and a code verification study was presented. The study 
used three two-dimensional (2D) test cases available on the Turbulence Modeling Resource (TMR) website [21]: a 
zero-pressure-gradient flat plate, a planar shear case, and a bump-in-channel configuration.  
 The 2D bump-in-channel case in the verification study of the baseline mixed-element USM3D [20] showed that 
the solution convergence becomes sluggish, as the grid is refined. The convergence of forces and moment required 
as many as 500,000 nonlinear iterations on the finest hexahedral grid for this case. The principle reason for the slow 
convergence is that the baseline code advances the nonlinear solution in pseudo time using only a simple 
preconditioner. The preconditioner uses a low-fidelity defect-correction scheme and point-implicit Gauss-Seidel (G-
S) iterations. A limiting aspect of this approach is that typically, a low Courant-Friedrichs-Lewy (CFL) number is 
needed to preserve solution robustness. A low CFL number adversely impacts iterative convergence and increases 
the time needed for converging a solution. 
 The objective of this study is to eliminate these bottlenecks. Several improvements to the mixed-element 
USM3D discretization and defect-correction schemes are made. The improvements include provisions to 
accommodate negative values for the turbulence variable in the Spalart-Allmaras model [22], a robust treatment of 
possible violations of realizability constraints, second-order approximations to the convective term of the SA 
turbulence model equation [23], and more accurate Jacobian approximations. A new methodology for nonlinear 
iterations, called the Hierarchical Adaptive Nonlinear Iteration Scheme (HANIS), has been implemented. It provides 
two additional hierarchies over the baseline USM3D preconditioner-alone (PA) solver. The hierarchies are an 
enhanced linear solver for the exact linearization of Reynolds-Averaged Navier Stokes (RANS) equations and a 
nonlinear control of the solution update. The linear solver uses matrix-free methods [24-26]. The nonlinear solution 
update strategy automatically adapts the under-relaxation parameter and pseudo-time step similar to recently 
reported approaches [27-29]. CFL adaptation is used as a comprehensive tool to address robustness, efficiency, and 
automation considerations. In this paper, key components of HANIS are described. Two different variants of 
HANIS methodology are assessed on four benchmark turbulent flow cases, namely, a 2D zero-pressure-gradient flat 
plate, a 2D bump-in-channel configuration, the 2D NACA 0012 airfoil, and a NASA Common Research Model 
(CRM) configuration used for the 4th AIAA Drag Prediction Workshop. 

II. Baseline Mixed-Element USM3D 
 USM3D solves a system of nonlinear flow equations that can be formally represented as 

 
The discrete nonlinear operator,  may, for example, represent a discretization of steady-state Reynolds-
Averaged Navier Stokes (RANS) equations. The USM3D code extended for this study is a mixed-element cell-
centered, finite volume CFD solver [20]. The term “cell-centered” means that the flow variables are solved at the 
centroid of each cell. The solution is advanced in pseudo time to a steady-state condition by an implicit backward-
Euler scheme. Currently, three turbulence models are available: the Spalart-Allmaras (SA) one-equation model, the 
Menter Shear Stress Transport (SST) two-equation model, and the Langtry-Menter transition prediction model.  

Inviscid fluxes are computed at each cell face using various upwind schemes, such as van Leer’s Flux Vector 
Splitting (FVS), Roe’s Flux Difference Splitting (FDS), Harten, Lax, van Leer, Einfeldt (HLLE), and Harten, Lax, 
van Leer – Contact (HLLC) schemes, among others. Spatial discretization is accomplished by a reconstruction 
process based on solution gradients computed within cells. The code has several options for the gradient 
computation within a cell, such as the Green-Gauss integration, unweighted or weighted least squares procedures, or 
the Mitchell stencil. Face gradients are needed to compute diffusive fluxes for the mean flow and turbulence model 
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equations. A face gradient can be evaluated from either Mitchell’s stencil or an average of the gradients computed 
within two cells sharing the face. For the latter case, the averaged gradient is suitably augmented using a face-
normal method, an edge-normal method, or a face-tangent method. Discrete residuals at any given iteration are 
computed using solution variables at the cells, nodes, boundary faces and ghost cells as well as cell and face 
gradients. Solution quantities at these locations are not synchronized. For example, solution variables at nodes are 
updated using the ghost cell values evaluated at the previous iteration. 

The USM3D nonlinear iterations are based on a defect correction scheme  

 

 

Here,  and  are the solutions at iterations  and , respectively;  is an approximation to Jacobian  ; 
 is a control volume; and  is a pseudo-time step, which is set through a CFL specification. The mean flow and 

turbulence model equations are loosely coupled. The approximate Jacobian for the mean flow equations is formed 
using the linearization of the first-order FVS inviscid fluxes and a thin-layer approximation for the viscous fluxes. 
The approximate Jacobian for a turbulence-model equation includes the contributions from the advection, diffusion, 
and source terms. The advection term is linearized with a first-order approximation. A thin-layer approximation is 
used for the diffusion term. Only positive contributions from the source term linearization are added to the diagonal 
of the approximate Jacobian. The approximate Jacobians of the mean flow and turbulence model equations are 
updated at every nonlinear iteration. An option to use single precision for the approximate Jacobian off-diagonal 
terms and for the solution updates is available to reduce the memory footprint. 

A few Gauss-Seidel (G-S) iterations are used to approximately solve Eq. (2). The number of G-S iterations is a 
user-defined input parameter; typically, 10 to 20 iterations are used. The resulting update,  is applied to advance 
the nonlinear solution (Eq. (3)). The updates are fully applied for the mean flow equations, and under-relaxed for the 
turbulence model equations. The pseudo-time step is updated according to a pre-scheduled ramping of the CFL 
number starting from a very low initial value. The final (highest) CFL number is typically modest (50-150) for the 
sake of solution robustness. Robustness is improved further by initially using a first-order approximation to the 
nonlinear residuals for a certain number of nonlinear iterations. The target second-order approximation of the 
nonlinear residuals is used for the subsequent iterations. This start-up strategy may mitigate solution difficulties 
during initial transients.  

III. New Developments in USM3D 

A. Discretization Features 
A fully-implicit formulation is implemented for the present study implying that the solution variables at the grid 

nodes and boundary faces as well as the cell gradients are computed solely from the current solution variables 
defined at the cell centers. Except for the symmetry boundary, ghost cells are eliminated for all boundaries. Present 
implementation precludes intersecting symmetry boundaries. Solution at a boundary node that is not on the 
symmetry plane is computed using extrapolation from the interior of the computational domain.  

The cell-centered solution values are required to satisfy the realizability constraints, such as positive values of 
density and pressure. For first-order spatial accuracy, the solution reconstructed at a cell face is the same as the cell-
centered solution. For second-order spatial accuracy, a realizability check is newly implemented for the 
reconstructed solution to avoid a catastrophic failure (an underflow condition associated with a square root of a 
negative number) in computing mean flow inviscid fluxes. If a realizability violation is detected at a face during any 
nonlinear iteration, then the face is temporarily designated as “first-order”. The face realizability check is performed 
for the second-order reconstruction values for all faces including the “first-order” faces, however, the “first-order” 
faces employ the first-order reconstruction for flux computations. The “first-order” designation for a face is removed 
after the second-order reconstruction values have been realizable for a certain number (currently 20) of consecutive 
nonlinear iterations.  

A negative formulation of SA model [22] has been implemented to improve numerical convergence on under-
resolved grids. A face realizability check for the negative SA model is not needed. 

B. Defect-Correction Solver Features 
Linearization of the FDS scheme for the first-order mean flow inviscid fluxes has been implemented for the 

approximate Jacobian in Eq. (2). The FDS scheme is less dissipative than the FVS scheme and provides a better 
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approximation to the target second order accurate nonlinear operator that also uses the FDS scheme. Historically, the 
FVS scheme has been used for the approximate Jacobian in the USM3D solutions. The SA model linearization is 
somewhat modified. Similar to the baseline solver, the diagonal of the approximate Jacobian collects contributions 
from the advection, diffusion, and source terms. The new aspect is that the entire contribution from the linearized 
source term is added to the diagonal. Positivity check for the diagonal values is conducted before adding the pseudo-
time term. Negative diagonal values are substituted by their absolute values. 

Although not used in the present study, a provision for an intermittent Jacobian update is implemented for 
runtime efficiency. The Jacobian matrix can be frozen for several nonlinear iterations, subject to certain solution 
conditions and/or a user-defined schedule. 

Residual reduction targets are used for an earlier termination of G-S iterations to improve the runtime efficiency. 
The G-S iterations are terminated if the rms norm of the residuals (Eq. (2)) has been reduced by one order of 
magnitude, any time after a minimum of 10 G-S iterations have been performed. The G-S iterations can terminate 
even before completing 10 G-S iterations if the rms norm of the residuals has been reduced by two orders of 
magnitude. The earlier termination option significantly improves the runtime efficiency when a user specifies a large 
maximum number of G-S iterations. 

C. Preconditioner-Alone (PA) Nonlinear Iteration Scheme 
PA is a nonlinear scheme similar to the scheme used in the baseline USM3D discussed in the Section II. It 

benefits from the algorithmic modifications described in sub-sections III A and III B. Figure 1a shows a flowchart 
for the PA scheme. The preconditoner and nonlinear update modules in Fig. 1a represent a linear solver associated 
with Eq. (2) and the solution update (Eq. (3)), respectively. 

D. Hierarchical Adaptive Nonlinear Iteration Scheme (HANIS) 
1. HANIS Overview 
HANIS is an enhanced solver for Eq. (1) that seeks to improve (i) robustness of iterations by providing a 

mechanism to treat difficult (e.g., transient) solution states, (ii) efficiency by iterating at higher CFL numbers, and 
(iii) automation by reducing the number of ad hoc parameters. HANIS extends the PA scheme described in Section 
III C by providing two additional hierarchies around the preconditioner. The hierarchies are a matrix-free linear 
solver for the exact linearization of nonlinear equations and a nonlinear control of the solution updates. An 
economical version of the Generalized Conjugate Residual (GCR) method [25] is used as the matrix-free linear 
solver. Note that HANIS mainly uses GCR to control the stability of linear iterations, and therefore only a few 
search directions are used in GCR. The nonlinear control is used as a mechanism to optimize the reduction of 
nonlinear residuals. 

The three HANIS hierarchies are interrelated. The preconditioner generates a new search direction for the GCR 
matrix-free linear solver. GCR suggests updates for the current nonlinear solution. The updates are checked for the 
solution realizability and passed on to the nonlinear control where they may be scaled.  

HANIS specifies the maximum number of G-S iterations allowed in preconditioner and the maximum number of 
search directions allowed in GCR. Furthermore, HANIS also prescribes the residual reduction targets for the 
preconditioner, GCR, and nonlinear solution updates. The targets for GCR and nonlinear updates are quite soft. 

HANIS uses CFL adaptation as a comprehensive tool to address robustness, efficiency, and automation 
considerations. HANIS tries to run nonlinear iterations at the highest possible CFL number; it increases the CFL 
number (currently by a factor 2) if all HANIS hierarchies have reported complete success. On the other hand, if any 
convergence difficulty has been encountered in the preconditioner, GCR, or during a nonlinear solution update, 
HANIS discards the suggested correction and aggressively reduces the CFL number (currently by a factor 10). The 
approach is based on the assumptions stated below.  
Robustness Assumption. For any physically realizable initial approximation, there is a small enough CFL, with 
which the defect-correction iterations (Eqs. (2)-(3)) converge to the solution of Eq. (1). 
Efficiency Assumption. In a vicinity of the converged solution, convergence rates of nonlinear iterations would 
benefit from using (infinitely) large CFL numbers. 

The HANIS CFL adaptation methodology often results in large CFL oscillations. The ratio between CFL 
reduction and increase factors defines the frequency of failure. The current ratio implies that in normal operational 
conditions every third or fourth iteration is expected to fail and reduce the CFL number. An oscillatory CFL number 
is often interpreted as a sign of convergence difficulties. Some CFD codes that also use a CFL adaptation strategy 
put a limit on the maximum CFL number allowed. The CFL number is expected to settle at the specified maximum 
level. Generally, it is impossible to identify the right maximum level in advance. Any ad hoc cap is likely to be 
either useless, if the CFL operational range for a solution is well below the cap, or unduly restrictive, if the CFL 
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operational range is well above the cap. The HANIS methodology is different. CFL number oscillating at a higher 
level is preferable to a constant low-level CFL number. 

The hierarchical structure of HANIS allows for a combination of tightly- and loosely-coupled iteration strategies. 
In USM3D, preconditioner iterations are always loosely coupled. This approach reduces memory footprint of 
approximate Jacobian, improves cache characteristics, and lowers the operation count of G-S iterations. The matrix-
free GCR and nonlinear control methods can either loosely or tightly couple the mean flow and turbulence model 
equations, notwithstanding the formulation adopted for preconditioner.  

Two HANIS versions, namely, HANIS-1 and HANIS-4, are considered in the present study. HANIS-1 uses just 
one GCR search direction, whereas, HANIS-4 can use a maximum of four search directions. A detailed parametric 
study to identify an optimal combination of HANIS parameters for minimizing solution time is needed in future.  

The HANIS implementation in USM3D is such that any nonlinear iteration is always successful. This is 
guaranteed by using an infinite loop around the newly added HANIS hierarchies and updating the CFL number. The 
HANIS flowchart is shown in Fig. 1b. HANIS is implemented using six different modules, identified as, 
Preconditioner, GCR Solver, Realizability Check, Nonlinear Control, Failure Handler, and Nonlinear Update. The 
Preconditioner module provides a new search direction for the GCR Solver module. The GCR Solver module solves 
linearized equations and suggests an update, , for the current nonlinear solution, . The Realizability Check 
module assesses whether the updated solution violates any physical constraints. The Nonlinear Control module 
optimizes the suggested update. The Failure Handler module treats possible exceptions from the preceding modules. 
The Nonlinear Update module computes the updated solution. The infinite loop is terminated when the GCR Solver, 
Realizability Check, and Nonlinear Control modules report success. All HANIS modules are described below. 
2. Preconditioner  

Preconditioner approximately solves the system of linear equations for  

 

The mean flow and turbulence model equations are solved separately using point-implicit G-S iterations. The initial 
solution approximation is the identical zero. For the PA and HANIS-1 iterations, the right hand side of Eq. (4) is 

 
For HANIS-4 iterations, the right hand side may also represent a current linear residual in GCR. The HANIS 
Preconditioner module introduces an additional condition for an earlier termination of G-S iterations. The 
preconditioner residuals are allowed to increase by a maximum of two orders. Termination of Preconditioner 
because of reaching the residual reduction target or performing maximum iterations is considered success. 
Termination because of exceeding the maximum residual increase is considered failure. In HANIS iterations, the 
update, , and an indication of success or failure of the Preconditioner module are sent to the GCR Solver module 
to form a new search direction.  
3. GCR Solver 

GCR iterations approximately solve the linear equations 

 

Here,  is the exact linearization of the nonlinear residual operator around the current solution, . The presently 
implemented HANIS uses a tightly-coupled formulation in the GCR Solver module. This approach provides a better 
approximation to nonlinear residuals in the limit of the infinitely high CFL number. In the tightly-coupled GCR 
formulation,  is a vector that combines the mean flow and the turbulence model variables. The nonlinear residual 

is a vector that combines the mean flow and turbulence model residuals. The exact linearization matrix is big 
and requires significant memory. Instead a matrix-free approach is followed. The matrix-vector product in Eq. (6) is 
approximated by a Frechet derivative 

 

Here  is a small factor; the current implementation uses . Note that  and  denote the  
and rms norms of a vector, respectively. This approximation is accurate and insensitive to the size of .  
 The HANIS-1 algorithm always uses one search direction; the HANIS-  algorithm allows for maximum of  
search directions. The initial solution is set as , thus the initial GCR residual is  

 
For a -th search direction ( ), an improved approximation, , is computed by preconditioner, 
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If the Preconditioner module fails, then the GCR Solver module immediately terminates with failure. If the 
Preconditioner module reports success, the new search direction, , is computed and normalized as   

 

Then the vector is orthonormalized against previously stored search directions,  simultaneously 
updating . For each , 

 

After completing the orthonormalization procedure, the projection, of the current residual on the -th search 
direction is computed, and the correction and the linear residual are updated as 

 
In rare situations, vectors  and can be (nearly) orthogonal implying , then (almost) no update is 
applied. These situations are called GCR stall and are treated as a GCR Solver module failure.   

If the rms norm of the updated linear residual has been reduced more than the GCR residual reduction target, 
 (i.e., ), then the GCR Solver module terminates with success. Otherwise another search 

direction is generated. If the maximum number of search directions has been used, and the residual reduction target 
has not been met, the GCR Solver module terminates with failure. Note that by construction, the rms norm of the 
GCR residual cannot increase. To reduce the memory footprint, GCR search directions, , and updates, , can 
be stored with single precision. In case of failure, the GCR Solver module transfers control to the Failure Handler 
module. In case of success, the suggested nonlinear solution update,  is transferred to the Realizability Check 
module. 
4. Realizability Check  

The role of the Realizability Check module is to prevent solution updates that could lead to a non-physical 
solution. To check the realizability constraints, the update, , is first added to the solution, . If the updated 
solution at any cell center violates physical realizability conditions (positive pressure, density, etc.), the Realizability 
Check module restores solution , declares failure, and transfers the control to the Failure Handler module. If the 
suggested update successfully passed the check, then  is restored and the update,  is sent to the Nonlinear 
Control module.  
5. Nonlinear Control 

The role of the Nonlinear Control module is to find an optimal under-relaxation parameter, , for the suggested 
update, . The Nonlinear Control module uses the tightly-coupled formulation. The initial value for the under-
relaxation parameter is . The cumulative under-relaxation parameter, , is introduced for a subsequent use 
and is initialized as . The updated solution,  

 
is computed together with the pseudo-time nonlinear residual,  

 
The goal of the Nonlinear Control module is to reduce the rms norm of the residual (Eq. (14)) below the residual 
reduction target, , to satisfy  

  
In the current implementation, 

   
If the nonlinear residual reduction target (Eq. (15)) is met with  and the update,  is large enough to 

dominate the round-off error, then the Nonlinear Control module declares success and schedules the CFL increase 
for the next nonlinear iteration. Small updates are treated differently. If a CFL number adaptation strategy does not 
take into account the size of suggested corrections, on final stages of convergence, when round-off error plays a 
bigger role, the CFL number can react on this round-off error and frequently change for no reason. In the current 
implementation, the update with the rms norm less than a small fraction of the current solution norm is considered as 
dominated by the round-off error. Such an update is accepted as success, if it leads to any reduction of the nonlinear 
residual, and no change of CFL number is allowed.  
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If , then an under-relaxation parameter is sought through a quadratic search. Two 
nonlinear scalar functions of  are defined, 

 

 

describing rms norm variations with respect to  of the nonlinear (Eq. (14)) and linear (Eq. (6)) residuals, 
respectively. 
The following properties are satisfied: 

 

Here,  and are equal to the rms norm of the initial nonlinear residual,  is equal to the rms norm of the 
current nonlinear residual (Eq. (14)), and is equal to the rms norm of the linear residual  (Eq. (12)) computed 
by the GCR Solver module. Assuming a quadratic variation for  and a linear variation for 

, the following relations can be derived . The minimum 
of a quadratic function is achieved at  Thus, the under-relaxation parameter is chosen as 

 

The Nonlinear Control module restores the initial solution, , updates , stores the cumulative 
under-relaxation parameter, , and repeats computations starting from Eq. (13). To avoid an infinite 
loop, the cumulative under-relaxation parameter is required to be greater than a specified minimum, . 
The choice of the nonlinear residual reduction target (Eq. (16)) ensures that if the linear solver meets the required 
linear residual reduction, , but the nonlinear residual does not achieve the target reduction, , then the under-
relaxation parameter (Eq. (20)) is bounded as  The value of the minimum under-relaxation parameter is 
set as 

  

where  is the actual reduction of the rms norm of the linear residual achieved by the GCR method. This 
value of is chosen from the consideration that with a cumulative under-relaxation parameter smaller than  
( ), the rms norm of the linear residual is reduced less than , and thus, there is no reason to expect 
that the nonlinear residual reduction will meet the target.  

If the reduction target (Eq. (15)) has not been met, and the correction is not dominated by the round-off error, 
then the Nonlinear Control module declares failure and transfers control to the Failure Handler module. If the 
residual reduction target is met with a cumulative  satisfying  or the round-off dominated 
update provides any reduction for the rms norm of the nonlinear residual, then the Nonlinear Control module ends 
with success, but suggests no increase in the CFL number. In case of success, the Nonlinear Control module forms 
the nonlinear residual corresponding to the next HANIS iteration by subtracting the pseudo-time contribution from 
the current pseudo-time residual, restores the solution, , terminates the infinite internal loop, and sends the scaled 
solution update and the suggested CFL update to the Nonlinear Update module. In a tightly-coupled formulation, the 
nonlinear residuals from the Nonlinear Control module can be used for the subsequent HANIS iteration, thus 
avoiding an additional residual evaluation. 
6. Failure Handler 

If any failure occurred within GCR Solver, Realizability Check, or Nonlinear Control modules, the Failure 
Handler module restores the nonlinear solution and residual to the initial states they had before the current nonlinear 
iteration. The module also reduces the CFL number, updates Jacobian to account for the CFL number reduction, and 
returns control to the beginning of the HANIS infinite loop. The mean flow Jacobian is updated through a fast 
procedure that replaces the pseudo-time contributions in the diagonal terms without recomputing flux linearization. 
7. Nonlinear Update 

The Nonlinear Update module performs the actual solution update, handles “first-order” designations of faces 
with violated face-realizability constraints, and prepares the CFL number for the next nonlinear iteration.  

IV. Results and Discussion 
Two variants of the HANIS scheme are investigated in the present study. The variants differ in the maximum 

number of search directions allowed for the GCR solver. The variant HANIS-1 uses one search direction only, 
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whereas, the variant HANIS-4 uses a maximum of four search directions. The PA iteration scheme serves as a 
benchmark that broadly represents the baseline solver technology.  

The performance of HANIS, as implemented in the mixed element version of USM3D, is assessed using four 
viscous turbulent flow cases. The cases are a zero-pressure-gradient flat plate, a bump-in-channel configuration, the 
NACA 0012 airfoil, and a NASA Common Research Model (CRM) configuration. For each case, solutions are 
computed on several grids using three different methods, namely, PA, HANIS-1, and HANIS-4.  

The first three cases are quasi 2D, having one hexahedral cell in the spanwise direction. For each of these cases, 
a series of nested hexahedral grids is available on the TMR website [21] and is used to compute solutions at low 
subsonic flow conditions. The fourth case, namely a NASA CRM configuration [30], is a three-dimensional (3D) 
case. For this case, four different grids are used to compute solutions at transonic flow conditions. Figures 2-5 
provide a schematic representation for these cases including the configuration, computational domain, and boundary 
conditions.  

The SA turbulence model is used for all solutions reported herein. An identical CFL number is used for both 
mean flow and SA model solutions. The start up CFL number is 1 for all solution methods. In a PA solution the CFL 
number is specified a priori for any iteration. The CFL number is ramped from a value of 1 to 150 over 150 
iterations. The HANIS-1 and HANIS-4 methods update CFL number adaptively. 

Some of the parameters used presently are chosen based on a few precursor investigations. In USM3D, both, the 
standard and negative versions of SA model are implemented. The negative model formulation allows the SA 
solution to become negative whereas, the standard model solution is typically restricted above a positive minimum 
value. USM3D uses a minimum value of 1.0x10-10. In the first precursor study related to the SA model, the NACA 
4412 airfoil (M∞=0.09, α=13.87°, ReL=1.52x106) PA solutions were computed using both variants of the SA model 
on a coarse 2x113x33 hexahedral grid. The SA model primary variable gravitated toward zero in these solutions. In 
both solutions the mean flow residual convergence was very similar. The SA model residual convergence stalled for 
the standard model. The residuals of the negative SA model converged satisfactorily (Fig. 6). 

A parametric study for an optimal value of the maximum number of G-S iterations in the preconditioner was 
conducted on the NACA 0012 airfoil (M∞=0.15, α=10°, ReL=6x106). The PA and HANIS-1 methods were used to 
compute solutions on a 2x897x257 hexahedral grid. The preconditioner residual reduction target was set to 0.1. Four 
different values (15, 50, 200, and 500) for the maximum number of G-S iterations were considered. The study 
showed that a maximum of 500 G-S iterations significantly improves the performance of the HANIS-1 method. The 
PA solutions were relatively insensitive to the maximum-number variations (Fig. 7). The trend is logical considering 
that the PA method uses a lower CFL number thereby allowing the preconditioner to satisfy the linear residual 
reduction target with fewer than the prescribed maximum number of G-S iterations. A HANIS method generally 
operates at much higher CFL number that necessitates more G-S iterations for achieving the same linear residual 
reduction target. Figure 7 also highlights the importance of a good preconditoner in any HANIS algorithm. 

Solution accuracy, robustness, and time-to-convergence are important metrics for any practical CFD solvers, as 
an applied aerodynamicist may need to compute hundreds to thousands of solutions to design and analyze complex 
configurations. High-fidelity solutions are typically computed using billions of degrees of freedom. The HANIS 
algorithm described in Section III has a significantly higher operation count as compared to the PA method for a 
given nonlinear iteration. Hence, for a significant improvement in convergence time, HANIS algorithm needs to 
operate at a much higher CFL number on an average. Keeping this in mind, in yet another precursor study for the 
NACA 0012 airfoil (M∞=0.15, α=10°, ReL=6x106) on a 2x897x257 hexahedral grid, a HANIS-4 solution was 
computed without limiting CFL number. The mean flow and SA model residual convergence stalled in this solution. 
After observing an operational range of CFL numbers in this stalled solution, another HANIS-4 solution was 
obtained in which CFL number was limited below 10,000. The latter solution exhibited better convergence (Fig. 8). 
It should be noted that the corresponding HANIS-1 solutions (not shown) behaved as expected; the solution using an 
unlimited CFL number converged faster than the one using a maximum CFL number of 10,000. The mean flow and 
SA model residuals were reduced to machine-zero level in both of the HANIS-1 solutions. It is not fully understood 
why the HANIS-4 solution stalled and a detailed investigation is pending. At this time, an unlimited CFL number 
for HANIS-1 and a maximum CFL number of 10,000 for HANIS-4 solutions is deemed a prudent strategy. 

A detailed comparative study of PA, HANIS-1, and HANIS-4 performance follows for each of the four cases 
mentioned earlier. Unless specified otherwise, solutions are obtained using the same set of common input 
parameters. Some of these parameters are identified based on precursor studies and others are chosen based on past 
experience and judgment. A brief summary of these input parameters is provided below. 
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1. Spatial accuracy for mean flow: second-order  
2. Spatial accuracy for SA model: first-order 
3. Cell gradients: Green-Gauss and nodal averaging scheme  
4. Face gradients: Mitchell’s method 
5. Mean flow convective flux: Roe’s FDS 
6. Turbulence model: Negative SA model 
7. Approximate Jacobian for the preconditioner: Roe’s FDS 
8. Maximum number of G-S iterations for preconditioner: 500 
9. Linear residual reduction target for preconditioner: 0.1 
10. Linear residual reduction target for GCR: 0.92 
11. CFL number: Ramped from 1 to 150 over 150 iterations for PA; updated adaptively for HANIS with no limit for 

HANIS-1, a maximum of 10,000 for HANIS-4 
 
For each of the four cases discussed below, solution convergence is monitored by tracking the mean flow and SA 

model residuals as well as certain field and integrated surface quantities, such as maximum eddy viscosity, 
aerodynamic forces and pitching moment. Figures are included that show the convergence of these quantities with 
respect to run time. Variations of a composite solution residual, generated by combining the mean flow and SA 
model residuals, as well as the CFL number are plotted as well. The combined residuals are shown, as they are the 
main driver for the tightly-coupled HANIS formulation investigated here. Run time needed to converge various 
quantities to a specific tolerance is documented in the corresponding tables. The tables also specify the tolerance for 
each quantity. 

A. 2D Zero Pressure Gradient Flat Plate 
Four progressively finer nested structured hexahedral grids from the TMR “Turbulence Model Verification 

Cases and Grids” section [21] have been used for this case. The specific grids, denoted by the number of grid points 
in the spanwise, streamwise, and body-normal directions, are 2x69x49, 2x137x97, 2x273x193, and 2x545x385. 
Figure 2 presents a schematic view of the flat plate configuration, computational domain and the boundary 
conditions in the X-Z plane. Symmetry boundary condition is applied on the two spanwise planes. As noted earlier, 
the present USM3D version does not allow intersecting symmetry boundaries. Therefore in a departure from the 
suggested boundary conditions on the TMR website [21], a slip wall boundary condition is used on a Z=0 plane 
upstream of the flat plate (Fig. 2). This change may affect solutions reported herein. However, note that the current 
study is focused on assessing the new developments from the standpoint of iterative convergence.  

Solutions have been computed for the freestream Mach number of 0.2 and Reynolds number of 5x106 per unit 
length of the plate. The angle-of-attack is 0°. Two different sets of solutions are computed; in the first set the SA 
model convective term is first-order accurate, in the second set it is second-order accurate. Each set consists of the 
PA, HANIS-1, and HANIS-4 solutions on all four grids described earlier. For each set, solution convergence is 
demonstrated in a separate figure for each grid. A figure includes plots for the run time variations of six quantities, 
namely, (a) mean flow residuals, (b) SA model residuals, (c) combined mean flow and SA model residuals, (d) CFL 
number, (e) maximum eddy viscosity, and (f) viscous drag coefficient.  

Figures 9-12 show the convergence of various quantities in the first solution set for the 2x69x49, 2x137x97, 
2x273x193, and 2x545x385 grids, respectively. It is seen that HANIS solutions converge much faster than the PA 
solutions, and HANIS-4 operates at a higher CFL number and converges faster than HANIS-1. Only exception to 
this observed trend is somewhat superior convergence of maximum eddy viscosity and viscous drag in the HANIS-1 
solution on the 2x69x49 grid (Fig. 9). Tables 1a and 1b below summarize the run time needed on various grids for 
the PA and HANIS methods to converge the coupled residuals and viscous drag to a specific level.  
 

Table 1a. Residual error levels and convergence time for flat plate solutions obtained using a sequence of 
hexahedral grids. Convective term in the SA model is first-order-accurate. 
Grid Residual level Time in seconds to converge to the specific level 

using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x69x49 1.0e-15 233 48 42 4.9 5.5 
2x137x97 1.0e-14 1362 253 198 5.4 6.9 
2x273x193 1.0e-15 13973 6981 3190 2.0 4.4 
2x545x385 1.0e-14 118356 35481 15492 3.3 7.6 
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Table 1b. Viscous drag coefficient values and convergence time for flat plate solutions obtained using a 
sequence of hexahedral grids. Convective term in the SA model is first-order-accurate. 
Grid Viscous drag 

coefficient 
Time in seconds to converge to the specific 

value using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x69x49 0.289279e-2 99 19 26 5.2 3.8 
2x137x97 0.287039e-2 769 154 131 5.0 5.9 
2x273x193 0.286291e-2 6937 1913 1117 3.6 6.2 
2x545x385 0.286047e-2 70881 18157 10383 3.9 6.8 

 
It can be seen from the Tables 1a and 1b that as compared to PA, HANIS-4 converges 3.8-7.6 faster, whereas, 

HANIS-1 converges between 2.0-5.4 times faster. The speed up factor of 2.0 is observed only in one computation on 
2x273x193 grids and only for the residual convergence. All other speed up factors are greater than 3.3. 

The convergence of the second set of solutions generated using a second-order approximation for the SA model 
convective term is presented in the Figs. 13-16 for the 2x69x49, 2x137x97, 2x273x193, and 2x545x385 grids, 
respectively. Figure 13 shows aberrant solutions on 2x69x49 grid. At certain locations in this grid the primary SA 
model variable became negative in solutions from all the three methods. In the PA solution, the primary variable in 
certain cells oscillated between negative and non-negative values throughout the run. In HANIS solutions these 
oscillations occurred for a shorter duration in the evolutionary stage and vanished later on. The PA solution 
exhibited limit-cycle behavior for the entire duration of the run. The HANIS-1 and HANIS-4 successfully exited 
from the stall behavior. On this grid, HANIS-1 solution operated at a lower CFL number on an average basis. 
Although, HANIS-1 and HANIS-4 solutions converged to machine-zero level, viscous drag coefficient from the two 
solutions differed slightly (0.288807e-2 for HANIS-1, 0.288800e-2 for HANIS-4) indicating non-unique solutions.  

Figures 14-16 show that HANIS solutions substantially outperform PA solutions on other finer grids as well. 
HANIS-4 generally operates at higher CFL number and converges faster than HANIS-1. Table 1c and Table 1d 
summarize the time taken by each solution method to converge the coupled residuals and viscous drag to a specific 
level. It can be seen from the tables that as compared to PA, HANIS-4 speeds up convergence by a factor 2.2-8.3, 
and HANIS-1 speeds up convergence by a factor 2.2-4.8. The smallest speed up factor of 2.2 is observed only for 
the SA model (and combined) residual convergence and only on the 2x273x193 grid. All other speed up factors are 
greater than 3.0. 

 
Table 1c. Residual error levels and convergence time for flat plate solutions obtained using a sequence of 

hexahedral grids. Convective term in the SA model is second-order-accurate. 
Grid Residual level Time in seconds to converge to the specific level 

using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x69x49 1.0e-15 limit cycle 152 204 N/A N/A 
2x137x97 1.0e-14 1371 453 235 3.0 5.8 
2x273x193 1.0e-15 14322 6462 6427 2.2 2.2 
2x545x385 1.0e-14 120148 36586 14422 3.3 8.3 
 

Table 1d. Viscous drag coefficient values and convergence time for flat plate solutions obtained using a 
sequence of hexahedral grids. Convective term in the SA model is second-order-accurate. 
Grid Viscous drag 

coefficient 
Time in seconds to converge to the specific 

value using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x69x49 non-unique limit cycle 95 72 N/A N/A 
2x137x97 0.286881e-2 711 147 131 4.8 5.4 
2x273x193 0.286266e-2 6742 1803 1049 3.7 6.4 
2x545x385 0.286057e-2 73863 17098 9808 4.3 7.5 

B. 2D Bump-in-Channel 
Five progressively finer nested hexahedral grids [21] have been used for this case. The specific grids, denoted by 

the number of grid points in the spanwise, streamwise, and body-normal directions, are 2x89x41, 2x177x81, 
2x353x161, 2x705x321, and 2x1409x641. Figure 3 presents a schematic view of the bump configuration, 
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computational domain and the boundary conditions in the X-Z plane. Symmetry boundary condition is applied on 
the two spanwise planes. In a departure from the suggested boundary conditions on the TMR website [21], a slip 
wall boundary condition is applied on a Z=0 plane upstream and downstream of the bump (Fig. 3). 

Solutions have been computed for the freestream Mach number of 0.2, Reynolds number of 3x106 per unit grid 
length, and angle-of-attack of 0°. On each of the five grids, solutions are computed using three different methods, 
namely, the PA, HANIS-1, and HANIS-4. A first-order approximation is applied for the SA model convective term.  

Iterative convergence is demonstrated in a separate figure for each grid. A figure includes plots for the run time 
variations of eight quantities, namely, (a) mean flow residuals, (b) SA model residuals, (c) combined mean flow and 
SA model residuals, (d) CFL number, (e) maximum eddy viscosity, (f) drag coefficient (g) lift coefficient, and (h) 
viscous drag coefficient. Figures 17-21 show the convergence of various quantities for the 2x89x41, 2x177x81, 
2x353x161, 2x705x321, and 2x1409x641 grids, respectively. The PA solution on the 2x1409x641 grid is not fully 
converged yet, as seen from Fig. 21. It is evident that on all grids, HANIS solutions converge substantially faster 
than PA solutions.  

HANIS-1 operates at higher levels of CFL number on all grids, as compared to HANIS-4. On the coarsest grid, 
CFL number in HANIS-1 solution responds to round-off errors and settles to a lower level in the post-convergence 
phase of the solution. It is noted that on all grids, HANIS-4 operates at the maximum-allowed CFL number of 
10,000 almost throughout the solution cycle. HANIS solutions on finer grids exhibit highly oscillatory variations of 
aerodynamic forces prior to convergence. On the contrary, PA solutions show a monotonic (albeit slow) 
convergence of aerodynamic forces. This is expected because HANIS solutions, unlike PA solutions, use a much 
higher CFL number. 

A more quantified evaluation of the PA, HANIS-1, and HANIS-4 solution convergence is presented in Tables 
2a-2d for all grids. The tables summarize the time taken by each solution method to converge the combined 
residuals (Table 2a), drag coefficient (Table 2b), lift coefficient (Table 2c), and viscous drag coefficient (Table 2d) 
to a specific level. It can be readily seen from the tables that on first four grids, as compared to PA, HANIS-1 speeds 
up convergence by a factor 2.8-7.2, and HANIS-4 speeds up convergence by a factor 2.2-9.1. The largest speed up 
factor is observed on the coarsest grid, for either of the HANIS solutions. On the next three progressively finer grids, 
HANIS speed factors reduce gradually. Note that on the finest 2x1409x641 grid, HANIS-1 and HANIS-4 solutions 
have already converged, whereas, the PA solution is yet to converge. HANIS solutions are expected to indicate a 
speed up of about 3 over the converged PA solution on this grid. 

 
Table 2a. Residual error levels and convergence time for bump-in-channel solutions obtained using a 

sequence of hexahedral grids. Convective term in the SA model is first-order-accurate. 
Grid Residual level Time in seconds to converge to the specific level 

using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x89x41 1.0e-13 344 48 44 7.2 7.8 
2x177x81 1.0e-13 2412 468 434 5.2 5.6 
2x353x161 1.0e-13 23988 6183 7069 3.9 3.4 
2x705x321 1.0e-13 343911 87431 103132 3.9 3.3 
2x1409x641 1.0e-13 yet to converge 1247370 1250940 N/A N/A 
 

Table 2b. Drag coefficient values and convergence time for bump-in-channel solutions obtained using a 
sequence of hexahedral grids. Convective term in the SA model is first-order-accurate. 
Grid Drag 

coefficient 
Time in seconds to converge to the specific 

value using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x89x41 0.493627e-2 218 33 24 6.6 9.1 
2x177x81 0.376135e-2 1240 283 252 4.4 4.9 
2x353x161 0.360087e-2 13006 3578 4106 3.6 3.2 
2x705x321 0.357887e-2 157939 47382 69754 3.3 2.3 
2x1409x641 0.357386e-2 yet to converge 1008880 965300 N/A N/A 
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Table 2c. Lift coefficient values and convergence time for bump-in-channel solutions obtained using a 
sequence of hexahedral grids. Convective term in the SA model is first-order-accurate. 
Grid Lift coefficient Time in seconds to converge to the specific 

value using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x89x41 0.243922e-1 122 23 20 5.3 6.1 
2x177x81 0.248145e-1 1018 243 217 4.2 4.7 
2x353x161 0.248967e-1 10199 3461 4540 2.9 2.2 
2x705x321 0.249228e-1 163454 48239 69492 3.4 2.4 
2x1409x641 0.249456e-1 yet to converge 960810 902295 N/A N/A 

 
Table 2d. Viscous drag coefficient values and convergence time for bump-in-channel solutions obtained 

using a sequence of hexahedral grids. Convective term in the SA model is first-order-accurate. 
Grid Viscous drag 

coefficient 
Time in seconds to converge to the specific 

value using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x89x41 0.327116e-2 157 22 21 7.1 7.5 
2x177x81 0.322682e-2 1184 265 242 4.5 4.9 
2x353x161 0.320438e-2 12455 3513 3160 3.5 3.9 
2x705x321 0.319627e-2 152789 53755 50608 2.8 3.0 
2x1409x641 0.319266e-2 yet to converge 806879 808462 N/A N/A 

C. 2D NACA 0012 Airfoil 
Grids from the TMR “Cases and Grids for Turbulence Model Numerical Analysis” section [21] have been used 

for this case. Grids of three families, namely, Family I, Family II, and Family III are available. The families differ in 
the trailing edge streamwise spacing. The current study uses five of the seven nested structured grids of Family II. 
Family II grids have been used presently as they provide the highest resolution around the trailing edge. The specific 
grids, denoted by the number of grid points in the spanwise, streamwise, and body-normal directions, are 2x113x33, 
2x225x65, 2x449x129, 2x897x257, and 2x1793x513. The current study does not use the finer two grids 
(2x3585x1025 and 2x7169x2049) in the seven grid series. Figure 4 presents a schematic view of the NACA 0012 
airfoil, computational domain and the boundary conditions in the X-Z plane. Symmetry boundary condition is 
applied on the two spanwise planes. 

Solutions have been computed for the freestream Mach number of 0.15, Reynolds number of 6x106 per unit 
chord length, and angle-of-attack of 10°. On each of the five grids, solutions are computed using three different 
methods, namely, the PA, HANIS-1, and HANIS-4. A first-order approximation is applied for the SA model 
convective term. 

Iterative convergence is demonstrated in a separate figure for each grid. A figure includes plots for the run time 
variations of eight quantities, namely, (a) mean flow residuals, (b) SA model residuals, (c) combined mean flow and 
SA model residuals, (d) CFL number, (e) maximum eddy viscosity, (f) drag coefficient (g) lift coefficient, and (h) 
pitching moment coefficient. Figures 22-26 present the convergence of various quantities for the 2x113x33, 
2x225x65, 2x449x129, 2x897x257, and 2x1793x513 grids, respectively. It is evident that on all grids, HANIS 
solutions converge substantially faster than PA solutions.  

Both HANIS-1 and HANIS-4 methods operate on an average at similar levels of CFL number for all grids, 
except the 2x225x65 grid (Fig. 23), where HANIS-1 solution shows higher levels of CFL number. It is noted that on 
all grids, HANIS-4 operates at the maximum-allowed CFL number of 10,000 almost throughout the solution cycle.  

A more quantified evaluation of the PA, HANIS-1, and HANIS-4 convergence is presented in Tables 3a-3d for 
all grids. The tables summarize the time taken by each solution method to converge the combined residuals (Table 
3a), drag coefficient (Table 3b), lift coefficient (Table 3c), and pitching moment coefficient (Table 3d) to a specific 
level. Note that pitching moment is computed with respect to the airfoil leading edge. It can be readily seen from the 
tables that as compared to PA, HANIS-1 speeds up convergence by a factor 1.8-11, and HANIS-4 speeds up 
convergence by a factor 3.6-13.0. The largest HANIS speed up is derived on the 2x225x65 grid, whereas, the 
smallest speed up is achieved on the 2x1793x513 grid. Disregarding the solution times on the coarsest 2x113x33 
grid, it can be seen from the Tables 3a-3d that HANIS speed up gradually diminishes on the progressively finer 
grids. HANIS-4 significantly outperforms HANIS-1 on the finest two grids of the current study. 
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Table 3a. Residual error levels and convergence time for NACA 0012 solutions obtained using a sequence 
of hexahedral grids. Convective term in the SA model is first-order-accurate. 
Grid Residual level Time in seconds to converge to the specific level 

using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x113x33 1.0e-12 99 14 13 7.1 7.6 
2x225x65 1.0e-13 905 82 69 11.0 13.0 
2x449x129 1.0e-13 8558 1317 1076 6.5 8.0 
2x897x257 1.0e-13 94553 22187 16413 4.3 5.8 
2x1793x513 1.0e-13 1585630 645271 309561 2.5 5.1 

 
Table 3b. Drag coefficient values and convergence time for NACA 0012 solutions obtained using a 

sequence of hexahedral grids. Convective term in the SA model is first-order-accurate. 
Grid Drag 

coefficient 
Time in seconds to converge to the specific 

value using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x113x33 0.209708e-01 29 9 8 3.2 3.6 
2x225x65 0.145285e-01 215 50 40 4.3 5.4 
2x449x129 0.127287e-01 2693 732 610 3.7 4.4 
2x897x257 0.123448e-01 39559 14268 10417 2.8 3.8 
2x1793x513 0.122646e-01 762022 416972 211012 1.8 3.6 
 

Table 3c. Lift coefficient values and convergence time for NACA 0012 solutions obtained using a sequence 
of hexahedral grids. Convective term in the SA model is first-order-accurate. 
Grid Lift coefficient Time in seconds to converge to the specific 

value using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x113x33 0.101120e+01 46 8 8 5.8 5.8 
2x225x65 0.107610e+01 198 38 29 5.2 6.8 
2x449x129 0.108777e+01 2040 475 426 4.3 4.8 
2x897x257 0.108947e+01 32286 6620 5710 4.9 5.7 
2x1793x513 0.109001e+01 673057 318125 163592 2.1 4.1 
 

Table 3d. Pitching moment values and convergence time for NACA 0012 solutions obtained using a 
sequence of hexahedral grids. Convective term in the SA model is first-order-accurate. 
Grid Pitching 

moment 
coefficient 

Time in seconds to converge to the specific 
value using various methods 

Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
2x113x33 -0.237382 28 9 7 3.1 4.0 
2x225x65 -0.258021 326 43 38 7.6 8.6 
2x449x129 -0.261365 2422 675 503 3.6 4.8 
2x897x257 -0.261769 49115 13059 9179 3.8 5.4 
2x1793x513 -0.261936 781751 397217 190948 2.0 4.1 

D. NASA Common Research Model (CRM) 
The NASA CRM wing/body/horizontal-tail configuration used presently has been the focus of the AIAA 4th 

Drag Prediction Workshop (DPW-4) [31]. The specific configuration that has tail incidence angle, iH = 0°, is used in 
the current study. The DPW-4 organizing committee made several different families of the structured and 
unstructured grids available. One of the grid families, known as “VGRID LaRC” that consisted of only tetrahedral 
elements, was generated using VGRID [6]. The family consisted of two different sets; one set of grids was suitable 
for the cell-centered and another was suitable for the node-centered CFD solvers. The “VGRID LaRC (cell-
centered)” grid set has four grids, namely, the “coarse”, “medium”, “fine”, and “extra-fine” grids. These grids can be 
downloaded from a server (ftp://cmb24.larc.nasa.gov/outgoing/DPW4/unstructured_Larc/CellBase/) at NASA 
Langley Research Center.  



 
American Institute of Aeronautics and Astronautics 

 
 

14 

Four different grids used for the present study are described next. A “coarse tetrahedral” grid is identical to the 
“coarse” “VGRID LaRC (cell-centered)” grid. The grid has 3,935,055 cells and 672,235 nodes. Other three grids are 
mixed-element grids. In the “coarse mixed” grid, boundary layer tetrahedral elements in the “coarse tetrahedral” grid 
have been merged into prismatic and pyramidal cells, using a utility code developed by Ed Parlette of ViGYAN, Inc. 
Similarly, “medium mixed”, and “fine mixed” grids are derived from the corresponding “VGRID LaRC (cell-
centered)” “medium” and “fine” grids, respectively. The “coarse mixed” grid has a total of 1,524,325 elements 
(1,226,266 prisms, 26,728 pyramids, and 271,331 tetrahedra) and 685,941 nodes. The “medium mixed” grid has a 
total of 4,025,920 elements (3,057,031 prisms, 47,028 pyramids, and 921,861 tetrahedra), and 1,736,808 nodes. The 
“fine mixed” grid has a total of 15,773,460 elements (9,630,012 prisms, 102,082 pyramids, and 6,041,366 
tetrahedra), and 5,969,072 nodes. 

A schematic representation of the NASA CRM configuration, computational domain and the boundary 
conditions used for the current study is provided in Fig. 5. Only half of the configuration is considered and a 
symmetry boundary condition is applied on the plane of symmetry. 

Solutions have been computed for the freestream Mach number of 0.85, Reynolds number of 5x106 per unit 
reference chord length, and angle-of-attack of 2°. On each of the four grids, solutions are computed using three 
different methods, namely, the PA, HANIS-1, and HANIS-4. A first-order approximation is applied for the SA 
model convective term.  

The objective of this study is to assess HANIS benefits for a practical configuration for which tetrahedral grid 
USM3D production version is typically used. Hence, best practices developed for the production USM3D version 
are adopted for PA solutions. For example, for the first 500 nonlinear iterations, solution is first-order accurate and 
then switched over to second-order accuracy. CFL number is scaled according to the deviation of cell aspect ratio 
from the ideal value of an isotropic tetrahedron [32]. Only 15 G-S iterations are used for the preconditioner. 
Furthermore, SA model solution updates are uniformly under-relaxed such that at any cell only 25% of the solution 
updates are applied. It is emphasized that for HANIS solutions the parameters summarized earlier in Section IV are 
used.  

Solution convergence is demonstrated in a separate figure for each grid. A figure includes plots for the run time 
variations of eight quantities, namely, (a) mean flow residuals, (b) SA model residuals, (c) combined mean flow and 
SA model residuals, (d) CFL number, (e) maximum eddy viscosity, (f) drag coefficient (g) lift coefficient, and (h) 
pitching moment coefficient. Figures 27-30 present the convergence of various quantities for the “coarse 
tetrahedral”, “coarse mixed”, “medium mixed”, and “fine mixed” grids, respectively. It is evident that on all grids, 
HANIS solutions converge asymptotically faster than PA solutions. Convergence acceleration from HANIS-1 and 
HANIS-4 is comparable in the “coarse tetrahedral” grid solutions. On mixed element grids, HANIS-1 significantly 
outperforms HANIS-4. 

On “coarse tetrahedral” grid, HANIS methods operate at an average CFL number below 150, which is the 
specified global CFL value for PA solutions (Fig. 27). Inability of HANIS solutions to operate at higher levels of 
CFL number needs further investigation. For the three mixed-element grids, HANIS methods typically operate at 
significantly higher levels (Figs. 28-30).  

A more quantified evaluation of the PA, HANIS-1, and HANIS-4 solution convergence is presented in two sets 
of tables. The sets use different tolerance settings for measuring solution convergence. Tight tolerance levels are 
applied in Tables 4a-4d, and somewhat loose tolerance levels, typically used for practical aerodynamic 
computations, are set in Tables 4e-4h. The tables summarize the time taken by each solution method to converge the 
combined residuals (Table 4a, Table 4e), drag coefficient (Table 4b, Table 4f), lift coefficient (Table 4c, Table 4g), 
and pitching moment coefficient (Table 4d, Table 4h) to a specific level.  

It is noted that for tight tolerances, as compared to PA, HANIS-1 speeds up convergence by a factor 1.7-5.5, and 
HANIS-4 speeds up convergence by a factor 1.4-2.9 (Tables 4a-4d). For loose tolerances, as compared to PA, 
HANIS-1 speeds up convergence by a factor 1.4-4.7 and HANIS-4 speeds up convergence by a factor 0.8-3.0 
(Tables 4e-4h). For all quantities, the smallest HANIS-1 speed up factors are observed on “coarse tetrahedral” grid. 
HANIS-1 performs comparatively better on mixed-element grids. HANIS-4 shows a much-degraded performance 
on this case and struggles on “coarse tetrahedral” and “fine mixed” grids. For loose tolerances, it converges slower 
than PA for certain quantities. For the present 3D case HANIS-1 is superior to HANIS-4. It can be surmised that 
additional search directions used in HANIS-4 merely consume more run time without achieving linear residual 
reduction targets in GCR.   
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Table 4a. Residual error levels and convergence time for NASA CRM solutions obtained using 
tetrahedral and mixed element grids. Convective term in the SA model is first-order-accurate. 
Grid Residual 

level 
Time in seconds to converge to the specific level 

using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
coarse tetrahedral 1.0e-8 778295 437008 445627 1.8 1.7 
coarse mixed 1.0e-8 114359 20665 41867 5.5 2.7 
medium mixed 1.0e-8 348447 68654 132401 5.1 2.6 
fine mixed 1.0e-8 1397490 326735 809475 4.3 1.7 

 
Table 4b. Drag coefficient values and convergence time for NASA CRM solutions obtained using 

tetrahedral and mixed element grids. Convective term in the SA model is first-order-accurate. 
Grid Drag 

coefficient  
Time in seconds to converge to the specific 

value using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
coarse tetrahedral 0.295854e-1 328597 172176 173135 1.9 1.9 
coarse mixed 0.298837e-1 37657 8507 16417 4.4 2.3 
medium mixed 0.266261e-1 126049 26556 68569 4.7 1.8 
fine mixed 0.258262e-1 735403 209924 459099 3.5 1.6 

 
Table 4c. Lift coefficient values and convergence time for NASA CRM solutions obtained using a 

tetrahedral and mixed element grids. Convective term in the SA model is first-order-accurate. 
Grid Lift 

coefficient  
Time in seconds to converge to the specific 

value using various methods 
Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
coarse tetrahedral 0.445167 332666 191796 191588 1.7 1.7 
coarse mixed 0.440453 38774 9232 17762 4.2 2.2 
medium mixed 0.447966 143822 31908 72442 4.5 2.0 
fine mixed 0.448297 714623 183635 458029 3.9 1.6 

 
Table 4d. Pitching moment coefficient values and convergence time for NASA CRM solutions obtained 

using tetrahedral and mixed element grids. Convective term in the SA model is first-order-accurate. 
Grid Pitching 

moment 
coefficient  

Time in seconds to converge to the specific 
value using various methods 

Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
coarse tetrahedral -0.406453e-1 506875 278983 278114 1.8 1.8 
coarse mixed -0.354578e-1 63064 13090 21846 4.8 2.9 
medium mixed -0.298685e-1 164865 40434 79762 4.1 2.1 
fine mixed -0.252248e-1 841354 246459 601875 3.4 1.4 

 
Table 4e. Residual error reduction and convergence time for NASA CRM solutions obtained using 

tetrahedral and mixed element grids. Convective term in the SA model is first-order-accurate. 
Grid Residual 

reduction by 
order of 

magnitude 

Time in seconds to converge to the specific level 
using various methods 

Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 

coarse tetrahedral 5 142672 99939 99573 1.4 1.4 
coarse mixed 5 20239 5030 7700 4.0 2.6 
medium mixed 5 63037 16509 33090 3.8 1.9 
fine mixed 5 269846 113624 250364 2.4 1.1 
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Table 4f. Drag coefficient convergence tolerance and time for NASA CRM solutions obtained using 
tetrahedral and mixed element grids. Convective term in the SA model is first-order-accurate. 
Grid Drag 

coefficient  
tolerance 

Time in seconds to converge to the specific 
value using various methods 

Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
coarse tetrahedral ±0.25% 122810 79517 78839 1.5 1.6 
coarse mixed ±0.25% 12708 3985 6371 3.2 2.0 
medium mixed ±0.25% 38998 13081 21543 3.0 1.8 
fine mixed ±0.25% 169632 92264 216982 1.8 0.8 

 
Table 4g. Lift coefficient convergence tolerance and time for NASA CRM solutions obtained using a 

tetrahedral and mixed element grids. Convective term in the SA model is first-order-accurate. 
Grid Lift 

coefficient  
tolerance 

Time in seconds to converge to the specific 
value using various methods 

Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 
coarse tetrahedral ±0.25% 108006 78150 77447 1.4 1.4 
coarse mixed ±0.25% 12698 4263 7122 3.0 1.8 
medium mixed ±0.25% 29122 13815 26865 2.1 1.1 
fine mixed ±0.25% 172888 78312 185388 2.2 0.9 
 
Table 4h. Pitching moment coefficient convergence tolerance and time for NASA CRM solutions obtained 
using tetrahedral and mixed element grids. Convective term in the SA model is first-order-accurate. 
Grid Pitching 

moment 
coefficient 
tolerance 

Time in seconds to converge to the specific 
value using various methods 

Speedup factor of 
HANIS over PA 

PA HANIS-1 HANIS-4 HANIS-1 HANIS-4 

coarse tetrahedral ±0.25% 229114 133162 132419 1.7 1.7 
coarse mixed ±0.25% 24840 5338 8380 4.7 3.0 
medium mixed ±0.25% 88050 18647 43041 4.7 2.0 
fine mixed ±0.25% 416245 129273 301482 3.2 1.4 

V. Concluding Remarks 
A new Hierarchical Adaptive Nonlinear Iteration Scheme (HANIS) methodology has been implemented to 

improve iterative convergence and robustness of the baseline mixed-element USM3D code [20]. The baseline code 
advances the nonlinear solution in pseudo time using only a simple preconditioner based on a defect-correction 
scheme and point-implicit Gauss-Seidel (G-S) iterations. A limiting aspect of this approach is that typically, a low 
Courant-Friedrichs-Lewy (CFL) number is needed to preserve solution robustness. A low CFL number adversely 
impacts iterative convergence and increases the time needed for converging a solution. The HANIS methodology 
provides two additional hierarchies over the USM3D preconditioner-alone (PA) solver. The hierarchies are an 
enhanced linear solver for the exact linearization of Reynolds-Averaged Navier Stokes (RANS) equations and a 
nonlinear control of the solution update. The preconditioner generates new search directions for a matrix-free 
Generalized Conjugate Residual (GCR) linear solver that uses Frechet derivatives to compute matrix-vector 
multiplications. The GCR method suggests an update for the current nonlinear solution. The update is checked for 
possible violations of realizability constraints and is scaled, if needed, to optimize the nonlinear residual reduction. 
CFL number adaptation is used as the main tool to provide robustness and improve efficiency. Depending on 
success reported by each of hierarchies, HANIS may reduce, increase, or maintain CFL number for the subsequent 
nonlinear iteration; analogously, the suggested update can be discarded entirely, or either fully or partially applied.  

Two versions of HANIS, HANIS-1 and HANIS-4, have been assessed. HANIS-1 uses only one search direction 
in the GCR solver and does not limit operational CFL number; HANIS-4 uses the maximum of four search 
directions and sets a CFL maximum at 10,000. The performance of the HANIS methods is evaluated against a 
preconditioner-alone (PA) method representative of the current state-of-the-art solver technology. The PA solver 
uses a specified CFL ramping throughout several initial iterations and a constant CFL thereafter.  

The PA, HANIS-1, and HANIS-4 methods use many advanced solver technology elements, recently 
implemented in USM3D, such as improved linearization schemes for the defect-correction preconditioner, adaptive 
discretization schemes for mean flow fluxes, a turbulence model formulation with improved numerical 
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characteristics, residual reduction targets for an earlier iteration termination, implementation strategies optimizing 
computer memory and operation count. 

The PA and HANIS methods have been applied to four benchmark turbulent flow cases: a two-dimensional (2D) 
flat plate, a 2D bump in channel, the 2D NACA 0012 airfoil, and a three-dimensional (3D) NASA CRM wing-body-
tail configuration used for the 4th AIAA Drag Prediction Workshop. The following observations have been made: 
1. HANIS methods can significantly accelerate iterative convergence in terms of time-to-solution. In comparison to 

the PA solver, HANIS-1 always reduces the computational time required to converge either nonlinear residuals 
or an aerodynamic coefficient to a prescribed tolerance. For 3D computations and for 2D computations on finer 
grids the typical convergence acceleration factor ranges from 1.4 to 5. The factor is even higher on coarser 2D 
grids. 

2. HANIS algorithms provide the largest acceleration when operating at high CFL numbers. On finer grids, 
HANIS-1 and HANIS-4 methods perform at a lower CFL level and produce diminished convergence 
acceleration. 

3. HANIS-4 mostly outperformed HANIS-1 in 2D cases. However, HANIS-4 converged poorly on the fine grid for 
the 3D case. This degradation can be explained by the fact that the additional search directions do not 
significantly improve convergence of the GCR solver, but spend a significant amount of additional time per 
iteration.  

VI. Future Directions 
The present study exposed many avenues for further improvements in the new USM3D. For improved 

automation, it is important to reduce the number of user-prescribed parameters. Currently the HANIS performance is 
controlled by many parameters. For example, the preconditioner has a residual reduction target and the maximum 
number of G-S iterations as parameters. Performance of the current point-implicit G-S preconditioner strongly varies 
with the variations of these parameters. Softer (closer to 1) targets imply fewer G-S iterations, but less accurate 
solutions for the preconditioner equations; higher maximum number for G-S iterations improves probability to reach 
the target, but may increase the time spent in preconditioner. A line-implicit G-S iteration scheme is less sensitive to 
the variations of these parameters [29]. Eventually, a linear multigrid solver should completely eliminate these 
dependences, as a single multigrid cycle is expected to be sufficient to meet a reasonable residual reduction target in 
preconditioner computations on any grid. 

A general GCR method may use several search directions and a linear residual reduction target. There is a trade-
off between more search directions and a softer target. More search directions potentially provide a better accuracy 
for linear solutions and better chances to meet the GCR residual reduction target, but use more computational time 
and memory. Softer targets increase the operational CFL number range, but provide less accurate solution updates, 
which may potentially lead to a nonlinear convergence degradation. GCR with 1 search direction is a parameter free 
algorithm, which is a very attractive feature. If the GCR preconditioner met its own residual reduction target, but the 
corresponding search direction did not provide the sufficient reduction in the GCR residual, then the preconditioner 
solution is not a good approximation for the GCR solution. Chances are that asking for more search directions from 
a crude preconditioner may be expensive and may not bring any benefits (as 3D computations seem to indicate). A 
simpler and often more effective strategy is to declare a GCR failure and reduce CFL number, which automatically 
improves approximation property between the preconditioner and the GCR equations. 

The nonlinear control of the solution update has a nonlinear residual reduction target and a minimum under-
relaxation parameter. In the current implementation, the nonlinear residual reduction target is linked to the GCR 
linear residual reduction target, and it is not a free parameter. Similarly, the minimum under-relaxation parameter is 
linked to the nonlinear residual reduction target and to the actual reduction of the GCR residual, and it is not a free 
parameter either. With one search direction for the GCR method and a linear multigrid for the preconditioner, a 
single HANIS control parameter is left, which is a residual reduction target (either for GCR residual or for nonlinear 
residual). 

In the present HANIS, preconditioner, GCR, and nonlinear residual reduction targets are 0.1, 0.92 and 0.96, 
respectively. The targets are the same on all grids. With fixed targets, HANIS performance diminishes on finer 
grids. HANIS solutions show a high rate of increase in the computation time needed to converge on progressively 
finer grids. For example, for NACA 0012 case, the convergence time for the HANIS solutions on the four finer grids 
increases by factors 1, 16, 270, and 7869. This degradation is expected because more G-S iterations are required to 
achieve the same preconditioner residual reduction on finer grids. Thus the HANIS solver with the same parameters 
typically operates with lower CFL numbers on finer grids. Multigrid for preconditioner will alleviate this problem, 
but will not solve it completely because convergence rates of defect-correction iterations may still be insufficient on 
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finer grids, leading to lower CFL operational range and less efficiency. The problem can be addressed either by 
developing an efficient linear multigrid solver for the GCR equations or by developing an efficient nonlinear 
multigrid solver. The recent positive experience with multigrid solutions reported in literature [23, 29, 33] suggests 
the latter route. 
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Figure 1. Flowchart of two nonlinear iteration schemes. 

 
 
 
 
 
 

 
 

(a) PA iterations 
 

(b) HANIS iterations 
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Figure 2. Schematic representation of the 2D zero pressure gradient flat plate configuration and its 
computational domain with boundary conditions (BC). 

 
Figure 3. Schematic representation of the 2D bump-in-channel configuration and its computational 
domain with boundary conditions (BC). 
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Figure 4. Schematic representation of the 2D NACA 0012 airfoil configuration and its computational 
domain with boundary conditions (BC). 
 

 
 

Figure 5. Schematic representation of the NASA Common Research Model (CRM) wing-body-tail 
configuration and its computational domain with boundary conditions (BC). 
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(a) rms of mean flow residuals (b) rms of SA model residuals 

Figure 6. NACA 4412 airfoil PA solution convergence history for 2x113x33 hexahedral grid using 
standard and negative variants of SA model. M∞ = 0.09, α = 13.87°, ReL = 1.52x106. Convective term in SA 
model is first-order accurate.  

 

 
(a) PA  

 
(b) HANIS-1  

 
Figure 7. NACA 0012 airfoil mean flow solution convergence history for 2x897x257 hexahedral grid using 
various number of G-S iterations in the preconditioner. M∞ = 0.15, α = 10°, Rec = 6x106. Convective term 
in SA model is first-order accurate.  
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(a) SA model residual 

 
(b) CFL number 

Figure 8. NACA 0012 airfoil HANIS-4 solution convergence history for 2x897x257 hexahedral grid using 
two different strategies for the maximum CFL number. M∞ = 0.15, α = 10°,  Rec = 6x106. Convective 
term in SA model is first-order accurate.  
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

 

Figure 9. Flat plate solution convergence history using 2x69x49 hexahedral grid. M∞ = 0.2, ReL = 5x106. 
Convective term in SA model is first-order accurate.  
 



American Institute of Aeronautics and Astronautics 
27 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

(e) maximum normalized eddy viscosity  
(f) viscous drag coefficient 

 

Figure 9.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 10. Flat plate solution convergence history using 2x137x97 hexahedral grid. M∞ = 0.2, ReL = 5x106. 
Convective term in SA model is first-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) viscous drag coefficient 

Figure 10.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 11. Flat plate solution convergence history using 2x273x193 hexahedral grid. M∞ = 0.2,   
ReL = 5x106. Convective term in SA model is first-order accurate. 
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(e) maximum normalized eddy viscosity 

 
(f) viscous drag coefficient 

 

Figure 11.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 12. Flat plate solution convergence history using 2x545x385 hexahedral grid. M∞ = 0.2,   
ReL = 5x106. Convective term in SA model is first-order accurate. 
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(e) maximum normalized eddy viscosity 

 
(f) viscous drag coefficient 

 

Figure 12.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 13. Flat plate solution convergence history using 2x69x49 hexahedral grid. M∞ = 0.2, ReL = 5x106. 
Convective term in SA model is second-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) viscous drag coefficient 

 

Figure 13.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

 

Figure 14. Flat plate solution convergence history using 2x137x97 hexahedral grid. M∞ = 0.2, ReL = 5x106. 
Convective term in SA model is second-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) viscous drag coefficient 

 

Figure 14.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 15. Flat plate solution convergence history using 2x273x193 hexahedral grid. M∞ = 0.2,   
ReL = 5x106. Convective term in SA model is second-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) viscous drag coefficient 

 

Figure 15.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 16. Flat plate solution convergence history using 2x545x385 hexahedral grid. M∞ = 0.2,   
ReL = 5x106. Convective term in SA model is second-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) viscous drag coefficient 

 

Figure 16.  Concluded. 
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(a) rms of mean flow residuals 

 
(c) rms of combined mean flow and SA residuals 

 
(b) rms of SA model residual 

 
(d) CFL for mean flow and SA model 

Figure 17. Bump-in-channel solution convergence history using 2x89x41 hexahedral grid. M∞ = 0.2,   
ReL = 3x106. Convective term in SA model is first-order accurate. 
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(e) maximum normalized eddy viscosity 

 
(h) viscous drag coefficient 

 
(g) lift coefficient 

 
(f) drag coefficient 

 

Figure 17.  Concluded. 

Figure 17.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 18. Bump-in-channel solution convergence history using 2x177x81 hexahedral grid. M∞ = 0.2,   
ReL = 3x106. Convective term in SA model is first-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) viscous drag coefficient 

 

Figure 18.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 19. Bump-in-channel solution convergence history using 2x353x161 hexahedral grid. M∞ = 0.2,   
ReL = 3x106. Convective term in SA model is first-order accurate. 
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) viscous drag coefficient 

 

Figure 19.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 20. Bump-in-channel solution convergence history using 2x705x321 hexahedral grid. M∞ = 0.2,   
ReL = 3x106. Convective term in SA model is first-order accurate. 
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) viscous drag coefficient 

 

Figure 20.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 21. Bump-in-channel solution convergence history using 2x1409x641 hexahedral grid. M∞ = 0.2, 
ReL = 3x106. Convective term in SA model is first-order accurate. 
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) viscous drag coefficient 

 

Figure 21.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 22. NACA 0012 solution convergence history using 2x113x33 hexahedral grid. M∞ = 0.15, α = 10°, 
Rec = 6x106. Convective term in SA model is first-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) pitching moment coefficient 

 

Figure 22.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 23. NACA 0012 solution convergence history using 2x225x65 hexahedral grid. M∞ = 0.15, α = 10°, 
Rec = 6x106. Convective term in SA model is first-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) pitching moment coefficient 

 

Figure 23.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

 

Figure 24. NACA 0012 solution convergence history using 2x449x129 hexahedral grid. M∞ = 0.15, α = 10°, 
Rec = 6x106. Convective term in SA model is first-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) pitching moment coefficient 

 

Figure 24.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

 

Figure 25. NACA 0012 solution convergence history using 2x897x257 hexahedral grid. M∞ = 0.15, α = 10°, 
Rec = 6x106. Convective term in SA model is first-order accurate.  
 



American Institute of Aeronautics and Astronautics 
59 

 
 
 
 
 
 
 
 

 
(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) pitching moment coefficient 

 

Figure 25.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

 

Figure 26. NACA 0012 solution convergence history using 2x1793x513 hexahedral grid. M∞ = 0.15,   
α = 10°, Rec = 6x106. Convective term in SA model is first-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) pitching moment coefficient 

 

Figure 26.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 

Figure 27. NASA Common Research Model (CRM) solution convergence history using a coarse 
tetrahedral grid. M∞ = 0.85, α = 2°, Rec = 5x106. Convective term in SA model is first-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) pitching moment coefficient 

 

Figure 27.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals 

 
(d) CFL for mean flow and SA model 
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Figure 28. NASA Common Research Model (CRM) solution convergence history using a coarse mixed 
element grid. M∞ = 0.85, α = 2°, Rec = 5x106. Convective term in SA model is first-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) pitching moment coefficient 

 

Figure 28.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residuals 

 
(c) rms of combined mean flow and SA residuals  

 
(d) CFL for mean flow and SA model 

 

Figure 29. NASA Common Research Model (CRM) solution convergence history using a medium mixed 
element grid. M∞ = 0.85, α = 2°, Rec = 5x106. Convective term in SA model is first-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) pitching moment coefficient 

 

Figure 29.  Concluded. 
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(a) rms of mean flow residuals 

 
(b) rms of SA model residual 

 
(c) rms of combined mean flow and SA residuals  

 
(d) CFL for mean flow and SA model  
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Figure 30. NASA Common Research Model (CRM) solution convergence history using a fine mixed 
element grid. M∞ = 0.85, α = 2°, Rec = 5x106. Convective term in SA model is first-order accurate.  
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(e) maximum normalized eddy viscosity 

 
(f) drag coefficient 

 
(g) lift coefficient 

 
(h) pitching moment coefficient 

 

Figure 30.  Concluded. 


