SOFTWARE
MANAGEMENT &
VERIFICATION

Dena Gruca

Overview

- NASA Guidelines/Procedures

- Typical Project Lifecycle
- Beginning Phase
- Preliminary Design Phase
- Critical Design Phase
- Software Development Phase
- Software Test Phase
- Regression Testing
- Operations Phase
- Project Closeout/Retirement Phsae

NASA GUIDELINES AND
PROCEDURES

L
NASA Procedural Requirements (NPR)

- Agency level documents for systems engineering
- NPR 7150.2B NASA Software Engineering Requirements
- NPR 7123.1B NASA Systems Engineering Processes and
Requirements
- Armstrong (Dryden) Center Procedural Requirements
(DPR) for systems engineering
- DPR 7150.2A
- DPR 7123.1C

Requirement Tailoring

- NPRs are written under the assumption that every project is going to
space

- AFRC projects rarely go to space; more aeronautics oriented

- How do we meet intent of NPRs?
- Create Center-level documents tailored from the NPR

- Create a trace matrix that shows how our center-level requirement meet
the intent of the agency level requirements

- Work with headquarters to get approval of center level documents

- But not every project at the center is the same...

- Each project tailors the Center-level requirements during the beginning
phases in their project documents (Systems Engineering Management
Plan, Software Management Plan)

- Create trace matrix to show how they meet intent of center level
requirements

- Work with center management to get approval of these tailored documents

TYPICAL PROJECT
LIFECYCLE AT NASA
ARMSTRONG

(from a Systems Engineer’s perspective)

Beginning Phase: Project Definition

- When starting a project here at NASA, | like to ask the
project team these questions:
- What is the project?
- What is the goal of the project?
- Who will need to be involved?
- What resources will you need?
- How will you develop your software?

- Or will you be the ones developing the software?
« Contract out? Commercial-Over-The-Shelf (COTS)?

- What platform will you use?
- How will you manage/configure your software?
- What safety measures will you take?

Beginning Phase: Project Definition

- Then, the project works to answer those questions by:
- Agreeing on objectives, success criteria, and milestones
Creating top level requirements
- What are the main features/functions of the system?
- Are there any safety hazards/risks when using/testing the software?
- Start considering top level software architecture
Considering how to test requirements

- Are requirements definite/measureable?
+ Bad example: “The software shall provide output.”
* How much output? What is the output format? How often should it provide output?
+ Good example: “The software shall provide output data at a rate of 25 Hz.”

Creating a guesstimated schedule for completing all top-level tasks

Agreeing on how to track changes, where to store changes (Configuration
Management Plan)

Considering creating coding guidelines/standards

Preliminary Design/Top Level Design

The project presents Project Definition Review to an independent
team (2 peers, or a formal panel), gathers feedback, and stores
documents in project folder

- Then, project software team works to answer these questions:
- How will software interface with hardware?
- What does the software architecture look like?
- Knowing high level requirements, is it better to develop it, or buy it?
- What software requirements are needed to meet higher level
requirements? This drives development and/or purchasing criteria
- What speed is data coming in? Going out?
- What are the size of data packets?

- What is communication route? Ethernet, Wireless, Bluetooth and/or is it stored
internally (Hard drive, jump drive)?

- How is it displayed? Or is it displayed? (Connected monitor, touchpad?)
- What functions are needed?

- What algorithms are needed?

- What parameters are used? (Input/Output/Internally)

Side note on Requirements

- Requirements are the cornerstone of any project

- Tedious task, but otherwise...
- How do you know what you want?
- How do you know what to include/exclude in design?
- How do you know what to develop/purchase?

- What do you test against to know your product works
the way you want it to?

Software Requirements

Preliminary Design/Top Level Design

- How the team answers those questions:

- Create an Interface Control Document (ICD) to show how software will interface with
hardware and/or external software

Create a configuration item list (subsystem list)

- Use for creating development “sandboxes”, tracking changes, sorting through history of
system development

- One for each program, device, or subsystem (categories: "Display drivers”, “OS”, “App1”,
“‘App2”, etc.)
Start writing lower level software requirements into a matrix/spreadsheet; this is the
cornerstone for testing and verifying software

Start creating a test plan approach

« Who is needed to run and evaluate the test? What will you test? Where will you test (in lab?
on a bench or specific box?) How will you capture test results and test anomalies?

- Should you be using scripts or a specific software test tool?
Create a hazard analysis

- What happens if... the software fails or dies? the data is lost? someone pushes the wrong
button? the software catches a virus?

L
Critical Design/Detailed Design

- Project presents Preliminary Design Review to
iIndependent team, gathers feedback, and stores
documents in project folder

- Then the team works to complete these tasks (almost to
the “real work”):
- Baseline all requirement lists/documents
- Baseline the system verification test plan
- Create a data dictionary and/or interface documents
- Start outlining the software design description documents(s)
- Review preliminary hazards, any new ones?

- Outline the subsystem/unit level test plans (who/what/where/how?),
If needed

- Agree upon coding guidelines for project

Software Development Phase

- Project presents Critical Design Review to independent team, gathers
feedback, and stores documents in project folder

- Now the software team gets to start on the “real work”

Develop code

Generate software design document(s)

Generate draft user’s guides (if needed)

Generate draft load procedures (if needed)

Update data dictionaries and interface documents to reflect code development

Create draft verification test procedures (can have multiple procedures)
- Test against requirements (each requirements should be a test point)
- Test for anomalies, outside boundaries
- Test data speed, data loss

Create a trace matrix to verify each requirement is tied to a test or test point
Perform informal integration and testing of subsystems
Update software hazards

- Software team presents code walkthroughs
- Project prepares to present Test Readiness Review

D
Software Test Phase

- Project presents Test Readiness Review to independent team, gathers
feedback, and stores documents in project folder

- Next, the software team and systems team proves the design/code “works”:

”

Place software under configuration control and baseline software (give version
number)

Approve Verification Test Procedures
Finalize ICDs and data dictionaries

Create a version description document
+ What’s included in this version? What's new? What changed? File size/checksum?

If receiving software (COTS), review documentation package
Load software, if needed

Perform formal subsystem and system level tests as documented in the Verification
Test Plan and Test Procedures, as outlined in the Test Readiness Review

Gather data and generate test results
Document discrepancies and redlines/changes to Verification Test Procedure
Create System Test Reports

- Project prepares to perform Formal Data Reviews

Regression Testing

- After/during initial Verification Testing, more testing may be needed
- The team documents discrepancies, redlines/changes to procedures

Discuss changes needed with the project
- What options are available? Change code or change procedure?
- Does this change still meet all requirements? Create new ones?
« How long will it take to make changes?
- Will changes affect other subsystems? Other parts of the code?
- Does the change create new hazards? Modify or eliminate pre-existing hazards?
« How much re-testing is needed? Multiple tests? One test? Part of a test?

Team makes agreed upon changes
« Submit software for configuration (new version number)
- Update Version description document
- Update any other affected documentation

Present changes to independent team/board, similar to Test Readiness
Review
Retest

- Perform formal subsystem and system level tests as documented in the Verification Test Plan
and Test Procedures, as outlined in the updated Test Readiness Review

Regression Testing

IN PHASE ONE, WE'LL
TELL OUR CUSTOMER
THAT THE SYSTEM
FAILURE WON'T
HAPPEN AGAIN,

www.dilbert.com scottsdams@® sl com

IN PHASE TWO, WHEN
IT HAPPENS AGAIN,
WELL ACT SURPRISED.

4 =2007 Scoil Adams, Inc./Dist. by UFS, Inc,

THEN WJELL SAY A
SOFTWARE PATCH IS
BEING INSTALLED.

(GAAA!! WETRE

Operational Phase

- Close all discrepancy reports

- Brief Final Test Results

- Generate User’s Guides (if needed)

- Generate Load Procedures (if needed)

- Compile documentation, data, and software into a
deliverable package, if providing to customer

- Support operations as needed

- If changes are needed, follow steps in regression testing
phase

Software Configuration

Most projects have a systems engineer that doubles as a software manager
- Creates management and configuration documents
- Sets up central code repository structure, manages permissions and folders
- Coordinates software team meetings and aware of development status, issues
- Usually creates Test Plan for testing the software

- Heavily involved in all phases, especially requirements, tracing requirements to test procedures,
and assists in writing procedures

In design phase, software team agrees upon a central repository. SVN,
github, etc.

- In development phase, team uses the central repository to save project in a

“sandbox” folder
- General rule of thumb, check software in as often as possible (daily, weekly)

- In testing/retesting phase, submit team submits “release” versions/tags in
separate branch/folder to software manager

- Software manager tracks software versions, version documentation, and test
results

Side note on Software Configuration

- TRACK CHANGES!

- Know what you are testing/operating
- Easy to determine what changes affects testing/operations

- Saves time and money for everyone; less troubleshooting, less retesting,
better communication

- Provides history of development

- TEST CHANGES!

- “One little change” can affect a larger part of the system with unintended
consequences (e.g., adding one more parameter generates buffer
overflow)

- Same Is true for documentation

- Documentation can also be kept in repository, or other central location,
such as shared folder

- Documentation is tedious and “no one ever reads it”...until something
happens and someone else has to carry on where you left off

Project Closeout

(aka Project Retirement)

- Start double checking that all documentation is completed
and in one central location

- Write reports

- Reduce folder permissions from read/write-access to
read-only and ready documentation/code for archival

- [n some cases, consider if code Is viable for re-use and
how to handle reusable code

- Have a end-of-project celebration

Thank you for your time

Questions?

