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TRCM = Tactical Runway Configuration Management 

 

 

Introduction 

The System-Oriented Runway Management (SORM) concept was developed as part of the Airspace Systems 
Program (ASP) Concepts and Technology Development (CTD) Project, and is composed of two basic capabilities: 
Runway Configuration Management (RCM), and Combined Arrival/Departure Runway Scheduling (CADRS). 
RCM is the process of designating active runways, monitoring the active runway configuration for suitability given 
existing factors, and predicting future configuration changes; CADRS is the process of distributing arrivals and 
departures across active runways based on local airport and National Airspace System (NAS) goals. 

The central component in the SORM concept is a tool for taking into account all the various factors and producing a 
recommendation for what would be the optimal runway configuration, runway use strategy, and aircraft sequence, 
considering as many of the relevant factors required in making this type of decision, and user preferences, if 
feasible. Three separate tools were initially envisioned for this research area, corresponding to the time scale in 
which they would operate: Strategic RCM (SRCM), with a planning horizon on the order of several hours, Tactical 
RCM (TRCM), with a planning horizon on the order of 90 minutes, and CADRS, with a planning horizon on the 
order of 15-30 minutes[1]. Algorithm development was initiated in all three of these areas, but the most fully-
developed to date is the TRCM algorithm. 

Earlier studies took a high-level approach to benefits, estimating aggregate benefits across most of the major airports 
in the National Airspace Systems (NAS), for both RCM and CADRS [2]. Other studies estimated the benefit of RCM 
and CADRS using various methods of re-sequencing arrivals to reduce delays3,4, or better balancing of arrival 
fixes5,6. Additional studies looked at different methods for performing the optimization involved in selecting the best 
Runway Configuration Plan (RCP) to use7-10. 

Most of these previous studies were high-level or generic in nature (not focusing on specific airports), and benefits 
were aggregated for the entire NAS, with relatively low fidelity simulation of SORM functions and aircraft 
trajectories. For SORM research, a more detailed benefits assessment of RCM and CADRS for specific airports or 
metroplexes is needed. 

 

Benefit mechanisms and metrics 

Benefits that may be attributed to TRCM use include: 

 Increased capacity due to better selection of configuration, runway use, and timing of 
configuration change  

 More efficient ground and airborne operations due to better balancing of arrivals/departures 
among runways and fixes (increased throughput) 

 Reduced delays due to reduced time in departure queues, more efficient route through TRACON 
airspace  

These benefits would apply to the NAS level as well as for the individual aircraft or operator. For the airport 
operator, benefits result from being able to maintain a more predictable schedule, increased throughput (more flights 
per day, more passengers per day), and fewer delays. At the metroplex (or regional level), as well as at the NAS 
level, it is anticipated that benefits would be similar to those at the individual airport level. For this study, only 
benefits at a single airport are investigated.  

To assess these benefits, the effect of the TRCM tool on other metrics can be measured, by comparing timing of 
flights achieved through conventional means (using historical data) versus what is achieved when using runway 
configuration plans from the TRCM tool. This could be measured as the amount of time it takes for a flight to transit 
a given amount of airspace (the transit time), and leads to other metrics such as delays and fuel used. In addition, 
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other metrics such as queue length and amount of airborne transit time vs transit time on the surface can be 
compared. It is important to note that, because the benefit is considered at the system level (i.e., not for individual 
flights), some flights might sustain a greater delay with the TRCM-generated schedule, if it results in a net benefit 
for the airport as a whole. 

 

Objective of Study 

The objective for this study is to conduct a benefits assessment using metrics related to the discussed benefit 
mechanisms, through simulations conducted with and without TRCM at specific airports, using the TRCM tool and 
specific airport adaptations.  

The objective function of the TRCM tool seeks to minimize transit time, i.e. for arrivals, the amount of time required 
for a flight to transit from the arrival fix to the “spot” (the location on the airport surface between the movement area 
and non-movement area, where control is transferred from ground controllers to ramp controllers; ATC is 
responsible for all aircraft on the movement area); for departures the transit time is from the spot to the departure fix. 
The TRCM algorithm looks for the airport configuration that results in the shortest transit time for all flights in a 
particular time interval, thus transit time is the primary metric for the benefits assessment; other metrics are also 
considered. As a follow-up to the initial benefits assessment, a secondary analysis of underlying effects that 
contribute to the resulting benefits was also conducted, including sensitivity analysis on key parameters. Traffic data 
from the year 2009-2010 was used, so the resulting benefits are for current-day demand levels only. 

 

Method of test 

The test method consists of comparing results from simulations using the TRCM-generated runway configuration 
schedule, versus a baseline case; the baseline case consists of results from simulations using the historical runway 
configuration schedule. The historical information was obtained using the Federal Aviation Administration’s (FAA) 
Aviation System Performance Metrics (ASPM) online database, accessible through the FAA’s Operations and 
Performance Data website11. The same demand data were used for both the baseline and TRCM cases; this set of 
data consisted of twelve days of historical data from each of the airports studied. Further details of the TRCM tool, 
simulation tool, airport environments, and demand data are included in this section. 

The software used for this study is sometimes referred to as SORM, but the particular function of interest for this 
study is the single-airport TRCM algorithm. Also included in the software package used for this study is the 
Metroplex Simulation Environment (MSE), which simulates aircraft operations resulting from using a given runway 
configuration schedule. Both of these programs were developed by Mosaic ATM under contract to NASA [Contract 
# NNL09AA02B]. The two parts of the software package are described here. 

Figure 1 gives an overview of how the SORM software operates. The SORM Manager alternates the control 
between planning and execution cycles. During the planning cycle (labeled Planning in TRCM), it uses the TRCM 
algorithm with a low fidelity fast-time simulation to plan for the next 90 minutes. After each iteration of the 
planning cycle, the SORM software then operates in the execution cycle (the Execution in MSE) simulating the 
airborne and taxi routes for individual aircraft entirely using a higher fidelity simulation environment, called the 
Metroplex Simulation Environment (MSE). These alternating cycles continue until all flights under study are 
simulated. 
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Figure 1. Overview of the current SORM software. 

 

Tactical Runway Configuration Management 

The TRCM algorithm takes as input a set of flights for a period of time (currently 90 minutes, but this parameter can 
be changed if needed),  and produces a recommended runway configuration to use for a given time interval 
(currently 15 minutes); the recommended configuration is the one that results in lower overall transit times for the 
given airport and time period. In an operational environment these time intervals would be adjusted based on 
weather and traffic conditions or other factors unique to a given facility.  

The current software requires three types of inputs, which are weather information, airport information, and flight 
plans. Weather information includes wind speed and wind direction. Airport information includes layout of 
terminals, spots, runways, arrival fixes, departure fixes, and their associated latitude and longitude coordinates, 
available runway configurations, and the current active runway configuration schedule. Flight plan includes flight 
ID, departure and destination airports, assigned departure or arrival fix, scheduled arrival time at fix, and scheduled 
departure time at gate.  

The TRCM algorithm uses an enumerative search of all available runway configurations to find the one that 
minimizes the total transit time across all flights in the given time interval. During the enumerative search, the low 
fidelity simulation environment is used to calculate the total transit time (the objective value). The algorithm trades 
off the airborne, taxi, and queue (departing aircraft only) time durations in its search for the minimum total time. 
Transit time durations are computed using great circle distances for all airborne and taxi routes, along with their 
corresponding speeds. Wind speed and direction are taken into account to penalize runway configurations that 
should not be used during unfavorable wind conditions. This is accomplished by adding a penalty to the total transit 
time. The algorithm output provides: the optimum (minimum total transit time) runway configuration; the time at 
which the optimum configuration should be used; the first flight on the optimum configuration; and the last flight on 
the current configuration.  

The TRCM software runs entirely within the MSE, which provides feedback on updated flight trajectories for use in 
the next planning cycle. The current algorithm, however, recommends a change from the current to the optimum 
configuration even if there is only a total transit time saving of as low as 1 second, or there is as few as one aircraft 
benefiting from the change. In an operational environment, this could result in excessive number of configuration 
changes, thus it is necessary to investigate if an additional parameter could be used to determine whether or not to 
recommend a configuration change. 

Planning in TRCM

Execution in 
Metroplex Simulation 

Environment (MSE)

SORM Manager

Weather 
Info.

Airport 
Info.

Flight Plan
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Metroplex Simulation Environment 

The MSE is a self-contained platform for conducting fast-time simulation of many flights in a given airspace. For 
this study, the airspace consists of a particular airport environment, including the surface operations and flight 
between the runway and a given airborne fix. For arrivals, the fix is one of three or four waypoints used as part of 
the arrival route for arriving flights; for departures, there are numerous fixes that can be used, depending on the 
intended direction of flight after the aircraft departs the runway. The airport information, flight plan, and runway 
configuration determined in the most recent TRCM  planning cycle are used as inputs to simulate the arrival and 
departure operations. The MSE includes details of the airport surface operations using node-link connections 
replicating the actual airport surface layout. It also incorporates aircraft-specific airborne and taxi speed profiles. 
The MSE records the status of flights, including all simulated flight routes and their time stamps at all predetermined 
surface nodes. Performance metrics can be post-processed and computed from the MSE flight’s records. The current 
MSE does not take any wind information into account during the simulation of arrival and departure operations. 
Table 1 compares some of the features and scope of the low fidelity fast-time simulation used in the planning 
process and the higher fidelity MSE used for simulating operations. 

Table 1. Comparison of TRCM (low fidelity) and MSE simulations 

Features Low fidelity planning simulation Higher fidelity MSE 

Usage phase of the 
software 

Determine the optimum runway schedule 
(planning). 

Execute the recommended optimum runway 
schedule (executing) and records all flight’s 
status for the next planning iteration, and 
for metric post-processing. 

Assumptions 1. Weather (wind) information is used to 
penalize configurations that are not operable 
under the certain weather conditions. 

1. No weather (wind) information is used 
during the simulation of the arrival and 
departure operations. 

2. No runway crossing constraint. 2. Actual runway crossing constraints are 
simulated. 

3. A predefined constant for taxi speed for 
all aircraft. 

3. Aircraft-specific taxi-speed profiles. 

4. A predefined constant for airborne speed 
for all aircraft. 

4. Aircraft-specific airborne-speed profiles. 

 

 

Airport Environments 

The three airport environments used for this study are Memphis International Airport (MEM), John F. Kennedy 
International Airport (JFK), and Dallas-Ft. Worth International Airport (DFW); these are depicted by the airport 
diagrams shown in Figure 2. MEM was selected to provide the SORM research team with data for comparison for a 
planned field evaluation of TRCM; JFK was used because it had previously been identified as the primary airport of 
interest for SORM studies; DFW was chosen due to its higher traffic volume and more complex ground operations. 

MEM (Figure 2a) has three parallel runways in a North/South orientation (18R/36L, 18C/36C, and 18L/36R) and 
one East/West runway (9/27) on the north side of the airport. JFK (Figure 2b) has two sets of parallel runways, one 
set in a Northwest/Southeast orientation (13R/31L and 13L/31R), and the other in a Northeast/Southwest orientation 
(4L/22R and 4R/22L). DFW (Figure 2c) has five parallel runways in a North/South orientation (18R/36L, 18L/36R, 
17R/35L, 17C/35C, and 17L/35R), and two parallel runways in a Northwest/Southeast orientation (13R/31L and 
13L/31R). Runway configurations evaluated in this study were the most frequently used, based on historical data 



 

 

 

6 

 

from ASPM. For this study, there were four different (unique) combinations of runway usage identified for inclusion 
in the evaluation for MEM, 10 combinations at DFW, and 20 combinations at JFK. Note that this does not represent 
all the possible combinations in which the runways could be used at each of these facilities; however they represent 
the configurations most commonly used at these facilities. 

 

 

a) Memphis International airport (MEM) 
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b) New York / John F. Kennedy International airport (JFK) 
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c) Dallas-Ft. Worth International airport (DFW) 

Figure 2. Airport Diagrams for (a) Memphis, (b) New York / John F. Kennedy, and (c) Dallas-Ft. Worth 
airports, respectively (image courtesy of FAA) 

 

Demand Data 

A range of conditions for test runs is needed in order to cover some of the primary factors that could affect the 
resulting benefits. The demand data used for this study comprised a set of historical data that covers the period of 
Fiscal Year 2010 (October 1, 2009 through September 30, 2010), which was adopted and recommended by the Joint 
Planning and Development Office (JPDO) for  NextGen research. These days were identified by the FAA as 
capturing trends in seasonal variations in aviation performance in the NAS for that year, using a method developed 
to minimize differences in predicted and actual levels of desired performance metrics at the daily level12. Simulation 
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runs conducted using historical configurations are considered the Baseline cases, and those using the TRCM-
generated configurations are called TRCM runs; for each data file (each day), results from the TRCM run were 
compared with the corresponding Baseline case to assess the benefits. 

The set of days from which the data were obtained are listed in Table 2, along with the number of operations that 
took place at each of the three airports. Note that the number of operations is less than what would be obtained from 
a query of ASPM, because the full set of operations is pared down to remove unscheduled flights that are not 
relevant (such as general aviation and military flights), and other flights with invalid data, and to adjust for different 
time zones in order to obtain a 24-hour sample. However, the resulting demand data, although less than the full 
ASPM number, still reflects the relative levels of demand – i.e., which days had higher demand than others, in 
proper proportions. 

Table 2. Dates for historical data used for analysis. 

Index 
Number 

Date Week Day MEM JFK DFW 

   Dep Arr Dep Arr Dep Arr 

1 10/6/2009 Tuesday  468 500 480 428 756 779 

2 10/17/2009 Saturday  300 314 502 449 721 738 

3 11/20/2009 Friday 455 535 545 528 851 862 

4 1/10/2010 Sunday 343 307 520 507 824 820 

5 3/9/2010 Tuesday 461 534 515 503 865 852 

6 3/25/2010 Thursday 492 549 555 527 869 863 

7 5/6/2010 Thursday 494 556 536 491 882 884 

8 5/18/2010 Tuesday 490 542 515 485 873 875 

9 6/5/2010 Saturday 309 326 529 480 756 767 

10 7/3/2010 Saturday 338 350 561 525 756 770 

11 7/13/2010 Tuesday 494 556 521 495 878 881 

12 7/22/2010 Thursday 501 554 593 565 903 904 

 

For the twelve sample days used, the day with the highest demand level was July 22, 2010 for all three airports; the 
day with the lowest demand level was October 17, 2009 for both MEM and DFW, but for JFK it was October 6, 
2009. The ratio of low to high demand varied greatly for the three airports; for JFK, demand on the lowest day was 
77% of demand on the highest day; for DFW the lowest day was 82% of the highest; for MEM the lowest was 58% 
of the highest. The large variation in demand levels for MEM can be attributed to the fact that FedEx is the largest 
airline operating at MEM, sometimes comprising over 40% of the day’s traffic; on days when there are not many 
FedEx flights (usually Friday and Saturday nights), the volume of traffic drops dramatically. For the days that follow 
(Saturday and Sunday), demand was often under 65% of the maximum value. This unique profile of traffic demand 
can have a significant effect on benefits.  

Historic traffic demand for the entire year obtained from ASPM also showed very different profiles for the three 
airports. Daily demand for MEM was consistently at either of two levels, averaging around 800 operations per day 
when there were no FedEx flights, and 1100 operations per day when FedEx had their normal level of operations. At 
JFK for the year traffic was generally in the range of 1000-2000 operations per day, with most days between 1000-
1500 operations, and an observable seasonal variation (lower in winter months, higher in summer months). DFW 
demand was more consistent, with demand levels between 1500-2000 operations for 10 of the 12 days (the 
remainder were scattered on the higher side). 
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Results and Discussion 

The major parameters used for characterizing benefits are: transit time, departure queue length, fuel use, and 
throughput. An additional parameter that is considered important from a user interface standpoint is the runway 
configuration schedule that is generated by TRCM; of particular interest are the type and number of changes in 
runway configuration that are recommended. Each of these parameters is examined separately in this section. 
Additionally, a sensitivity study was conducted on the parameters of interest, with respect to the effect of changes in 
the number of configuration changes conducted per day; this analysis is also presented. 

 

Transit Time 

Figure 3 shows the difference in average transit times for all days at the three airports, separated by arrivals and 
departures. The differences were computed as Baseline minus TRCM, thus a bar above the zero-line represents a 
benefit; bars that extend below the zero-line indicate a negative benefit, or penalty. 

Upon inspection, it can be seen that most of the bars for MEM are above the zero-line, indicating a transit time 
benefit for arrivals and departures at MEM; for many days this benefit was substantially over one minute, especially 
for the departures. The average transit time benefit for MEM for these twelve days was 33.8s for arrivals and 95.8s 
for departures. 

For JFK the arrivals also showed reduced transit times for most of the days (average of 147.4s); however the 
departures were distributed both above and below, with a net negative (-18.1s) for the twelve days. For DFW the 
results were somewhat less clear. For most of the days the arrivals showed a positive benefit (average for arrivals 
was 20.5s), but the average for departures was lower, but still positive (3.2s), also indicating a priority for arrivals 
over departures. The net average (combining arrivals and departures) over the twelve days was positive for all three 
airports, although substantially less so for DFW than for the other two. These results are summarized in Table 3.  

For MEM departures, the benefit was almost three times that for arrivals – in large part due to the shortened taxi 
time required for aircraft that are located at the north end of the runways, which consists almost entirely of FedEx 
aircraft, when the flow direction is changed to South Flow. It is important to note that the baseline for this is from 
historic data, which may not be entirely accurate with regards to what configuration was actually used, especially for 
short periods of time during the night. Subject matter experts that were consulted on this question indicated that, 
most likely the flow direction would have been changed more often than what was reflected in the ASPM database. 
Thus, it is very possible that the flow direction was changed (winds and other factors allowing), but the change was 
not reflected in the ASPM database; this would mean that the Baseline case would have many more flights with 
shorter taxi times than what was simulated based on ASPM data, and computed transit time benefits could be lower 
than what is shown in the table. 

For JFK, the transit time benefit is much greater for arrivals than departures; departures usually do not have as much 
variation in their flight path, thus there is less opportunity for it to be shortened to improve the transit time. For 
arrivals, however, a more favorable runway configuration could greatly reduce the flight part of the transit time, 
which is proportionally greater than the surface transit time for arrivals.This would very likely be the case at most 
airports. At MEM, the high concentration of FedEx flights affects not only the magnitude of the benefit, but also 
where the benefit is realized – in the case of FedEx, a shorter taxi time would result in a much greater overall benefit 
for departures, because a significant proportion of daily operations are FedEx flights. During three different periods 
on most days, FedEx departures are coordinated to occur one immediately after another. Because they all originate 
from the FedEx location on the north side of the airport, they would all benefit from shorter taxi times due to a more 
favorable runway configuration. In contrast the arrivals are more scattered and often arrive from different directions, 
so the benefit is not as concentrated; however, there are periods (such as early morning) where an arrival stream 
would also benefit from timely runway configuration changes.  
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Figure 3. Mean transit time benefit (Baseline-TRCM), arrivals and departures, all airports and days 

 

At DFW, the mixed results could indicate that the TRCM algorithm requires modification to accommodate the more 
complex surface traffic operations. Specifically, the runway layout and terminal locations require many aircraft to 
cross runways during their ground movements. Although the computed transit time includes surface operations and 
the objective function of the TRCM algorithm seeks to minimize transit time, it is possible that the time required for 
surface operations is not adequately taken into account during the planning phase of the TRCM tool, in particular the 
time required to wait when crossing an active runway. This is likely due to the lower-fidelity estimate of transit time 
that is used by the TRCM algorithm to determine whether or not a given runway configuration would provide more 
benefit than the existing one. If the TRCM planning estimate does not take into account runway crossings, this could 
result in a much longer actual transit time during the simulation phase. A way of correcting this could be by adding a 
penalty to the transit time estimate used in the planning phase when multiple crossings of active runways are 
required, such that it would make a change in flow direction less beneficial if it resulted in an increase in the number 
of runway crossings over an existing configuration. In none of these cases do the transit time benefits appear to be 
connected to variations in demand levels. In particular at MEM, where low-demand days are approximately 40% 
lower than high-demand days, there does not seem to be a relationship to transit time benefit. 
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Table 3. Average reduction in mean transit time (baseline minus TRCM) overall all days 

Airport 
Arrivals Transit 
Time Reduction (s) 

Departures Transit 
Time Reduction (s) 

MEM 33.8 (2.1%) 95.8 (7.2%) 

JFK 147.4 (8.4%) -18.1 (-1.5%) 

DFW 20.5 (1.3%) 3.2 (0.3%) 

 

Understanding how these benefits were distributed on a day-by-day basis can provide further insight into these 
results; this is shown in the figures below. Figure 4 shows the percent (over baseline case) average transit time 
benefit separately for arrivals and departures for each of the twelve days. On days when the arrival benefit was low 
(less than 2%) or negative, the departure benefit was high (greater than 10%). On most of the other days, a similar 
trend was seen, although not as extreme – i.e., a day with an arrival benefit lower than the overall mean for arrivals 
usually had a departure benefit that was higher than the overall mean for departures, and vice versa. This indicates 
that there is a trade-off of benefits, rather than an even distribution; on most of the days studied, the departures at 
MEM benefited more than arrivals, on two days (#5 and #9) arrivals benefited more than departures, and on only 
one day (#12) were the benefits close to evenly shared. This supports the overall results that showed a greater 
benefit for departures than for arrivals at MEM.   

 

Figure 4. Daily percent benefit (over baseline) at MEM 

A similar trend is seen at JFK (Figure 5) as at MEM, but reversed for arrivals and departures; i.e., on the days where 
the arrival benefit was considerably higher (greater than 10%), the departure benefit was lower than its overall mean, 
in most of those cases a penalty (negative benefit). On one day (#8) the percent benefit is more evenly shared; for a 
single day (#4) there was a benefit for departures and penalty for arrivals. This supports the overall results that 
showed a greater benefit for arrivals than for departures at JFK.   
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Figure 5. Daily percent benefit (over baseline) at JFK 

At DFW (Figure 6) the daily benefits are more evenly split between arrivals and departures, although there are two 
days (#2 and #3) where the departures benefited considerably more than the arrivals, and one day (#1) where arrivals 
benefited considerably more than departures. On all but one day (#6), arrivals had a positive benefit, although not 
very large (most days it was around 2% or less); there were two days (#2 and #3) with substantial departure benefits, 
but most of the rest of the days had a penalty. This would indicate that, for the days studied at DFW, there was a 
relatively small but fairly consistent benefit to arrivals, and a smaller, but also consistent, penalty to departures. 

 

 

Figure 6. Daily percent benefit (over baseline) at DFW 

It is also helpful to understand what contributed to some of these results, by breaking down the transit time benefits 
to examine the airborne and surface contributions. Figure 7 shows the total transit time benefit (for all days) for each 
of the three airports, broken down into flight and taxi segments. The flight segment includes time between wheels-
off the runway and the departure fix (for departures), or between the arrival fix and wheels-on the runway (for 
arrivals). The taxi segment includes time between the spot and wheels-off (for departures) and between wheels-on 
and the spot (for arrivals). Thus any additional stops on the surface would be contained in the “taxi time” bars on 
these plots. 

The figure shows that at MEM  there were benefits on both the surface and airborne segments for both arrivals and 
departures, with the greatest contribution from taxi time for departures. For JFK, the largest contribution for arrivals 
came from flight time, but there was also a substantial contribution from taxi time; for JFK departures, the 
substantial deduction from departure taxi operations more than offset the benefit from departure flight time. For 
DFW, the arrivals had a substantial benefit during flight time, with a small offset during taxi operations; for DFW 
departures, the benefit was very small from both flight and taxi operations. 
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Overall, these results indicate that TRCM provides a benefit to arrivals in most cases, and less of a benefit to 
departures. In the case of MEM, the large benefit to departures is related to the unique nature of operations there, 
where large numbers of flights depart during a short period of time when the FedEx flights depart during early-
morning hours. In this case, a configuration that benefits FedEx departures (departing to the south) would 
substantially reduce taxi time, resulting in a much higher taxi time benefit for departures than could be achievable 
for other airports that do not have this type of operation. Also observed for all the airports is that the flight time 
benefit is generally higher for arrivals than for departures, is because arrivals spend more time in flight than 
departures, both in actual time and as a percent of transit time (the flight time would contribute more to computation 
of transit time benefit). 

 

 

Figure 7. Flight and surface transit time benefit contributions for MEM, JFK, and DFW 

 

During some of the runs, there were a few arrivals that took excessively long paths while taxiing back to gate, or that 
remained fixed on a spot for no apparent reason; this indicates that there are problems with the ground simulation 
logic which probably contributed to the resulting penalty. This, as well as the cause for the large penalty in departure 
taxi times for JFK, needs to be inspected more carefully and any existing problems resolved prior to conducting 
additional simulations. However, it highlights the importance of having accurate modeling of both flight and surface 
operations. 

Inspection of transit time benefits on a day-by-day basis can provide insight, and is shown in the next sections 
separately for each airport. In each of these sections, the transit time benefits are further broken down to observe 
how the mean Baseline transit times differed from mean TRCM times on a daily basis, and how the contributions 
from flight and surface operations affected the benefits separately for arrivals and departures, as reported in Figure 7 
above. This is shown in the following sets of figures. 

 

Memphis International Airport (MEM) 

Figure 8 shows the breakdown for MEM. The flight segment includes time between wheels-off the runway and the 
departure fix (for departures), or between the arrival fix and wheels-on the runway (for arrivals). The surface 
segment includes time between the spot and wheels-off (for departures) and between wheels-on and the spot (for 
arrivals). In the figure, A refers to arrivals and D refers to departures. Thus any stops during taxiing would be 
contained in the “surface” bars on these plots. 
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Figure 8. Daily flight and surface time benefit contributions for MEM 

 

Days that showed an overall benefit for departures (days #1, 2, 3, 4, 7, 8, 10, 11, and 12 from Figure 4) 
corresponded to large benefits for the surface (Figure 8). Departure penalties on days #5 and #6 came largely from 
surface penalties. The net arrival penalty on day #10  came largely from a net penalty on the surface. In general, the 
surface benefit (or penalty) dominated the overall arrival and departure benefits (or penalties). 

Because benefit is defined as the baseline minus TRCM cases, its day-to-day variation includes contributions from 
both baseline and TRCM results, so it is useful to look at these individually. Day-to-day variation in transit times for 
the baseline and TRCM cases are shown in Figure 9, where it can be seen that the transit times for the baseline 
departures fluctuated the most (or had the widest range) among the four series shown. Figure 10 and Figure 11 show 
the breakdown of this daily transit time into flight and surface segments. For each pair of lines (Baseline and 
TRCM), it can be seen that the baseline case has more fluctuations than the TRCM case. Also, comparing the 
variation in flight versus surface times in Figure 11, the flight times seem to have fewer fluctuations than the surface 
times, and departures (Figure 11b) have more fluctuations than arrivals (Figure 11a).  

Standard deviations of all daily series were calculated and reported in Figure 12. Similar to observations from the 
daily results, the baseline generally had higher variations than the TRCM case (i.e., about twice the TRCM standard 
deviation), except for flight time of arrivals. This is expected because the TRCM algorithm does not differentiate by 
the type of operation (arrivals or departures) in determining a runway schedule, while the baseline schedules may be 
based on different objectives determined by the user (that are not be reflected in the TRCM model). This difference 
in objectives could result in what appears to be a preference towards either arrivals or departures. Also from Figure 
12, it can be seen that the surface had higher variations than flight times, and that departures had twice the standard 
deviation in surface time as arrivals. 

Variation in benefits are mainly a reflection of variations resulting from use of the baseline schedule rather than the 
TRCM schedule. This series of plots can be summarize in three points: 1) the majority of day-to-day fluctuations in 
transit time comes from baseline cases; 2) departures had more variation than arrivals; and 3) the majority of 
variations in baseline departures largely came from their surface component. 

 

-3
-2
-1
0
1
2
3
4

1 2 3 4 5 6 7 8 9 10 11 12M
in

ut
es

Day Number
A-Flight A-Surface D-Flight D-Surface



 

 

 

16 

 

 

Figure 9.  Daily transit times for the baseline (BL) and TRCM cases at MEM, by type of operation 

 

 

Figure 10.  Daily flight times for the baseline (BL) and TRCM cases at MEM, by type of operation 

 



 

 

 

17 

 

 
(a) Arrivals 

 

 
(b) Departures 

Figure 11. Daily surface times for the baseline (BL) and TRCM cases at MEM, by type of operation 
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Figure 12. Overall standard deviations of transit, flight, and surface times at MEM 

 

John F. Kennedy Internation Airport (JFK) 

Referring back to Figure 5, and as shown in Figure 13, departure penalties (days #1, 3, 5, 6, 7, 9, and 11) 
corresponded with large departure surface penalties. The arrival penalty on day #4 came largely from a net penalty 
during the flight segment. For JFK cases, arrival benefits (and penalties) are largely from the flight segment, while 
departure benefits (and penalties) are generally from the surface segment.  

 

 

Figure 13. Daily flight and surface time benefit contributions for JFK 

 

Figure 14 shows daily transit times for the baseline and TRCM cases. Daily transit times for the baseline arrivals 
(rather than departures, as was the case at MEM) fluctuated the most among the four series. Similarly to the results 
from MEM, the baseline case in each pair of lines on the graphs that follow had more fluctuations than the TRCM 
case. Also counter to MEM, at JFK flight times of arrivals had more fluctuations than departures (Figure 15); in the 
case of flight versus surface times, results were similar to MEM for departures (higher variation for surface than 
flight), but reversed for arrivals (higher variations for flight than surface. Surface times of arrivals had less 
fluctuation than departures (Figure 16). Thus, the day-to-day fluctuation in transit time of the baseline arrivals is due 
mainly to the fluctuations in the flight segment. Standard deviations of all daily series are shown in Figure 17. 
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Figure 14. Daily transit times for the baseline (BL) and TRCM cases at JFK 

 

 

Figure 15. Daily flight times for the baseline (BL) and TRCM cases at JFK 
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(a) Arrivals 

 

 
(b) Departures 

Figure 16.  Daily surface times for the baseline (BL) and TRCM cases at JFK 
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Figure 17. Day-to-day standard deviations at JFK 

 

Similar to the MEM case, the baseline generally had higher day-to-day variations than the TRCM case (i.e., about 
twice the TRCM standard deviation). Thus, variations in transit time benefits were largely due to the variation from 
the baseline. For flight times, arrivals had about four times the standard deviation as departures. For surface times, 
departures had twice standard deviation as arrivals. This is consistent with what was observed in Figure 15 and 
Figure 16. 

 

Dallas-Ft. Worth International Airport (DFW) 

Figure 18 shows the daily transit time benefit broken down into flight and surface segments. Arrivals had higher 
flight benefits than surface benefits for the first 6 days, while the last 6 days, surface benefits of arrivals were 
generally higher than their flight benefits. Departure benefits (day #2 and #3) included contributions from both flight 
and surface benefits. For DFW, there was no clear-cut relationship between how flight or surface benefits (or 
penalties) contributed to arrival and departure benefits (or penalties). 

 

 

Figure 18. Daily flight and surface time benefit contributions for DFW 

 

Daily transit time fluctuation of arrivals was higher than departures (Figure 19). As with JFK, daily flight times of 
arrivals had more fluctuations than departures (Figure 20). Daily surface time fluctuations did not show a strong 
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correlation to either the runway schedules or the operation types (Figure 21). Standard deviations of all daily series 
(Figure 22) shows that the baseline generally had slightly higher day-to-day transit time variations than the TRCM, 
as for both MEM and JFK. Therefore, variation in transit time benefits seems to be largely due to the variation in the 
baseline. For flight times, arrivals had about 1.5 times the standard deviation as departures; for surface times, 
arrivals had a slightly higher standard deviation than departures.  

 

 

Figure 19.  Daily flight times for the baseline (BL) and TRCM cases at DFW 

 

 

Figure 20. Daily flight times for the baseline (BL) and TRCM cases at DFW 
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a) Arrivals 

 
b) Departures 

Figure 21. Daily surface times for the baseline (BL) and TRCM cases at DFW 

 

 

Figure 22. Day-to-day standard deviations at DFW 
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Departure Queues 

The mean number of aircraft ahead in queue (when an aircraft approaches the runway for departure) are shown in 
Figure 23 for each of the three airports, for the twelve days; each chart shows two bars, for TRCM and Baseline 
cases. From the figures it can be seen that, for MEM and JFK, in most cases the TRCM tool provided a benefit of 
fewer aircraft in the departure queue (the TRCM bar is lower than the corresponding Baseline bar). At JFK in 
particular, there were a few days where the Baseline case had much higher queues than the TRCM case (days 
number 3,4, and 12). For MEM there were three days (7, 8, and 10) that had much higher queues in the Baseline 
case than the TRCM case.  Because the overall queues at JFK were much lower than at MEM, the percent reduction 
in queue length is much higher, as seen in Table 4. The lack of any departure queue benefits at DFW could indicate 
that the simulation is not correctly modeling surface movements at DFW. If this is the case, this would most likely 
be an artifact of the MSE, not the TRCM algorithm, although the TRCM estimate would need to be checked also to 
insure that it is not missing any important factors that might have a primary effect. Further investigation is needed to 
be able to determine whether or not modifications are needed to better reflect surface operations at DFW.  

Correctly modeling flight and surface operations is very important in being able to determine benefits. Each airport 
adaptation has a unique design, in particular the surface operations, chiefly due to the different designs for the 
terminal buildings, gate locations, companies that operate there, types of aircraft, and any existing local procedures. 
Thus, the modeling of surface operations at a large airport such as DFW is more complicated and more likely to face 
problems during its development. A method for detecting problems in surface operations is necessary; a tool to 
detect anomalies in surface (or flight) operations would be very helpful; a method for visualizing the operations was 
used, however it would require large amounts of time to detect any anomalies, and is not guaranteed that they could 
be detected in this way. For this study, this method was used only in a handful of cases where there were very 
noticeable errors in the output data.  

Also, since the schedule resulting from the TRCM planning cycle is based on a low-fidelity estimate of transit times, 
results from the higher-fidelity simulation using the TRCM schedule could produce results that are very different 
from the TRCM estimate. In other words, the TRCM estimate may be over-simplified, resulting in little to no benefit 
when the scenario is fully simulated in the higher-fidelity MSE environment. This could be addressed by 
improvements to the planning (TRCM) estimate to more accurately reflect effects that are seen in the full 
simulation. A summary of the overall number in queue for each of the airports, (Table 4) shows a substantial benefit 
for MEM and JFK (especially high for JFK), and penalty for DFW. 
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Figure 23. Mean aircraft in queue at the three airports for all test days 

 

A related parameter that is also of significance is the time spent in queue. Cumulative duration in queue for each of 
the three airports is shown in Figure 24, for each of the twelve days; this represents the total of queue times for all 
the aircraft that were reported as being in a departure queue. The same convention is used as in the previous chart: 
blue bars for MEM, brown for JFK, and green for DFW. From the figure it can be seen that, for MEM the time in 
queue was higher for baseline than TRCM for nine of the days; the other three days the TRCM queue duration was 
longer, but generally not by much. At JFK, in half the cases the Baseline queue duration was longer than TRCM; on 
the other six days, the TRCM duration was higher, but usually not by very much. At DFW the Baseline queue 
duration were higher than TRCM on only four days, and not by very much; on all but one of the other days, the 

Table 4. Total number in queue and percent benefit in departure queue length for all airports, all days 

 MEM JFK DFW 

TRCM 1548 267 1136 

BASE 1716 496 982 

Percent benefit 9.8% 46.2% -15.7% 
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queue durations were substantially higher for TRCM than Baseline, and equal on the remaining day. A summary of 
the mean overall queue duration for each of the airports, for Baseline and TRCM cases (Table 5) show similar trends 
as for the queue length, with a substantial benefit for MEM and JFK (especially for JFK), and a penalty for DFW. 
Also, by comparing the two figures, it is evident that the trends follow closely on a daily basis – that is, on days 
when Baseline cases had higher queue length than TRCM, they also had a higher cumulative queue duration. 
Although this is not unexpected, it gives us confidence in the quality of the results.  

 

 
Figure 24. Cumulative queue duration minutes for the three airports, per test day 
 

Table 5. Mean cumulative queue duration and percent benefit for all airports, all days 

  MEM JFK DFW 

TRCM 643.59 198.34 583.95 

BASE 753.28 253.13 528.07 

Percent benefit 14.56% 21.64% -10.58% 

 

Fuel Burn 

Fuel use benefits were calculated for the in-flight portion and for the following segments on the surface: ramp, 
airport movement area (AMA), spot queue, departure queue, runway, and runway crossing. Of these surface 
segments, only the movement area contributed a significant amount to the overall fuel benefit compared to the other 
segments, except for the case of DFW departures, which had a high departure queue penalty, as can be seen in Table 
6 (in this table, percentages are computed relative to positive benefits only – i.e., net negative benefits do not count 
towards 100%). Since the other five surface segments combined  contributed 5% or less of fuel use, they are omitted 
in the plots for clarity. Figure 25 shows total fuel benefit for the three airports, for all days. Three bars are shown for 
each day, for AMA, in-flight, and total fuel used. From these plots, it can be seen that the surface fuel benefit is a 
small part of the total; the in-flight fuel benefit is the primary contributor to the overall total, for all but one or two 
days at all three airports; however at DFW the fuel benefit for the last six days is very small, thus the in-flight and 
surface contributions are nearly the same. 
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Table 6. Average percent segment contribution to fuel benefit for all airports, all days 

Airport Op 
Type 

Ramp Spot 
Queue 

Airport 
Mvmt Area 

Runway 
Crossing 

Departure 
Queue 

Runway In-flight 

MEM Dep -0.5 0.0 29.6 0.2 3.0 0.5 66.7 

Arr 4.9 0.0 20.3 -0.4 --- -0.5 74.7 

JFK Dep 0.0 0.0 -10.5 -4.6 0.9 0.9 98.2 

Arr 0.0 0.0 4.4 3.3 --- 0.0 92.3 

DFW Dep -0.9 0.0 7.1 -0.4 -6.6 -1.1 92.9 

Arr 0.0 0.0 -5.8 4.7 --- 0.1 95.2 

 

Further subdividing the fuel benefit in the AMA segment by different phases of taxiing (stopped, accelerating, and 
steady taxiing) showed that the time spent in “stopped” mode had a very large negative value for DFW, much more 
than either of the other two phases; this was not true at the other two airports, which had little or no fuel benefit loss 
when stopped. This would suggest that the resulting negative values seen for transit time benefits at DFW may be 
largely due to the time lost during surface operations, possibly while waiting for runway crossings. 

Possible ways to alleviate this effect could be to impose a time penalty when the taxi path requires crossing multiple 
active runways, or in some other way to limit the number of active runway crossings for each flight; this approach to 
reducing losses of fuel or time benefits during surface operations would need to be examined further prior to 
drawing definitive conclusions about the effectiveness of TRCM at DFW. Fuel benefit is summarized in Table 7. 

Table 7. Mean fuel use (and TRCM percent benefit per flight) for all airports, all days 

 Type of 
Operation 

Baseline (kg x 
1000) 

TRCM (% 
benefit) 

MEM 

Dep 1575.6 1528.7 (3.0) 

Arr 973.6 954.4 (2.0) 

JFK 

Dep 2257.6 2203.5  (2.4) 

Arr 1233.6 1148.2 (6.9) 

DFW 

Dep 1168.8 1163.4 (0.5) 

Arr 673.4 658.1 (2.3) 
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Figure 25. Fuel use benefit per flight for in-flight and AMA segments, and total 
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Throughput Efficiency 

Throughput efficiency (TE) is the ratio of the actual to the optimum effective throughput of a system, and is 
dimensionless. The actual effective throughput is defined as the ratio of the number of aircraft that have transited 
through the system exit point to the total actual travel time of these aircraft. For the arrival operation, the total travel 
time is the sum (over all arriving aircraft) of the difference between the actual time stamp at spot (where aircraft exit 
the system) and the earliest time stamp at arrival fix (where aircraft enter the system). For the departure operation, 
the total travel time is the sum (over all departing aircraft) of the difference between the actual time stamp at 
departure fix (where aircraft exit the system) and the actual time stamp at spot (where aircraft enter the system). The 
optimum effective throughput is defined similarly, with the exception of using the total unimpeded times instead of 
the total actual times. A TE ratio closer to 1 is preferable, indicating that the system is operating at close to an 
unimpeded level. The TE can be thought of as a throughput metric that has been standardized so that it is insensitive 
to traffic volume [15].  

Hourly throughput efficiencies were computed for both baseline and TRCM cases, and compared for this 
assessment. Figure 26 shows mean (over all hours) TEs for arrivals and departures at all three airports. TE varies by 
days, type of operation (arrival vs. departure), and runway configuration schedules (baseline vs. TRCM).  

Table 8 summarizes the mean (over all days) and standard error by type of operation, runway configuration 
schedules, and airports. The standard error can be thought as uncertainty associated with the average TE. Some 
general observations can be made. The average TEs of departures are higher than arrivals for all airports; this makes 
sense operationally because departure schedules are more easily adjusted than arrival schedules. The TE 
uncertainties of the TRCM are smaller for all airports. In other words, the baseline has more variability in their 
operations than the TRCM. As in the transit time analysis, it is thought that this could be due to the historical 
operations using different criteria (or objectives) in making runway configuration decision, whereas the TRCM used 
the same objective across all tested days. 

Using the TRCM schedule usually provides better TEs, in terms of averages and uncertainties, over the baseline 
schedule for arrivals and departures. 

Table 8. Summary of the average and standard error for Throughput Efficiency (TE) performances at all 
airports. 

    

Baseline TRCM Baseline TRCM 

MEM Arrivals 0.7837 0.8154 0.0051 0.0045 

Departures 0.8093 0.8578 0.0061 0.0056 

DFW Arrivals 0.8103 0.8354 0.0033 0.0029 

Departures 0.9248 0.9324 0.0041 0.0034 

JFK Arrivals 0.7726 0.8618 0.0052 0.0025 

Departures 0.9208 0.9069 0.0031 0.0029 

 

Improvements in the mean TEs are shown in Figure 27 as percent improvement with respect to the baseline. MEM 
provides 4% TE improvement for arrivals, and 6% improvement for departures. At DFW and JFK, the TRCM 
provides higher percent improvements for arrivals (between 3 and 12 percent) than departures (between -2 and 1 
percent). JFK especially shows a substantial TE improvement for arrivals (12%), but a slight TE reduction for 
departures (-2%).  Overall these results show similar trends as the transit time results. 
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Figure 26. Mean (over all hours) throughput efficiencies (TE) at MEM, DFW, and JFK arrivals and 
departures. 
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Figure 27. Average (over all days) improvement in throughput efficiency (ratio of TRCM and baseline). 

 

Airport Configuration Changes 

Although the workload associated with configuration changes was not addressed in this study, it is known that 
changes in runway configuration are accompanied by increased workload for controllers and managers. As a way of 
determining whether or not the workload might be increased with use of the TRCM tool, a comparison can be made 
of the number of changes recommended by the TRCM tool, and the historical number of changes that occurred on 
those days. Generally speaking, a change in direction of flow (for example, from North Flow to South Flow at an 
airport that has North-South runways) can result in a loss of efficiency, increase in workload for controllers, and 
additional coordination required between the airport and TRACON management, as the flow of traffic in the 
terminal must change Basically, inbound routes across arrival fixes at the terminal boundary into the initial part of 
TRACON airspace is static; they remain unchanged regardless of the runway configuration.  Airspace used by final 
controllers to space and sequence arrival traffic does change.  During the transition between these configurations, 
coordination beyond that necessary for normal operations is required.  Changes in the way runways are used (for 
arrivals only, departures only, or mixed-use) without a change in flow direction does not have as high a cost, in 
terms of coordination, workload, and loss of efficiency.  

For this analysis, the number of configuration changes per day were computed, and subdivided by the type of 
change, whether a change in flow direction (FD) or runway usage (RU). For this study, runway usage changes 
encompass any other type of change that does not involve changing the direction of flow. Examples of runway usage 
changes can include: a runway that was being used for arrivals only (or departures only) is changed to mixed-use, 
changed to the opposite type of operation, or removed as an option; a mixed-use runway is changed to arrivals only, 
departures only, or removed as an option; a runway is added as either a departure, arrival, or mixed-use runway; 
more than one runway is added, removed, or changed in the type of operation for which it will be used.  

Figure 28 shows the mean number of configuration changes per day for all twelve test days, for each of the airports. 
As can be seen, the number of flow direction (FD) changes recommended by TRCM (dark blue bars) was much 
higher than what were historically used at all three airports (dark red bars). The number of runway usage (RU) 
changes (light blue bars) are also higher than the historical changes (light red) at MEM and JFK, but not at DFW. 
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Across all days and all airports, the number of changes in flow direction that were recommended by TRCM was 
much higher than the number of runway usage changes. 

 

 

 

Figure 28. Mean number of recommended configuration changes per day 

Table 9 shows the mean number of changes in flow direction across all days for the three airports. For all three 
airports, the average number of changes in flow direction recommended by TRCM was several times greater than 
the historical data would suggest. The average number of changes recommended for MEM was 6 times greater than 
the historical case; for JFK it was 6.4 times, and for DFW almost 19 times the historical average. These values are 
excessive compared to what is normally found at airports throughout the NAS. Although a benefit of having TRCM 
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is the ability to better manage the changes in runway configuration, at some point the changes in flow direction 
become excessive, primarily from the standpoint of controller workload.  

Table 9. Mean number of changes per day (flow direction and runway usage) for MEM, JFK, and DFW 

 TRCM FD BASE FD TRCM RU BASE RU 

MEM 10.8 1.8 3.9 0.0 

JFK 13.5 2.1 7.3 1.0 

DFW 7.5 0.4 1.2 1.7 

 

In this study, no attempt was made to determine what is the optimal number of configuration changes per day at an 
airport; however, considering that there are generally 16 hours of the day when the majority of traffic operations 
occur at most airports, having more than 13 changes in flow direction would mean an average of almost one per 
hour. Considering the workload and coordination involved in executing this type of change, it is desirable to reduce 
the number of changes recommended by TRCM. The TRCM algorithm was limited to changing configurations not 
more than once every 30 minutes; however there was not a limit on how many changes per day were allowed, so 
clearly more investigation of this issue needs to be done. It is likely that the TRCM tool would need to be adjusted to 
a particular airport’s needs, to limit the number of changes per day to what would be considered acceptable. For 
example, at JFK it is not uncommon to have five configuration changes per day, whereas at DFW most days operate 
in South Flow, with very few changes during the average week. Figure 29 shows the amount of time spent in each of 
the main directions of flow for both Baseline and TRCM cases (RU changes are contained within each of the main 
categories shown). The vertical axis is the total number (over the 12 test days) of 15-minute epochs spent in each of 
the configurations listed along the horizontal axis. For MEM it can be seen that in the historical case North flow was 
predominant over South flow, whereas in the TRCM case the opposite was true. This indicates that historically the 
airport operates in a North flow configuration more than in South flow, but the transit time benefit shown previously 
would suggest that there would be a benefit to operating more in South flow. Considering also that TRCM use 
showed benefits for queue length, queue duration, and fuel use would also support using this type of configuration. 
Because it is not easy to assess the combination of surface and in-flight benefits simultaneously to optimize the 
various parameters than contribute to benefits, it is likely that using TRCM could provide a tangible benefit to MEM 
operations. 

JFK historically operated on 22L_22R, and to a lesser degree on 4L_4R, however with TRCM the amount of time 
spent in each was reversed, as for MEM. Also with TRCM, more time was spent using the 31L_31R and 13L_13R 
than was historically used. Because the TRCM algorithm did not include provisions for metroplex constraints, it is 
possible that the TRCM configuration change results would be different when flows are restricted due to its 
proximity to other airports. A separate metroplex TRCM algorithm was provided as part of the SORM research 
effort, and results from that analysis are reported separately. 

Results for DFW show that TRCM recommended nearly the same amount of time in each of the flow directions as 
was historically used, with slightly more time spent in North flow. This might suggest that current operations 
sufficiently capture most of the benefits (in terms of runway flow direction usage), which is most likely why the 
resulting benefits in transit time, fuel use, queue duration, and queue time were minimal or non-existent. It is likely 
that the area most likely to provide a benefit would be on the surface; this should be investigated more closely.  
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Figure 29.Amount of time spent in configurations. 

The following plots give a detailed look at the daily relationship between transit time benefits and demand levels 
separately for arrivals and departures. In all the figures, the solid lines are the number of flights (departures in blue 
and arrivals in red); the scatter-plot symbols are the transit time benefit for each flight (transit time from the baseline 
run minus transit time from the TRCM run), with vertical axis on the right side. Horizontal axes are the same for the 
two super-imposed plots, and represent time in 15-minute epochs (for a total of 96 per each 24-hour day). Figure 30 
shows a typical day at MEM; this particular day was November 20, 2009, which was a Friday, with fairly high 
demand (535 arrivals and 435 departures). From the solid lines it can be seen that the traffic demand levels are 
cyclical, with distinct peaks and troughs for both arrivals and departures; most of the time the peaks are in opposite 
phases (i.e., when there is a departure peak, there are very few arrivals and vice versa). This is partially due to the 
large number of FedEx flights that arrive as a group early in the morning and depart as a group late at night and mid-
afternoon, however some of the peaks are due to the schedules of other airlines as well (there are a large number of 
Delta Connection flights throughout the day). From the plot, it can be seen that the demand peaks are often 
associated with transit time benefits for the corresponding flight operation; for instance, between epochs 0-4, there is 
a peak in arrivals, and corresponding peak in transit time benefits. Similar patterns can be seen for arrivals between 
epochs 30-36, 50-52, 66-70, and 88-96, although for the middle three peak periods there is also a substantial penalty 
(negative values); for departures the peaks are during epochs 8-18, 36-40, and 54-62, with a smaller number of 
flights that were penalized, mostly during the time that the operations were changing from arrivals to departures at 
epochs 32-34, where departures and arrivals overlapped. Similar patterns can be seen on other days, some more 
pronounced than others, however the overall resulting benefits for MEM seem to indicate that having opposing 
peaks and troughs of traffic demand for arrivals and departures results in higher benefits for both types of 
operations. This particular day resulted in a 2.7% transit time benefit for arrivals and 8% benefit for departures.   
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Figure 30. Demand and transit time benefits by epoch for MEM Day 3 (20NOV2009). 

A much different example can be seen in a case from DFW in Figure 31 (from test day October 17, 2009). The 
traffic profile for DFW on the test days used in this assessment was very different from that at MEM; rather than 
distinct peaks and troughs for arrivals and departures, the traffic was more evenly distributed throughout the day. 
Although there were peak periods, they were much less distinct than at MEM; the more distinct departure peaks 
were accompanied by a lower level (but still significant number) of arrivals.   On the example shown in the figure (a 
Saturday), there were 721 departures and 738 arrivals, so it was the lowest level of the twelve test days. During most 
of the day the recommended TRCM configuration was the same as the baseline schedule, except for three intervals, 
during early-morning, late-morning, and late-evening hours; during these intervals, most of the flights benefited 
from the different flow direction, although there were also many that were penalized. Overall departures benefited 
more than arrivals, however the net was positive for both (2.2% for arrivals and 7% for departures).   
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Figure 31. Demand and transit time benefit for DFW Day 2 (17OCT2009). 

Most of the test days at JFK showed transit time benefits for arrivals and penalties for departures; the corresponding 
configuration changes seemed to favor arrivals.  The daily traffic profile for JFK is somewhere between MEM and 
JFK; that is, there are distinct peaks in arrivals and departures with offsets between them, but they are not as distinct 
as for MEM. 

A case where there was benefit for both arrivals and departures is shown in Figure 32. The data is from May 18, 
2010 (a Tuesday). There are two distinct peaks towards the beginning of the day, from epochs 26-30 for arrivals, 
and from epochs 32-38 for departures. During the first of these, the TRCM configuration differs from the Baseline 
(between epochs 17-28), in fact is opposite to the flow direction of the baseline (22 vs 04); this resulted in benefits 
for arrivals. Two other intervals that resulted in benefits for arrivals are in 50-53 and 57-60; for portions just before 
these intervals (epochs 47-50 and 53-57), the flow directions were the same for baseline and TRCM, but still 
resulted in benefits. This could have been due the change in runway usage (the use of additional runways) that took 
place during these intervals. It is noted that during most of the day, the baseline configuration included arrivals on 
4R and departures on 4L, but the TRCM recommendation had arrivals on 4R and 4L, with departures on 31L and 
4L. It is not clear why the baseline configuration did not use similar runway combinations to make more runways 
available, however it seems that the TRCM combinations may have been what made the difference in benefits seen 
for this particular day. For departures, the first distinct peak had a large number of flights that benefited, possibly 
because there were not as many arrivals during that period. However, on this particular day most of the departures 
benefited, as can be seen by the small number of flights below the zero-line (penalty). During most of the time 
between epochs 39-70, the main difference for departures between the baseline and TRCM configurations was the 
additional use of 31L.   
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Figure 32. Demand and transit time benefit for JFK Day 8 (18MAY2010). 

 

Sensitivity Study 

A study was conducted to explore how to reduce the number of configuration changes recommended by the TRCM 
tool. A number of different methods were considered, including limiting to a specific number of changes per day, 
changing the time limit between configuration changes, and adding a threshold level to the objective function. The 
latter of these is the most likely to preserve TRCM benefits, because it directly addresses what the TRCM algorithm 
seeks to optimize. Setting a limit to the time between changes or to the number of changes allowed per day is 
arbitrary, since neither of these really addresses the variable nature of traffic demand and weather. On the other 
hand, the objective function seeks to minimize the transit time for all aircraft within a given time interval, thus it 
directly depends on the demand. Further, if one considers the number of aircraft within a given planning interval, 
and not just the total transit time for all aircraft in that interval, a threshold level per flight can be applied, 
minimizing the possibility of a situation where a single flight has a large transit time benefit, but a configuration 
change driven by that benefit would affect all the other flights in that same time interval, for whom little benefit 
might exist. 

After examining the values of the objective function that were being computed during the TRCM planning cycle, it 
was determined that a threshold value of 30 seconds per flight was a reasonable starting point for exploring the 
effects that application of this threshold would have on the metrics already analyzed. The number of configuration 
changes is examined first, to ensure that application of the threshold is having the intended effect. 

Figure 33 to Figure 38 show the resulting mean number of flow direction and runway usage changes per day for the 
twelve days at MEM, JFK, and DFW, for three cases: Baseline, TRCM with no threshold, and TRCM with a 
30s/flight threshold. Flow direction (FD) and runway usage (RU) changes are shown on separate charts for clarity. 

From these charts it can be seen that for five of the test days at MEM, the 30s per flight threshold did not make a 
difference in number of flow direction changes per day; on the other days the threshold resulted in 17-29% fewer 
changes in flow direction. For runway usage, the threshold resulted in substantially fewer changes per day for all but 
one day (#10). 
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Figure 33. Mean daily changes in flow direction at MEM 

 

 

Figure 34. Mean daily changes in runway usage at MEM 

At JFK, application of the threshold resulted in fewer changes in flow direction for all but one day, with reduction in 
average changes per day varying between 7-54%. Runway usage changes were reduced for all days, with an average 
reduction ranging between 14-56% per day.   

 

 

Figure 35. Mean daily changes in flow direction at JFK 
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Figure 36. Mean daily changes in runway usage at JFK 

At DFW, application of the threshold resulted in fewer changes in flow direction for 10 of the 12 days, with an 
average of 22-67% fewer changes over all the test days; runway usage changes were reduced to zero for all the test 
days, however there were not many in the TRCM unconstrained case to begin with (average of just over one per 
day). Overall mean reduction in number of changes for all airport and days is summarized in Table 10. 

 

 

Figure 37. Mean daily changes in flow direction at DFW 

 

 

Figure 38. Mean daily changes in runway usage at DFW 
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Table 10. Overall mean reduction in number of FD and RU changes, averaged over all days 

 MEM JFK DFW 

Flow Direction 13.8% 25.3% 37.8% 

Runway Usage 74.5% 37.9% 100.0% 

 

Since some of the configuration changes were significantly reduced, it is necessary to see what effect that reduction 
had on the benefits, namely on the transit time and fuel use. Figure 39, Figure 40, and Figure 41 show the daily 
mean transit time for each of the three cases, baseline, TRCM with zero threshold, and TRCM with 30s threshold, 
for the three airports. 

 

 

Figure 39. Mean daily changes in transit time at MEM 

 

 

Figure 40. Mean daily transit time at JFK 
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Figure 41. Mean daily transit time at DFW 

 

A summary of the percent difference in transit times is shown in Table 11. For all of the airports, the difference in 
benefit between the 0s and 30s threshold case was within one percentage point; however, in some cases the benefit 
was very small to begin with, so a change by less than one percentage point was significant.  

Table 11. Mean transit times (and percent benefit) per flight for all airports over all days, with 0s and 
30s per flight threshold 

 Type of 
Operation Baseline 

TRCM 0s  

(% benefit) 
TRCM 30s (% 
benefit) 

MEM 

Dep 1328.9 1233.1 (7.2) 1244.3 (6.4) 

Arr 1575.6 1541.8 (2.1) 1544.9 (1.9) 

JFK 

Dep 1189.2 1207.3 (-1.5) 1213.9 (-2.1) 

Arr 1762.0 1614.6 (8.4) 1608.3 (8.7) 

DFW 

Dep 1100.0 1096.8 (0.3) 1106.5 (-0.6) 

Arr 1604.8 1584.3 (1.3) 1582.7 (1.4) 

 

A summary of the percent difference in fuel benefit is shown in Table 12. The numbers are the mean fuel used per 
flight (averaged over all days); for TRCM cases, the numbers in parentheses are the percent over the baseline that 
this number represents. Comparing these numbers shows that the percent benefit over the baseline was within one 
point for the 30s cases as for the zero-threshold case. Especially noting that the number of configuration changes at 
DFW and JFK were substantially reduced, the difference this reduction had in the transit time and fuel benefits is 
not proportional to the reduction in number of configuration changes. This would indicate that many of the 
configuration changes (particularly the changes in flow direction) recommended by TRCM were due to estimated 
benefits that were small in magnitude. Thus, applying a per-flight threshold on the objective function of the TRCM 
planner seems to result in configuration change numbers that are closer to what is historically used (and presumably 
more acceptable to air traffic managers), while only affecting the benefits by a small amount.  

For completeness, the analysis was expanded to include additional threshold values added and resulting benefits, to 
further explore the space available for reducing configuration changes. Figure 42 shows the effect on configuration 
changes of applying threshold values of 0s, 30s, 60s, 90s, and 120s; mean number of flow direction (FD) changes 
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are shown in black symbols, mean number of runway usage (RU) changes in white symbols. From the chart it can 
be seen that, for all airports the mean number of FD and RU changes per day diminishes as the threshold increases. 
It can also be seen that for each airport the number of FD changes is much greater (at least twice as high) than RU 
changes, but they are also reduced as the threshold level increases. The baseline cases (leftmost cluster of markers) 
are all at or below a mean of 2 changes per day; it is possible that these are lower than what actually normally takes 
place, due to one of two factors: 1) this study only used a sample of twelve days, and the days chosen could have 
resulted in lower than normal average number of changes, or 2) the historical data might not accurately reflect the 
changes at a facility; it is not known how accurately this information is logged, since it often relies on a manual 
entry system. A more accurate analysis would require ensuring that these changes are correctly taken into accounted. 

Table 12. Mean fuel use (and percent benefit) per flight for all airports over all days, with 0s and 30s per 
flight threshold 

 Type of 
Operation 

 

Baseline 

TRCM 0s  

(% benefit) 
TRCM 30s 
(% benefit) 

MEM 

Dep 1575.6 1528.7 (3.0) 1528.0 (3.0) 

Arr 973.6 954.4 (2.0) 959.9 (1.4) 

JFK 

Dep 2257.6 2203.5  (2.4) 2199.8 (2.6) 

Arr 1233.6 1148.2 (6.9) 1143.5 (7.3) 

DFW 

Dep 1168.8 1163.4 (0.5) 1166.1 (0.2) 

Arr 673.4 658.1 (2.3) 663.3 (1.5) 

     

 

 

Figure 42.  Effect of threshold level on number of configuration changes per day 

Mean transit time benefit is shown in Figure 43; because the results shown are the benefit, not the actual transit time, 
no data is shown for the baseline case, since benefit is defined as TRCM minus Baseline, so all the markers for 
Baseline would be at zero. Comparing the results from 0s and 30s it can be seen that the transit time benefit was 
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slightly reduced for most cases, except JFK arrivals. Moving on to 60s, there is slightly more reduction, which 
continues to be reduced as the threshold increases. This is as expected, except that the magnitude of the reduction in 
benefit is not as steep as had been anticipated. This would suggest that many of the original recommended changes 
(in the unconstrained TRCM case) are based on estimated benefits that are quite low; when these low-benefit-level 
recommendations are filtered out by applying a threshold, the overall benefits are not significantly affected. 

 

 

Figure 43. Effect of threshold level on transit time benefit per flight 

Fuel benefits (Figure 44) show a similar decline with higher threshold settings, although there are some increases as 
well, for JFK arrivals at 30s, and 120s, and for JFK departures at 60s; at 90s MEM departures showed an increase 
over the 60s mean value. It is not clear why these resulted in increased benefits; however it does appear that fuel 
benefits are more sensitive to variations than are transit time benefits, particularly as related to any resulting changes 
in surface operations. Figure 45 shows departure queue benefit results in terms of percent change in both time and 
number in queue. Benefits at MEM remain fairly even regardless of the threshold level, however at JFK there is a 
slight improvement at 30s, followed by a rapid decline at higher threshold levels, and at DFW there is a slight 
improvement at 60s, followed by a decline at higher levels. This type of results illustrates how a different threshold 
level affects each airport differently, and could help to better determine the threshold level that provides the best 
operational level for a particular airport. 
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Figure 44. Effect of threshold level on fuel benefit per flight 

 

 

Figure 45. Effect of threshold level on percent departure queue benefits (number and duration) 
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Alternative Method  

An alternative form of this method for reducing the number of configuration changes was also studied. This 
alternative method involved only applying the threshold to changes in flow direction, such that the runway usage 
option was still available, even if the benefit threshold for flow direction changes was not reached. Figure 46 shows 
the resulting configuration changes when these thresholds were applied only to the FD changes. The FD changes 
remain the same as in the previous set of runs, because nothing was changed with respect to how those types of 
changes would be limited. However, the mean number of RU changes increased as the threshold was applied. In 
particular for MEM, the RU changes continue to increase as the FD changes decrease. For DFW the RU changes 
increase and then level off, while at JFK the RU changes increased until the 90s threshold level where they begin to 
decrease. Although this was a somewhat unexpected result, this effect makes sense, since there are still opportunities 
to improve the objective function with an RU change, if a FD change is not possible. As the threshold increases and 
there are fewer opportunities for FD changes, there are more opportunities for RU changes.  

 

Figure 46. Effect of threshold level (applied only to Flow Direction changes) on number of Flow 
Direction (FD) and Runway Usage (RU) changes per day  

Figure 47 shows the effect of this method for reducing the number of changes on transit time benefits. Comparing 
with the same chart for the previous set of results (when the threshold was applied to all types of changes), there is 
not much difference in the results, indicating that any additional gains from the increased number of RU changes is 
minimal. 

Fuel and departure queue benefit results (Figure 48 and Figure 49) are very similar for this method of applying the 
threshold as for the previous method, also indicating that the additional RU changes did not have a primary effect on 
the fuel benefits. At the higher threshold levels however, the differences are more noticeable.  
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Figure 47. Effect of threshold level (applied only to Flow Direction changes) on transit time benefit per 
flight 

 

 

Figure 48. Effect of threshold level (applied only to Flow Direction changes) on fuel benefit per flight. 
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At MEM the percent departure queue benefits remain fairly even regardless of the threshold level; at JFK the 
benefits are fairly even until 60s, then there is a rapid decline at higher threshold levels; at DFW there is a slight 
improvement until 60s, and then fairly even beyond that.  

 

Figure 49. Effect of threshold level (applied only to Flow Direction changes) on percent departure queue benefits 
(number and duration)  

 

Concluding Remarks 

The System-Oriented Runway Management (SORM) is composed of two basic capabilities: Runway Configuration 
Management and Combined Arrival/Departure Runway Scheduling. The central component in the SORM concept is 
Tactical Runway Configuration Management, a tool for taking into account all the various factors and producing a 
recommendation for what would be the optimal runway configuration, runway use strategy, and aircraft sequence 
(last aircraft in old configuration and first in new configuration.  

The benefit mechanisms that were explored in this analysis were lower transit times, shorter departure queues, and 
lower fuel burn for arrivals and departures. Based on results from this analysis, TRCM provided transit time benefits 
per flight for arrivals at all three airports (2.1%, 8.4%, and 1.3% for MEM, JFK, and DFW, respectively), and for 
departures at MEM (7.2%), when averaged over all flights. Benefits in departure queue length (ranging from 9.8-
46.2%) and queue duration (14.6 to 21.6%) were observed at MEM and JFK, however at DFW there was a penalty 
of -15.7% in queue length and -10.6% in queue duration. Fuel use results showed benefits on the order of 2% for 
most cases except MEM departures (3%), JFK arrivals (6.9%), and DFW arrivals (0.5%). Thus it would appear that 
TRCM benefits arrivals more than departures; the percent benefit is higher for transit time than for fuel use, but they 
follow similar trends. Also, many of the departure benefits can be traced back to improvements in surface 
operations, and arrival benefits to improvements in flight times, particularly for JFK and MEM. 

In this study, results showed greater benefits at MEM than at JFK; at JFK, benefits were greater for arrivals than for 
departures. Results from DFW have shown a smaller benefit than at the other two airports. The DFW results may be 
due to excessive taxi times, which in turn may be caused by delays due to inefficient surface operations, which 
would need to be investigated in future studies. 

BL                   0s                        30s                     60s                     90s                  120s 
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Transit time benefits were decomposed into surface and flight components, to trace back the source of the benefit (or 
penalty). Some of the key findings were: 

- At MEM, departure and arrival benefits were largely the result of shorter surface times; 

- At JFK: departure benefits were mostly the result of shorter surface times, while arrival benefits were driven 
by shorter flight times; 

- At DFW: arrival and departure benefits included contributions from both the surface and flight. 

A sensitivity study was conducted on the TRCM algorithm, to determine how the benefits varied in response to 
reductions in the number of recommended configuration changes. Results showed that both methods used provided 
a marked reduction in number of configuration changes per day at all three airports; in response to the reduced 
number of changes, transit time and fuel benefits were somewhat reduced, although generally by less than 10%. This 
suggests that many of the recommended changes in the unfiltered (no threshold applied) case were in response to 
smaller estimated benefit levels, and could be removed while still maintaining most of the original benefit. Exact 
values to be used for threshold level would need to be studied more carefully for a particular airport, prior to 
recommending where it should be set. 

Based on the results of this study, some observations can be made regarding characteristics that appear to lend 
themselves to obtaining greater benefits from using TRCM: 

1) Multiple options for runway configuration changes –having more than two options for direction of flow can 
increase the possibilities for TRCM to offer a benefit.  

2) Demand levels that alternate between departures and arrivals; having traffic that alternates between arrivals 
and departures throughout the day appears to result in greater overall benefits for both types of operations.  

3) A flow that is not dominated by one particular pattern. Airports that are limited due to geography, noise 
operating limits or other similar factors would have more limited options for configuration changes. 

4)  The ability to apply a weighting function to different intervals in the TRCM planning cycle may be a way 
to skew the configuration recommendation to favor arrivals or departures, which could be a more beneficial 
way for TRCM to operate. 

A higher fidelity assessment of benefits is required prior to determining suitability of TRCM at any particular 
airport. This would include more accurate recording of historical configurations used, to ensure an accurate baseline 
condition for comparison. Also, a carefully modeled adaptation to include all configurations and runway use plans, 
and accurate modeling of surface operations is recommended. 

Follow-on studies to this analysis should include investigation of sensitivity of benefits to demand levels and to 
suggested TRCM algorithm modifications for estimating surface operations, and improvement of simulation 
strategies for detecting anomalies in modeling of operations. Conducting this study in a different simulation 
environment would help to verify results obtained. Assessment of benefits at additional airports would help to better 
understand how TRCM benefits relate to airport characteristics, and allow extrapolation to estimate NAS-wide 
benefits. 
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