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Current studies at NASA Glenn on oxide thermodynamics are  

discussed.  Previous studies on the vaporization of B2O3 in 

reducing atmospheres led to inconsistent studies when B was used 

as a reductant.  It is shown that liquid B2O3 does not wet B and a 

clear phase separation was noted in the Knudsen cell.  This 

problem was solved by using FeB and Fe2B to supply a different 

and constant activity of B. The thermodynamic data thus derived 

are compared to quantum chemical composite calculations. A 

major problem in high temperature mass spectrometry is the 

determination of accurate ionization cross sections, particularly for 

molecules.  The method of Deutsch and Mark shows promise and 

some sample calculations are discussed.   Finally current studies on 

the thermodynamics of rare earth silicates are discussed.  Here the 

problems are obtaining a measurable signal from SiO2 vaporization 

and non-equilibrium vaporization. The use of a Ta reducing agent 

provides a stronger signal, which is related to silica activity.  The 

Whitman-Motzfeld relation adapted to KEMS measurements is 

applied to obtain equilibrium pressures.  

 

Introduction 

 

Oxides are used in numerous high temperature applications.  It is essential to accurately measure 

their vaporization and thermodynamic properties and Knudsen Effusion Mass Spectrometry 

(KEMS) is particularly suitable for this.  However, there are numerous special considerations 

when applying this technique to oxide systems (1).  In this paper we discuss recent work at the 

NASA Glenn Research Center related to oxide systems.  These are the vaporization of B2O3 in 

reducing environments (2), the calculation of ionization cross sections using the Deutsch-Mark 

method (3), and measurements of the thermodynamic activity of silica in the Y2O3-SiO2 system. 

 

Experimental 
 

The KEMS used for these studies has been described in more detail elsewhere (4) and will only 

be briefly summarized here.  The basic instrument is a Nuclide/MAAS/Patco 12-90-HT (12” 

radius, 90°) single focusing magnetic sector instrument, which has been extensively modified.   

 Two Knudsen cell configurations are used with this instrument—a single cell flange 

shown in Fig. 1 and a multiple cell flange shown in Fig. 2.  The single cell flange uses a Ta 

„hairpin‟ type resistance furnace and is capable of temperature in excess of 2000K.  The multiple 

cell flange uses a sheet element of Ta and is capable of temperatures to about 2000K.  More 

details on the multiple cell flange are found in another paper in this proceedings volume (5). 



 
Figure 1. Diagram of the single cell/ furnace flange. 

 
Figure 2. Diagram of multiple cell/furnace flange. 

 



 The ionization chamber in the NASA Glenn instrument is a cross-axis type, with the 

molecular, electron, and ion beams all mutually perpendicular.  The instrument has been 

modified for “restricted collimation” (4-6) which gave improved reproducibility of signals and 

minimized spurious signals for both the single and multiple cell vapor sources. 

 Detection is conducted entirely with ion counting.  The use of ion counting, magnetic 

sorting, and a non-magnetic ion source discards in principle any mass discrimination effects. 

Data are collected with automated multiple peak scans (5).  

 

Vaporization of B2O3 in Reducing Environments 
 

The vaporization of B2O3 is important in a variety of high temperature applications, including the 

addition of a B sintering aid to SiC ceramics and oxidation of high temperature borides. B2O3 

vaporizes to B2O3(g) and B2O2(g).  An examination of previous literature indicates that there is 

good agreement on the  thermodynamic data for  B2O3(g); however,  there is some disagreement 

on the thermodynamic data for B2O2(g) when B is used as a reducing agent (2). In this study, we 

re-examine the reaction of B2O3(l) and B to understand this problem and generate more reliable 

data for B2O2(g).  In addition quantum chemical composite methods were used to calculate 

thermodynamic data for B2O2(g). 

 

Experimentally, our single Knudsen cell vapor source was used for these studies with a BN 

Knudsen cell.  Temperatures were measured with a disappearing filament optical pyrometer.  

Initial experiments were conducted with B and B2O3 powders.  The measured ion intensities of 

B2O2
+
 were not reproducible and decreased throughout the experiment, as shown in Fig. 3.   An 

examination of the cell after the experiment showed a clear phase separation between B and 

B2O3(l), as shown in Fig. 4(a).   

 

 
Figure 3. Van‟t Hoff plot for B2O2

+
 and B2O3

+
 ions formed from B2O3 and B interactions.  

Numbers indicate the order of taking data. 

 



 The observed phase separation clearly led to a decrease in contact area between the two 

condensed phases.  In order to more tightly control the conditions within the cell,  the B activity 

was fixed (albeit at a value less than unity) by adding a mixture of FeB and Fe2B to B2O3. We 

observed  In this case that the mixture remains intimately mixed after an experiment, as shown in 

Fig. 4(b) and probably the evaporation conditions remains the same within our temperature range 

for measurements.  Now the Van‟t Hoff plot was linear with reproducible data points and it was 

possible to extract accurate heats of vaporization, as shown in Fig. 5  

 

 
(a)             (b)  

Figure 4. View of cell bottom after an experiment.  (a) B + B2O3(l)  showing the phase separation 

(b) FeB + Fe2B + B2O3(l) showing the compounds remain intimately mixed (reprinted with 

permission from (2)). 

 
Figure 5. Van‟t Hoff plot for B2O2

+
 and B2O3

+
 ions formed from a mixture of  B2O3, FeB, and 

Fe2B (reprinted with permission from (2)).  

 



From these data, it was now possible to extract enthalpies of formation of B2O3(g) and B2O2(g) 

at 298K.  The „sigma-plot‟ method was used with the second law data to extract the enthalpy of 

formation at 298K (7).  The standard third law method was also used (8).  These data are given 

in Tables I(a) and (b) for B2O3(g) and B2O2(g), respectively and compared to literature data. 

 

Enthalpies of formation were also calculated via quantum chemical composite methods and 

listed in Table I(a) and (b) (9, 10).  Equilibrium geometry was calculated at the B3LYP/VTZ+1 

level.  The W1BD method was used with a aug-cc-VnZ (n = D, T, or Q) basis set.  Calculations 

included relativistic corrections and spin-orbit coupling effects.  The W1BD method is 

essentially a modification of the W1 method with Brueckner Doubles to simplify the calculation 

(11).  Calculations were done with both GAMESS (12) and Gaussian software (13).  Enthalpies 

of reaction were determined from the reactions indicated in Tables I(a) and (b) where all other 

reactants and products have known enthalpies of formation.  In general isogyric (constant spin) 

reactions are preferred. 
 

TABLE I(a).  Enthalpies of formation  (kJ/mol) at 298.15K for B2O3(g).  
 

Selected Studies 

Investigator/method and 

reactions 

fH(298) 

Second Law 

fH(298) 

Third Law 

fH(298) 

ab initio 

Hildenbrand et al 

(Torsion) (14) 

B2O3(l) = B2O3(g) 

-825.9 -836  

Scheer (Torsion) (15) 

B2O3(l) = B2O3(g) 

-848.2 -829.2  

Shultz et al. (KEMS/Weight 

loss) (16)  

B2O3(l) = B2O3(g) 

-841.3  8.8 -837.9  2.5  

Nguyen et al. (17) 

ab initio 

B2O3(g) = 3B(g, doublet) + 

2O(g, triplet) 

  -830.1 

Jacobson and Myers 

This study  (KEMS) (2) 

B2O3(l) = B2O3(g) 

-843.3  6.6 -823.6  1.0 

 

 

Jacobson and Myers  

This study (ab initio)  (2) 

B2O3(g) = 3B(g, doublet) + 

2O(g, triplet) 

  -857.4  17.2  

Jacobson and Myers  

This study (ab initio)  (2) 

B2O3(g) + 6HF(g) = 2BF3(g) 

+ 2H2O(g) 

  -831.8  5.3  

 

 

 

 

 

 

 

 

 



 
 

TABLE I(b).  Enthalpies of formation (kJ/mol) at 298.15K for B2O2(g). 
 

Selected Studies 

Investigator/method and 

reactions 

fH(298) 

Second Law 

fH(298) 

Third Law 

fH(298) 

ab initio 

Inghram (KEMS) (18) 

2/3 B + 2/3 B2O3(l) = 

B2O2(g) 

-509.4  -444.1   

Inghram (KEMS) (18) 

2/3 B + 2/3 B2O3(g) = 

B2O2(g) 

-455.2  -458.7   

Scheer (Torsion) (19) 

2/3 B + 2/3 B2O3(l) = 

B2O2(g) 

-428.6  -462.9   

Rentzepis et al. (Collection)  

(20) 

C(s) + B2O3(l) = B2O2(g) + 

CO(g) 

 -466.2   

Searcy and Myers (21) 

2MgO(s) + 2B(s) = 2Mg(g) 

+ B2O2(g) 

 -458.9   

Nguyen et al. (17) 

ab initio 

B2O2(g) = 2B(g, doublet) + 

2O(g, triplet) 

  457.7 

Jacobson and Myers 

 This study (KEMS) (2) 

4/3 FeB(s) + 2/3 B2O3(l) = 

B2O2(g) + 2/3 Fe2B(s) 

-484.8  25.7 -474.6  25.7   

Jacobson and Myers 

This study  (ab initio) (2)  

B2O2(g) = 2B(g, doublet) + 

2O(g, triplet) 

  -479.9  17.2 

Jacobson and Myers 

This study  (ab initio) (2)  

B2O2(g) + 6HF(g) = 2BF3(g) 

+ 2H2O(g) + H2(g) 

  -456.7   5.3 

 

 

In summary, this study explains the problems with the B + B2O3(l) reaction.  The use of 

FeB/Fe2B removes this problem, but unfortunately the uncertainty in the thermodynamic data for 

FeB and Fe2B (2) gives a larger error band on the heat of formation for B2O2(g).   

The values calculated from ab initio methods show reasonable agreement to the experimental 

values.  This study shows that coupling quantum chemical composite methods with experimental 

methods gives improves confidence in both approaches. Such an approach is valuable for the 

study of other compounds with the goal of obtaining consistent and reliable thermodynamic 

quantities.  

Ionization Cross Sections 
 

The primary relationship in KEMS is the relationship of vapor pressure of species i, Pi,  to ion 

intensity, Ii: 



 

   Pi = kIiT/i       [1] 

 

Note that this is an ideal form, where the species, i, forms an ion with no fragmentation. Here k is 

the instrument constant and i is the ionization cross section of the species i. 

 

There have been numerous experimental and theoretical studies of ionization cross sections.  

These are summarized in the recent review by Drowart et al. (22).  First consider atomic cross 

sections.  Generally the most commonly used calculations are those of Mann (23), who 

calculates cross sections by summing over radii of the outer orbitals.  These have been put into a 

code by Bonnell and Hastie (24), which conveniently scales the calculated sections with energy 

of the ionizing electrons.  Cross sections for molecules are more complex.  It is generally agreed 

that some type of summation over the constituent atoms is the correct approach (25). Many 

investigators sum the atomic cross sections and multiply by a correction factor of 0.75 (1, 26).   

 

Recently, Deutsch and Mark have developed a semi-empirical method for calculating atomic and 

molecular cross sections (3).  This method is based on summation of orbital radii and scales to 

energy of the ionizing electrons. A Mulliken population analysis (27) is used for extension to 

molecules.  This method seems particularly well-suited for cross section calculation in KEMS 

(28). 

 

The basic relation for the Deutsch-Mark (D-M) method is: 
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    [2] 

 

Here  is the cross section, rn,l is the orbital radii; gn,l is a weighting factor; Nn,l is the number of 

electrons in the particular orbital;  f(u) is a scaling factor to give the proper dependence on 

electron energy; a, b, and c are parameters for the particular orbital; E is energy of the ionizing 

electrons, and En,l is the energy of the particular oribital. The quantities of  rn,l and En,l are taken 

from the calculations of Desclaux (29).  A simple spreadsheet program has been developed at 

NASA Glenn for determining cross sections as a function of electron energy for the elements H 

through Rn (30) and is available from the author. 

 

The extension to molecules involves calculation of a Mulliken population distribution, which is 

easily done from various computational chemistry codes (12, 13).  The Mulliken distribution is 

substituted for Nn,l in the above equation and the total cross section is obtained from summing 

over each atom.  An example of the cross section calculated via the Deutsch-Mark method and 

the summation of the Mann atomic sections with the 0.75 correction factor is illustrated in Fig. 6.  

Clearly comparison need to be made to measured cross sections to determine the best method for 

KEMS.  



 

 
    

Figure 6. Calculated cross sections for B2O2(g) via the Deutsch-Mark method and Mann and 

Bonnell-Hastie code. 

 

Measurement of Thermodynamic Activities in Rare Earth Silicates 
 

There has been a continuing interest in replacing superalloys with ceramics in heat engines 

and combustion applications.  Research at NASA Glenn has shown that silicon-based ceramics 

are quite susceptible to react with the water vapor component in a combustion application (31, 

32).  At high temperatures, the surface oxidizes continuously meanwhile the oxidation product is 

volatilizing: 

    

    SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g)  [3a] 

 

    SiO2(s) + 2H2O(g) = Si(OH)4(g)   [3b]  

 

This leads to a net recession of the material surface.   

 

In order to limit this oxidation/volatilization phenomenon, refractory oxide coatings have 

been proposed (33).  Many of the candidate coatings have a silica component and it is essential 

that the thermodynamic activity of silica be as low as possible.   Rare earth silicates have many 

desirable properties as candidate coatings (adherence, thermal expansion matching, etc.).  These 

oxides may be treated as pseudo-binary compounds and solutions with the components Y2O3 and 

SiO2.  The phase diagram indicates a monosilicate and a disilicate compound. Thermodynamics 

predicts that the compounds on the Y2O3-rich side of the phase diagram have the lower silica 



activities.  For quantitative modeling it is essential to accurately know the activity of silica in 

these materials.   

 

There are numerous measurements of silica activity in silicates using KEMS in the literature (1).  

Such measurements are complex due to several issues (1) A vapor specie which clearly varies 

with silica activity must be identified  (2) high temperatures are required to obtain a measurable 

vapor pressure above SiO2 and (3) Non-equilibrium vaporization is often a problem and must be 

accounted for. 

 

Silica is well known to vaporize primarily as follows: 

 

   SiO2(s) = SiO(g) + ½ O2(g)     [4] 

   SiO2(s) = SiO(g) + O(g) 

 

Thus the activity of silica in a silicate is defined as: 
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Here p is the measured pressure and the superscripts „soln‟ and „o‟ indicate the solution and 

pure SiO2 compound, respectively. Unfortunately, in the case of rare earth silicates over the 

temperature range of interest (1400-1700K), this method cannot be applied, because the vapor 

pressure of SiO generated by reaction [4] is not measurable in the mass spectrometer. 

 

We used Ta to impose reducing conditions to the silicates that generate a measureable signal 

of SiO(g) at the lower temperatures.  This is similar to the approach of Zaitsev and Mogutnov 

(34).  They use a reductant to generate measureable vapor pressures from both components in a 

particular silicate and then use a ratio method.  In our case the reductant only generates a 

measurable vapor pressure for the silica component and this is measured directly with our 

multiple cell system.  Ta reacts with SiO2 as follows: 

 

4Ta(s) + 4SiO2(soln) = 3SiO(g) + Ta2O5 (s) + Ta2Si (s)     [6a] 

 

2Ta(s) + 2SiO2(soln) = 2SiO(g) + TaO(g) + TaO2(g)     [6b] 

     

Here the underline of SiO2 indicates it is of less than unit activity.  Equation [6a] applies to 

activities of silica equal from unity to about 0.02, depending on temperature. We have mixed 

SiO2 powder with excess Ta and heated to 1700K and nearly all the silica reacts to form Ta2O5 

(s) and Ta2Si (s) as revealed by XRD.   Equation [6b] applies to activities of silica less than about 

0.02.  A mixture of Ta + Y2O3 + Y2O3(SiO2) contained only these phases after heating to 

1700K, as revealed by XRD.  Reaction [6b] is the key reaction for the range of a(SiO2) we are 

interested in. Fig. 7 presents the calculated SiO(g) pressures using the FactSage (35) free energy 

minimizer computational thermochemistry code.  Different P(SiO) correspond to different 

activities of SiO2.   The Ta/TaO/TaO2 in equation (6b) fix a constant P(O2) and P(O), regardless 

of SiO2 activity. 



 

For these experiments, the multiple Knudsen cell flange was used (Fig. 2(b)) with an Au 

standard.  In all experiments, the triple point of Au was measured to extract a temperature 

calibration and the machine constant (k factor in relation [1]).  In addition a second law heat of 

Au was always measured concurrently with the measurements of SiO ion intensities.  A second 

law heat within several kJ of the accepted value (1-2%) indicated the instrument was working 

properly.  Representative data are shown in Fig. 8. 

 

As discussed, another important consideration with silicates is non-equilibrium vaporization 

(36).  The usual method of obtaining an equilibrium vapor pressure under such conditions is to 

apply the Whitman-Motzfeld equation (37): 
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Here Pm is the measured vapor pressure, f is given by the expression above, c is the 

condensation coefficient (assumed equal to the vaporization coefficient in this analysis), WA is 

the Clausing factor for the cell, Peq is the equilibrium vapor pressure, WB is the Clausing factor 

for the orifice, B is the cross sectional area of the orifice, and A is the cross sectional area of the 

cell.  Generally measurements are taken with a series of orifice sizes and a plot of Pm vs Pmf 

extrapolates to the equilibrium vapor pressure and the slope of the resultant line is related to the 

condensation coefficient.  

 

Chatillon and co-workers have extended the Whitman-Motzfeld analysis to a multi-cell 

KEMS method.  For our cells, we used the following equations to derive a condensation 

coefficient: 
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In this case several pairs of cells are used with different orifice sizes, f factors, and hence 

intensities, designated by Ii, fi and Ij, fj, respectively.   Here k is a geometry factor between 0 and 

1, which accounts for the lack of an atomically flat surface. A plot of measured condensation 

coefficients is shown in Fig. 9.  These were used to obtain an equilibrium ion intensity from the 

Whitman-Motzfeld equations above.  The equilibrium ion intensity was in turn converted to the 

equilibrium P(SiO). 

 



The equilibrium ion intensity was in turn converted to an equilibrium P(SiO) using the 

calibrated constant derived from the triple point of Au and the appropriate cross sections (3).  

From this P(SiO) and plot similar to Fig. 7 for each temperature, the activity of SiO2 was 

determined for the Y2O3 + Y2O3(SiO2) phase field.  The results are given in Fig. 10.  These are 

compared to the optimization of Fabrichnaya and Seifert (38) obtained from mainly phase 

diagram data (due to the lack of thermodynamic data at the time of the optimization).  

 

 
Figure 7.  Vapor pressure of SiO(g) obtained by thermodynamic calculations for mixtures of 

SiO2 and excess Ta.   

 



 
 

Figure 8.  The product of ion intensity with temperatures as a function of inverse 

temperatures for Au in cell 1 and Ta + Y2O3 + Y2O3(SiO2) mixture in cell 2. 

 

 



Figure 9. Determined  condensation coefficients for the SiO(g) molecule using ionic intensity 

comparison between two different cells (characterized by their f factors) in the multiple cell 

method.  

 

 
Figure 10. Measured activity in the Y2O3(SiO2) + Y2O3 phase field, compared to the 

optimization performed  of Fabrichnaya and Seifert (38). 

 

 

 

Conclusions 

 

Recent work at NASA Glenn on KEMS of oxides has been discussed.  A study on the 

vaporization of B2O3 in reducing atmospheres has been summarized.  In this study the problem 

of maintaining contact area between B2O3(l) and the reducing agent was addressed by using FeB 

+ Fe2B to set a boron activity instead of pure B.  Experimental measurements were compared 

with quantum chemistry composite calculations.  Such an approach provides a check for the 

consistency of both methods and is thus quite valuable. In oxide studies by KEMS, ionization 

cross sections are particularly important.  The Deutsch-Mark semi-empirical method of 

calculating cross sections for atoms and molecules was discussed in regard to KEMS 

applications in order to improve the accuracy of partial pressure determinations.  Finally recent 

work on measurement of thermodynamic activities of silica in rare earth silicates was discussed.  

Ta is used as a reducing agent in order to provide a stronger SiO(g) signal, which remains related 

to silica activity.  Non-equilibrium vaporization is also accounted for.  The present 

thermodynamic results for the Y2O3(SiO2) + Y2O3 pseudo-binary phase field and indicate that 

additional thermodynamic data are necessary to improve the existing optimization.   
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