ICOSAHOM 2014

ON FORMULATIONS OF DISCONTINUOUS GALERKIN AND FLUX RECONSTRUCTION METHODS FOR CONSERVATION LAWS

H. T. Huynh /win/
NASA Glenn Research Center
Cleveland, Ohio, USA
High-Order Methods

Discontinuous Galerkin (DG) methods by Reed and Hill 1973, Cockburn and Shu 1990’s, Bassi and Rebay 1997, 2000 …

• Integral form, stable, powerful machinery
• Not intuitive

Staggered-Grid methods by Kopriva and Kolias 1996; Spectral Difference (SD) scheme by Liu, Vinokur, and Wang 2004, ...

• Differential form, simple and intuitive
• Mildly unstable

• Differential form, recovers DG, SD, Spectral Volume
• Simple, economical, and intuitive
• Stability proofs (Jameson 2010, Vincent el al. 2011, …)
Outline

• Review DG method

• New strong form (approximate delta functions)

• FR methods by integrating the new strong form

• Fourier and energy stability

• Conclusions
Conservation Laws

Conservation law

\[u_t + f_x = 0 \]

with initial condition

\[u(x,0) = u_{\text{init}}(x). \]

Calculate the solution \(u(x,t) \)
Legendre Polynomials

Let P_m be the space of polynomials of degree m or less.

On $I = [-1,1]$, for any two continuous functions v and w

$$(v, w)_I = (v, w) = \int_{-1}^{1} v(\xi)w(\xi) d\xi$$

Let the Legendre polynomial of degree i be denoted by L_i and defined by

$L_i \perp P_{i-1}$ and $L_i(1) = 1.$
Projection

On $I = [-1, 1]$, the projection of a function v onto P_m is

$$P_m(v) = \sum_{i=0}^{m} \frac{(v, L_i)}{(L_i, L_i)} L_i.$$
Discretization

For each cell E_j, with the local coordinate ξ on $[-1,1]$, \n\[
 u_j(\xi) = \sum_{i=0}^{k} u_{j,i} L_i(\xi)
\]

At time t^n, (dropping superscript n) suppose the data $u_{j,i}$ are known for all j and i.

We wish to calculate f_x for $(u_{j,t}) + (f(u_{j}))_x = 0$.
Interface Flux

At each interface $j - 1/2$, using $u_{j-1/2}^-$ and $u_{j-1/2}^+$, define a flux $f_{j-1/2}$ (say, Roe's flux) common for the two adjacent cells.
Jumps at interfaces

On \(E = E_j \), denote \((u, v)_E = \int_E u(x)v(x)dx \).

Set \([f]_L = f_L^I - f_L^+ \) and \([f]_R = f_R^I - f_R^- \).

\[
\begin{align*}
f_L^+ &= f(u_j(x_{j-1/2})) \\
f_R^- &= f(u_j(x_{j+1/2}))
\end{align*}
\]
Review DG Formulation

On E, with test function ϕ (degree k),

$$(u_h, \phi)_t + ((f(u_h))_x, \phi) = 0.$$

Integrate by parts,

$$(u_h, \phi)_t + (f\phi)_{\partial E} - (f(u_h), \phi_x) = 0.$$

Allow data across cells to interact by

$$(u_h, \phi)_t + (f^I \phi)_{\partial E} - (f(u_h), \phi_x) = 0.$$

The above is the weak form. Equivalent ly,

$$(u_h, \phi)_t + f^I_R \phi_R - f^I_L \phi_L - (f(u_h), \phi_x) = 0.$$
Review DG Formulation

Weak form: on E

$$(u_h, \phi)_t + f_R^I \phi_R - f_L^I \phi_L - (f(u_h), \phi_x) = 0.$$

With $[f]_L = f_L^I - f_L^+$ and $[f]_R = f_R^I - f_R^-$, integrate by parts again, we obtain the strong form

$$(u_h, \phi)_t + ((f(u_h))_x, \phi) + [f]_R \phi_R - [f]_L \phi_L = 0.$$

The task is to eliminate ϕ.
Approximate Dirac Delta Function

* For a fixed α on $I = [-1,1]$, let the approximate (Dirac) delta function to degree k at α be a linear functional on P_k:

$$\delta_\alpha(\phi) = \phi(\alpha).$$

* There exists a polynomial of degree k denoted by $\gamma_{\alpha,k} = \gamma_\alpha$, i.e., $\gamma_\alpha \in P_k$, such that

$$(\gamma_\alpha, \phi) = \phi(\alpha).$$

* Proof. Set $\gamma_\alpha = \sum_{i=0}^{k} b_i L_i$. Then $(\gamma_\alpha, L_m) = (\sum_{i=0}^{k} b_i L_i, L_m)$, or $L_m(\alpha) = b_m(L_m, L_m)$, or $b_m = L_m(\alpha)(2m+1)/2$.

That is,

$$\gamma_\alpha = \delta_\alpha = \delta_{\alpha,k} = \sum_{i=0}^{k} \frac{2i+1}{2} L_i(\alpha)L_i.$$
Approximate Dirac Delta Function

\[\delta_{-1, k} = \sum_{i=0}^{k} \frac{2i + 1}{2} (-1)^i L_i \quad \text{and} \quad \delta_{1, k} = \sum_{i=0}^{k} \frac{2i + 1}{2} L_i. \]

\[\|L_i\| = \sqrt{\frac{2}{2i+1}} \]

\[\left\| \frac{2i+1}{2} L_i \right\| = \sqrt{\frac{2i+1}{2}} \]
New Strong Form

Standard strong form

\[(u_h, \phi)_t + ((f(u_h))_x, \phi) + [f]_R \phi_R - [f]_L \phi_L = 0.\]

Using the approximate delta functions,

\[(u_h, \phi)_t + ((f(u_h))_x, \phi) + [f]_R (\delta_R, \phi) - [f]_L (\delta_L, \phi) = 0.\]

Using the projection onto \(P_k\),

\[(u_h, \phi)_t + (P_k ([f(u_h)]_x), \phi) + [f]_R (\delta_R, \phi) - [f]_L (\delta_L, \phi) = 0.\]

New strong form

\[(u_h)_t + P_k ((f(u_h))_x) + [f]_R \delta_R - [f]_L \delta_L = 0.\]
Three Members of a Family of FR Schemes

Scheme DG

\[(u_h)_t + \mathcal{P}_k((f(u_h))_x) + \]
\[[f]_R \left(\delta_{R,k-1} + \frac{2k+1}{2} L_k \right) - [f]_L \left(\delta_{L,k-1} + (-1)^k \frac{2k+1}{2} L_k \right) = 0.\]

Scheme \(g_{Ga} \)

\[(u_h)_t + \mathcal{P}_k((f(u_h))_x) + \]
\[[f]_R \left(\delta_{R,k-1} + \frac{k+1}{2} L_k \right) - [f]_L \left(\delta_{L,k-1} + (-1)^k \frac{k+1}{2} L_k \right) = 0.\]

Scheme \(g_2 \)

\[(u_h)_t + \mathcal{P}_k((f(u_h))_x) + \]
\[[f]_R \left(\delta_{R,k-1} + \frac{k}{2} L_k \right) - [f]_L \left(\delta_{L,k-1} + (-1)^k \frac{k}{2} L_k \right) = 0.\]
New Strong Forms

Strong form S1

\[(u_h)_t + P_k((f(u_h))_x) + [f]_R \delta_R - [f]_L \delta_L = 0.\]

Strong form S2

\[(u_h)_t + (P_k(f(u_h)))_x + [f]_R \delta_R - [f]_L \delta_L = 0.\]

- Derivative with no interaction: projection or interpolation;
 for form S1, interpolate via chain rule: \((f(u))_x = a(u) \, u_x\)
- Interaction: approximate delta function, exact to degree \(k\).
Energy-Stable FR (ESFR) Schemes

Strong form S1 and S2 for DG method (linear advection),

\[
(u_h)_t + a(u_h)_\xi + [f]_R \left(\delta_{R,k-1} + \frac{2k+1}{2} L_k \right) - [f]_L \left(\delta_{L,k-1} + (-1)^k \frac{2k+1}{2} L_k \right) = 0.
\]

ESFR schemes made simple: \(\alpha_k > 0 \)

\[
(u_h)_t + a(u_h)_\xi + [f]_R \left(\delta_{R,k-1} + \alpha_k L_k \right) - [f]_L \left(\delta_{L,k-1} + (-1)^k \alpha_k L_k \right) = 0.
\]

Key idea of the proof: Differentiate \(k \) times in \(\xi \)

\[
\left(\frac{d^k u_h}{d \xi^k} \right)_t + [f]_R \left(\alpha_k \frac{d^k L_k}{d \xi^k} \right) - [f]_L \left((-1)^k \alpha_k \frac{d^k L_k}{d \xi^k} \right) = 0.
\]
Reconstructing the Flux by Integrating the Strong Form S1

\[S1 \quad (u_h)_t + \mathcal{P}_k((f(u_h))_x) + [f]_R \delta_R - [f]_L \delta_L = 0. \]

1. Flux polynomial (no interaction), i.e., discontinuous flux function, deg. \(k + 1 \)

\[f_{\text{IPD}}(\eta) = f_L^+ + \int_{-1}^{\eta} \mathcal{P}_k((f(u_h))_\xi) \, d\xi \]

\(f_{\text{IPD}} \) of degree \(k + 1 \) determined by

\[f_{\text{IPD}}(-1) = f_L^+, \quad f_{\text{IPD}}(1) = f_R^- \]

and \(\mathcal{P}_{k-1}(f_{\text{IPD}}) = \mathcal{P}_{k-1}(f(u_h)) \)
FR: Integrate the Strong Form S1

\[\begin{align*}
S1 \quad (u_h)_t + \mathcal{P}_k((f(u_h))_x) + [f]_R \delta_R - [f]_L \delta_L &= 0. \\
\end{align*}\]

2(a). Correction function for the right boundary

\[g_R(\xi) = \int_{-1}^{\xi} \delta_R(\eta) \, d\eta\]

\[g_R' = \delta_R\]

\[g_R \text{ is of degree } k + 1:\]

\[g_R(-1) = 0,\]

\[g_R(1) = 1,\]

\[\mathcal{P}_{k-1}(g_R) = 0.\]
FR: Integrate the Strong Form S1

\[S1 \quad \frac{d}{dt}(u_h) + \mathcal{P}_k(f(u_h)) + [f]_R \delta_R - [f]_L \delta_L = 0. \]

2(b). Correction function for the left boundary

\[g_L(\xi) = \int_\xi^1 \delta_L(\eta) \, d\eta \]

\[g_L' = -\delta_L \]

\[g_L \text{ is of degree } k + 1: \]

\[g_L(-1) = 1, \]

\[g_L(1) = 0, \]

\[\mathcal{P}_{k-1}(g_L) = 0. \]
Flux Reconstruction Form

On E, for nonlinear conservation laws, set

$$F = f_{\text{IPD}} + [f]_L g_L + [f]_R g_R.$$

Then F is of degree $k + 1$ determined by

$$F(-1) = f_L^I, \quad F(1) = f_R^I,$$

and

$$\mathcal{P}_{k-1}(F) = \mathcal{P}_{k-1}(f(u_h)).$$

Also,

$$F_\xi = \mathcal{P}_k\left(\langle f(u_h)\rangle_\xi\right) + [f]_L \delta_L + [f]_R \delta_R.$$
Reconstructing the Flux

Example: advection equation with $k = 1$.

(a) Data

(b) DG
A Family of Fourier Stable FR Schemes

Let g_L of deg. $k + 1$ be defined by

$$g_L(-1) = 1, \quad g_L(1) = 0,$$

and k additional conditions.

For DG,

$$\mathcal{P}_{k-1}(g_L) = 0.$$

For a family of stable schemes,

$$\mathcal{P}_{k-2}(g_L) = 0.$$
Correction functions \((k = 1)\)

(a) Data

(b) DG (projection)

(c) Scheme \(g_{Ga}\) (SD)

(d) Scheme \(g_2\)
Second-Order FR Schemes ($k = 1$)

(a) Data

(b) DG

(c) Spectral Difference (SD)

(d) Scheme g_2
Correction Functions for Fourier-Stable Schemes

1. \[g_{DG} = R_{R,k+1} \]

\(g_{DG} \) results in the DG method.

2. \[g_{Ga} = \frac{k + 1}{2k + 1} R_{R,k+1} + \frac{k}{2k + 1} R_{R,k} \]

\(g_{Ga} \) vanishes at the \(k \) Gauss points

3. \[g_2 = \frac{k}{2k + 1} R_{R,k+1} + \frac{k + 1}{2k + 1} R_{R,k} \]

\(g_2' \) vanishes at \(k \) of the \(k+1 \) Lobatto points
Correction functions for $k = 3$
Fourier Analysis, $k = 0$
Fourier Analysis, $k = 1$

\[g_{DG} = \frac{3\xi^2}{4} - \frac{\xi}{2} - \frac{1}{4}, \quad g_{Ga} = \frac{\xi^2}{2} - \frac{\xi}{2}, \quad \text{and} \quad g_2 = \frac{\xi^2}{4} - \frac{\xi}{2} + \frac{1}{4}. \]
Fourier Analysis, $k = 1$

Orders of accuracy and errors

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Order of accuracy</th>
<th>Coarse mesh error, $w = \pi/8$</th>
<th>Fine mesh error, $w = \pi/16$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG</td>
<td>3</td>
<td>$-3.2 \times 10^{-4} - 3.3 \times 10^{-5} i$</td>
<td>$-2.1 \times 10^{-5} - 1.1 \times 10^{-6} i$</td>
</tr>
<tr>
<td>g_{Ga}</td>
<td>2</td>
<td>$-7.1 \times 10^{-4} + 2.4 \times 10^{-3} i$</td>
<td>$-4.6 \times 10^{-5} + 3.1 \times 10^{-4} i$</td>
</tr>
<tr>
<td>g_2</td>
<td>2</td>
<td>$-2.5 \times 10^{-3} + 9.\times 10^{-3} i$</td>
<td>$-7.1 \times 10^{-4} + 2.4 \times 10^{-3} i$</td>
</tr>
</tbody>
</table>
Fourier Analysis, $k = 2$
Fourier Analysis, \(k = 2 \)

Orders of accuracy and errors

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Order of accuracy</th>
<th>Coarse mesh error, (w = \pi/8)</th>
<th>Fine mesh error, (w = \pi/16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG</td>
<td>5</td>
<td>(-5.0 \times 10^{-7} - 3.4 \times 10^{-8} i)</td>
<td>(-7.9 \times 10^{-9} - 2.7 \times 10^{-10} i)</td>
</tr>
<tr>
<td>(g_{Ga})</td>
<td>4</td>
<td>(-1.4 \times 10^{-6} + 8.5 \times 10^{-6} i)</td>
<td>(-2.2 \times 10^{-8} + 2.7 \times 10^{-7} i)</td>
</tr>
<tr>
<td>(g_2)</td>
<td>4</td>
<td>(-3.2 \times 10^{-6} + 1.9 \times 10^{-5} i)</td>
<td>(-5.0 \times 10^{-8} + 6.0 \times 10^{-7} i)</td>
</tr>
</tbody>
</table>
Fourier Analysis, $k = 3$
Fourier Analysis, $k = 3$

Orders of accuracy and errors

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Order of accuracy</th>
<th>Coarse mesh error, $w = \pi / 4$</th>
<th>Fine mesh error, $w = \pi / 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG</td>
<td>7</td>
<td>$-1. \times 10^{-7} - 1. \times 10^{-8} i$</td>
<td>$-4. \times 10^{-10} - 2. \times 10^{-11} i$</td>
</tr>
<tr>
<td>g_{Ga}</td>
<td>6</td>
<td>$-3.1 \times 10^{-7} + 1.3 \times 10^{-6} i$</td>
<td>$-1.2 \times 10^{-9} + 1.1 \times 10^{-8} i$</td>
</tr>
<tr>
<td>g_{2}</td>
<td>6</td>
<td>$-5.4 \times 10^{-7} + 2.3 \times 10^{-6} i$</td>
<td>$-2.2 \times 10^{-9} + 1.9 \times 10^{-8} i$</td>
</tr>
</tbody>
</table>
Stability

* For solutions of degree k, if g is orthogonal to P_{k-2}, then the (family) scheme is Fourier as well as energy-stable.

* The above condition is not necessary: $g_{\text{Lump, Ch-Lo}}$ is not orthogonal to any P_m, but the resulting scheme is Fourier-stable.

Open problems

1. The collection of all g resulting in stable schemes remains to be identified.

2. Is Fourier stability equivalent to energy stability?
Energy Stability

- Jameson (2010) proved that a particular SD scheme (recovered via FR) is energy-stable.
- Vincent, Castonguay, and Jameson (2011) proved energy stability for a family of FR schemes.
- Energy-stability proofs for advection and advection diffusion equations in 1D, 2D, and 3D were provided by Vincent, Castonguay, Williams, and Jameson.
- Can the current simplified proof for energy stability be extended to 2D, 3D, and tensor product cases?
Summary

• Review DG method
• New strong forms (approximate delta functions)
• Reconstruct the flux: FR methods
• Simplified energy-stability proof
• Open problems (for grad student, 1 month of study)
• NASA Report TM-2014-218135 June 1014 (pdf)
• There is significant current research activities in FR methods for practical flow problems in CFD.
Thank you for your attention.

Questions/Comments