
SOFTWARE 

MANAGEMENT & 

VERIFICATION

Dena Gruca



Overview

• NASA Guidelines/Procedures

• Typical Project Lifecycle

• Beginning Phase

• Preliminary Design Phase

• Critical Design Phase

• Software Development Phase

• Software Test Phase

• Regression Testing

• Operations Phase

• Project Closeout/Retirement Phsae



NASA GUIDELINES AND 

PROCEDURES



NASA Procedural Requirements (NPR)

• Agency level documents for systems engineering

• NPR 7150.2B NASA Software Engineering Requirements 

• NPR 7123.1B NASA Systems Engineering Processes and 

Requirements 

• Armstrong (Dryden) Center Procedural Requirements 

(DPR) for systems engineering

• DPR 7150.2A

• DPR 7123.1C



Requirement Tailoring

• NPRs are written under the assumption that every project is going to 

space

• AFRC projects rarely go to space; more aeronautics oriented

• How do we meet intent of NPRs?

• Create Center-level documents tailored from the NPR

• Create a trace matrix that shows how our center-level requirement meet 

the intent of the agency level requirements

• Work with headquarters to get approval of center level documents

• But not every project at the center is the same…

• Each project tailors the Center-level requirements during the beginning 

phases in their project documents (Systems Engineering Management 

Plan, Software Management Plan)

• Create trace matrix to show how they meet intent of center level 

requirements

• Work with center management to get approval of these tailored documents



TYPICAL PROJECT 

LIFECYCLE AT NASA 

ARMSTRONG
(from a Systems Engineer’s perspective)



Beginning Phase: Project Definition

• When starting a project here at NASA, I like to ask the 

project team these questions:

• What is the project? 

• What is the goal of the project?

• Who will need to be involved?

• What resources will you need?

• How will you develop your software? 

• Or will you be the ones developing the software?

• Contract out? Commercial-Over-The-Shelf (COTS)?

• What platform will you use?

• How will you manage/configure your software?

• What safety measures will you take?



Beginning Phase: Project Definition

• Then, the project works to answer those questions by:

• Agreeing on objectives, success criteria, and milestones

• Creating top level requirements

• What are the main features/functions of the system?

• Are there any safety hazards/risks when using/testing the software?

• Start considering top level software architecture

• Considering how to test requirements

• Are requirements definite/measureable?

• Bad example: “The software shall provide output.”

• How much output? What is the output format? How often should it provide output?

• Good example: “The software shall provide output data at a rate of 25 Hz.”

• Creating a guesstimated schedule for completing all top-level tasks

• Agreeing on how to track changes, where to store changes (Configuration 

Management Plan)

• Considering creating coding guidelines/standards



Preliminary Design/Top Level Design

• The project presents Project Definition Review to an independent 
team (2 peers, or a formal panel), gathers feedback, and stores 
documents in project folder

• Then, project software team works to answer these questions:
• How will software interface with hardware?

• What does the software architecture look like?

• Knowing high level requirements, is it better to develop it, or buy it?

• What software requirements are needed to meet higher level 
requirements? This drives development and/or purchasing criteria
• What speed is data coming in? Going out?

• What are the size of data packets?

• What is communication route? Ethernet, Wireless, Bluetooth and/or is it stored 
internally (Hard drive, jump drive)?

• How is it displayed? Or is it displayed? (Connected monitor, touchpad?)

• What functions are needed?

• What algorithms are needed?

• What parameters are used? (Input/Output/Internally)



Side note on Requirements

• Requirements are the cornerstone of any project

• Tedious task, but otherwise…

• How do you know what you want?

• How do you know what to include/exclude in design?

• How do you know what to develop/purchase?

• What do you test against to know your product works 

the way you want it to?



Software Requirements



Preliminary Design/Top Level Design

• How the team answers those questions:

• Create an Interface Control Document (ICD) to show how software will interface with 

hardware and/or external software

• Create a configuration item list (subsystem list)

• Use for creating development “sandboxes”, tracking changes, sorting through history of 

system development

• One for each program, device, or subsystem (categories: "Display drivers”, “OS”, “App1”, 

“App2”, etc.)

• Start writing lower level software requirements into a matrix/spreadsheet; this is the 

cornerstone for testing and verifying software

• Start creating a test plan approach 

• Who is needed to run and evaluate the test? What will you test? Where will you test (in lab? 

on a bench or specific box?) How will you capture test results and test anomalies?

• Should you be using scripts or a specific software test tool?

• Create a hazard analysis

• What happens if… the software fails or dies? the data is lost? someone pushes the wrong 

button? the software catches a virus?



Critical Design/Detailed Design

• Project presents Preliminary Design Review to 

independent team, gathers feedback, and stores 

documents in project folder

• Then the team works to complete these tasks (almost to 

the “real work”):

• Baseline all requirement lists/documents

• Baseline the system verification test plan

• Create a data dictionary and/or interface documents

• Start outlining the software design description documents(s)

• Review preliminary hazards, any new ones?

• Outline the subsystem/unit level test plans (who/what/where/how?), 

if needed

• Agree upon coding guidelines for project



Software Development Phase

• Project presents Critical Design Review to independent team, gathers 

feedback, and stores documents in project folder

• Now the software team gets to start on the “real work”

• Develop code

• Generate software design document(s)

• Generate draft user’s guides (if needed)

• Generate draft load procedures (if needed)

• Update data dictionaries and interface documents to reflect code development

• Create draft verification test procedures (can have multiple procedures)

• Test against requirements (each requirements should be a test point)

• Test for anomalies, outside boundaries

• Test data speed, data loss

• Create a trace matrix to verify each requirement is tied to a test or test point

• Perform informal integration and testing of subsystems

• Update software hazards

• Software team presents code walkthroughs

• Project prepares to present Test Readiness Review



Software Test Phase

• Project presents Test Readiness Review to independent team, gathers 

feedback, and stores documents in project folder

• Next, the software team and systems team proves the design/code “works”:

• Place software under configuration control and baseline software (give version 

number)

• Approve Verification Test Procedures

• Finalize ICDs and data dictionaries

• Create a version description document

• What’s included in this version? What’s new? What changed? File size/checksum?

• If receiving software (COTS), review documentation package

• Load software, if needed

• Perform formal subsystem and system level tests as documented in the Verification 

Test Plan and Test Procedures, as outlined in the Test Readiness Review

• Gather data and generate test results

• Document discrepancies and redlines/changes to Verification Test Procedure

• Create System Test Reports

• Project prepares to perform Formal Data Reviews



Regression Testing

• After/during initial Verification Testing, more testing may be needed

• The team documents discrepancies, redlines/changes to procedures

• Discuss changes needed with the project
• What options are available? Change code or change procedure?

• Does this change still meet all requirements? Create new ones?

• How long will it take to make changes?

• Will changes affect other subsystems? Other parts of the code?

• Does the change create new hazards? Modify or eliminate pre-existing hazards?

• How much re-testing is needed? Multiple tests? One test? Part of a test?

• Team makes agreed upon changes
• Submit software for configuration (new version number)

• Update Version description document

• Update any other affected documentation

• Present changes to independent team/board, similar to Test Readiness 

Review 

• Retest
• Perform formal subsystem and system level tests as documented in the Verification Test Plan 

and Test Procedures, as outlined in the updated Test Readiness Review



Regression Testing



Operational Phase

• Close all discrepancy reports

• Brief Final Test Results

• Generate User’s Guides (if needed)

• Generate Load Procedures (if needed)

• Compile documentation, data, and software into a 

deliverable package, if providing to customer

• Support operations as needed

• If changes are needed, follow steps in regression testing 

phase



Software Configuration

• Most projects have a systems engineer that doubles as a software manager
• Creates management and configuration documents

• Sets up central code repository structure, manages permissions and folders

• Coordinates software team meetings and aware of development status, issues

• Usually creates Test Plan for testing the software

• Heavily involved in all phases, especially requirements, tracing requirements to test procedures, 

and assists in writing procedures

• In design phase, software team agrees upon a central repository. SVN, 

github, etc.

• In development phase, team uses the central repository to save project in a 

“sandbox” folder
• General rule of thumb, check software in as often as possible (daily, weekly)

• In testing/retesting phase, submit team submits “release” versions/tags in 

separate branch/folder to software manager

• Software manager tracks software versions, version documentation, and test 

results



Side note on Software Configuration

• TRACK CHANGES!
• Know what you are testing/operating

• Easy to determine what changes affects testing/operations

• Saves time and money for everyone; less troubleshooting, less retesting, 

better communication

• Provides history of development

• TEST CHANGES!
• “One little change” can affect a larger part of the system with unintended 

consequences (e.g., adding one more parameter generates buffer 

overflow)

• Same is true for documentation
• Documentation can also be kept in repository, or other central location, 

such as shared folder

• Documentation is tedious and “no one ever reads it”…until something 

happens and someone else has to carry on where you left off



Project Closeout 

(aka Project Retirement)
• Start double checking that all documentation is completed 

and in one central location

• Write reports

• Reduce folder permissions from read/write-access to 

read-only and ready documentation/code for archival

• In some cases, consider if code is viable for re-use and 

how to handle reusable code

• Have a end-of-project celebration



Thank you for your time

Questions?


