Self-Repairing Fatigue Damage in Metallic Structures for Aerospace Vehicles Using Shape Memory Alloy Self-Healing (SMASH) Technology

Investigators:
M. Clara Wright, NASA KSC
Michele Manuel, University of Florida
Terryl Wallace, NASA LaRC
Andy Newman, NASA LaRC
Cate Brinson, Northwestern University

Team members: Hunter Henderson, Mike Kessler, Alanna Eilenberg, Oscar Figueroa III, Jeff Sampson, Thad Johnson, Fernando Reyes-Tirado, Pingping Zhu

NASA Aeronautics Research Mission Directorate (ARMD)
2015 LEARN/Seedling Technical Seminar
March 18 & 19, 2015
Outline

• The innovation: SMASH technology
• Liquid-assisted self-healing approach
 • Impact of the innovation
• Results of the Seedling Phases I and II efforts
 • Distribution/dissemination
 • Next Steps
SMASH Technology Concept

- Liquid-assisted healing:
 - Clamping force from the SMA wires
 - Partial liquefaction of the matrix

- Proof of concept on Sn-Bi alloys

SMASH Technology

• Proof of concept: healing cm-long cracks with retention of mechanical properties
 – 95% recovery of ultimate tensile strength

Time-lapse video showing actual healing of two overload cracks on a Sn-Bi dogbone specimen. Healing continues when the specimen is held at temperature and partial matrix liquefaction fills in any remaining gaps in the crack faces.
Technical Approach

• Liquid-assisted healing of fatigue cracks
• Thermodynamic design of matrix
 – Binary and Ternary alloy design
 – Optimization of healing parameters
 – Optimization or microstructure and mechanical properties
• Complex specimen fabrication
 – Multi-layer specimens
• Numerical modeling
 – Model validation
 – Reinforcement architecture

Proof of concept material (top) and mechanical properties of cast Al-Si material (bottom)
Impact of Innovation

- Wrought and cast Al alloys used throughout aircraft
 - Fatigue and fatigue crack growth at high cycles is concern.
- Improve damage tolerance and fatigue life of metals at critical structural locations
- Integrated self-repairing approach would improve durability and sustainability of the aerospace material to ensure vehicle safety
Results from Phase I

- Self-repair of Al matrix materials
- Fatigue crack repair
- 90% recovery of UTS after healing
- Multiple healing cycles achieved

Before: Post-Fatigue Testing at KSC

After: Post-Heal at UF

Fatigue crack healed in POC

Adequate Al-Si microstructure for healing treatment

Small-scale multi-ply Al-Cu-Si specimen
Phase I Fatigue Testing Results

- Fatigue testing of matrix material after various healing cycles to study liquid-assisted portion of healing.

![Graph showing crack length vs. cycle count](image)

- Cycle count, N (x 1,000)
- Crack length, a (inches)
- Points represent:
 - Before healing
 - After 1st healing
 - After 2nd healing

![Images showing samples before and after testing and healing](images)

- After first test
- After first heal
- After second test
- After second heal

March 18 & 19, 2015
NASA Aeronautics Research Mission Directorate 2015 LEARN/Seedling Technical Seminar
Phase II Results: Fabrication Technique

- Improved upon diffusion bonding technique developed during Phase I by consolidating using vacuum hot pressing (VHP)
 - Larger scales
 - Alignment fixtures
 - Multi-step processing
 - Optimized pressures and temperatures
- Allowed for fabrication of more complex test specimens
- Ensured adequate SMA reinforcement by X-ray and computed tomography (CT)
Phase II Results: Fabrication Technique

- VHP samples had a similar microstructure to the cast samples with a decrease in porosity.
- Diffusion bonding interface around wires and between “slices” of matrix material were adequate.
 - Slight bonding line visible, but no contaminants were identified at the interface.
Phase II Results: Healing overload cracks

- Increase in ductility when compared to cast samples from Phase I
 - Resulted in necking of test specimen
 - Healing treatment showed filling of crack

Comparison of cast and healed mechanical properties

\[
\sigma_{0.2\%} = 39.2 \text{ Mpa} \\
\varepsilon_{\text{VHP}} = 9.1 \%
\]

Phase II Results: Driver for treatment optimization

- CT stills showing diffusion front of wire within healed overload composite
Phase II Results: Driver for treatment optimization

- Non-destructive CT vs. destructive metallography showing diffusion of SMA constituents into matrix.
Phase II Results: Driver for treatment optimization

- Sacrificial damage of SMA with original healing treatment
Phase II Results: Healing Treatment Optimization

- Optimization of:
 - Microstructure
 - Mechanical properties
 - Healing treatment
Phase II Results: Healing Treatment Optimization

- Optimization of:
 - Microstructure
 - Mechanical properties
 - Healing treatment

VHP specimens after healing treatment for various time periods.
Phase II Results: Healing Treatment Optimization

- Optimization of:
 - Microstructure
 - Mechanical properties
 - Healing treatment

VHP specimens after healing treatment for various time periods.
Phase II Results: Healing Treatment Optimization

- Optimization of:
 - Microstructure
 - Mechanical properties
 - Healing treatment

VHP specimens after healing treatment for various time periods.
Phase II Results: Healing Treatment Optimization

- Optimization of:
 - Microstructure
 - Mechanical properties
 - Healing treatment

VHP specimens after healing treatment for various time periods.
Phase II Results: Healing Treatment Optimization

- Optimization of:
 - Microstructure
 - Mechanical properties
 - Healing treatment

VHP specimens after healing treatment for various time periods.
Phase II Results: Healing Treatment Optimization

- Optimization of:
 - Microstructure
 - Mechanical properties
 - Healing treatment
- Grain growth and diffusion vs. mechanical properties

Optimization of healing treatment

VHP specimens after healing treatment for various time periods.

March 18 & 19, 2015
NASA Aeronautics Research Mission Directorate 2015 LEARN/Seedling Technical Seminar
Phase II Results: Fatigue Crack Growth

- Edgewise single edge notch tension ESE(T) specimens tested by compliance control to grow and heal a small fatigue crack.
 - Surface strain measurements via visual image correlation (VIC-3D)
- FCG specimens were pre-cracked, tested, healed, and re-tested.
 - High-temperature speckle pattern was used to continue strain measurements after healing treatment.
Phase II Results: Fatigue Crack Growth

- Pre-healing treatment CT
Phase II Results: Fatigue Crack Growth

- Strain fields during first fatigue test, after healing, and at the end of the second fatigue test.

VIC strain field data of ESE(T) FCG specimen pre- and post-healing treatment.
Phase II Results: Modeling

- Modeled composite using various loading scenarios, SMA compositions, wire placement, continuous vs. discontinuous wire lengths, and wire pre-strain.
 - Evaluated plasticity induced on the matrix and wires from loading, unloading, and heating to healing temperatures.
 - Evaluated ability of SMA wires to force crack closure in the SMASH materials system.
Phase II Results: Validation of Model

- Empirical and model of metal matrix composite 3-point bend tests were in agreement
 - True test data, including material properties at different temperature regimes, was used in the model.
 - Simulation of crack opening displacement (COD) after unloading is in good agreement with the test measurements.
 - Final COD after loading:
 - Model: 0.17 mm
 - Experimental: 0.15 mm

Crack length = 7.6 mm

Crack Opening Displacement (model)

E = 65 GPa for Sn-Bi matrix
Phase II Results: FEA

- FEA showing stress evolution (von-Mises, MPa) upon loading, unloading, and heating.

Step 1: Load

Step 2: Unload

Step 3: Heat

SMA

Matrix
Applying FEA to Fabrication of Complex Specimens

• 3-D model

Matrix SMA

0°
10°
30°
45°
Applying FEA to Fabrication of Complex Specimens

- FEA was used to model two multi-ply hot pressed specimens:
 - -45/0/+45
 - -30/0/+30
Phase II Results: Using FEA for Extending the Realm of possibilities

- The best wire placement in relation to the crack is perpendicular (0° in figures below)
- Pre-straining reinforcements aids in crack closure
Phase II Results: Using FEA for Extending the Realm of possibilities

- Short vs. Long fibers
 - Continuous vs. discontinuous wire reinforcements were modeled.
 - The best case for crack closure is continuous reinforcements near the crack tip.

Case 1 – discontinuous wires parallel

Case 2: discontinuous wires, offset by 12 mm

Case 3: discontinuous wires, offset by 20 mm
Phase II Results: Matrix Alloy Design

- Al-Cu and Al-Cu-X systems
- Liquid-assisted step in healing:
 - Eliminates work hardening and grain refinement
 - Leaves precipitation hardening and solid solution strengthening
- Candidates:
 - Al-Cu-Mg alloys that can precipitate the high-strength S-phase and its metastable precursors
- Heat treatment:
 - Cast, solution treat, quench, and age to peak strength.
 - Healing treatment performed on diffusion couples
 - Perform heat treatment again.
Distribution/Dissemination

• **Patents:**
 – A provisional patent application titled “*Self-Repairing Metal Alloy Matrix Composites, Methods of Manufacture and Use Thereof*” was filed in June 2014 with the Patent and Trademark Office.

• **NASA Technical Memoranda**
 – Fatigue Resistance of Liquid-Assisted Self-Repairing Aluminum Alloys Reinforced with Shape Memory Alloys
 – Assessment of Fatigue Crack Damage and Mitigation in Self-Repairing Metallic Materials

• **Invited Talks:**
 – TMS 2015 Annual Meeting and Exhibition, March 2015 in Orlando, FL “*Investigating the Fatigue Behavior of Aluminum-Based Shape Memory Alloy Self-Healing (SMASH) Technology*”.

• **Other Conference Talks:**
 – Aerospace Materials (AeroMat) Conference in June 2014 in Orlando, FL. “*Amending Fatigue Damage Using Shape Memory Alloy Self-Healing (SMASH) Technology*”.

• **Media, Articles and Public Relations:**
 – Central Florida Fox 35 News, January 2014
 – NASA video highlight: http://www.youtube.com/watch?v=VBgGpkesHQo
 – Professor Michele Manuel was deemed as one of three top researchers with groundbreaking research at the University of Florida in part because of the SMASH research, UF Alumni Magazine “*Shaping the Future*”, Spring 2014.
Next Steps

• Currently planning on 7 peer-reviewed journal articles
 – 1 high-level (in work), 2 modeling papers, 2 materials journals, 2 mechanics of materials.

• No-cost extensions granted to universities to complete experimental and modeling work for next 3 to 9 months.
 – Includes testing of multi-ply specimens and precipitation hardened matrix alloys.

• Interest from the Space Technology Mission Directorate to continue work on embedded crack detection and surface or non-contact heating.

• Potential collaboration with JPL to further enhance matrix design.

• Continue to market technology to other NASA Principal Investigators
Summary/Conclusions

• Proved healing of fatigue and overload cracks in proof-of-concept and aluminum matrix composites
• Performed fatigue crack growth tests before and after healing
• Experimentally optimized the processing parameters, healing treatment, matrix heat treatment
• Finite element model optimized the SMA reinforcement geometry, length, and pre-strain conditions
• Validated computer model using experimental data.

THANK YOU ARMD and NARI!