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Abstract A case study is presented using measurements from the Cluster spacecraft and ground-based
magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On
3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected
a sudden enhancement of Bz , which was immediately followed by a series of flux rope structures. Both
the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz
enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between
the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the
tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail
to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet
facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the
later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground
magnetograms located near the meridian of Cluster’s magnetic foot points show two-step bay
enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset
signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation.
The more intense bay features associated with the later DF are consistent with the earthward motion of
the front. The event suggests that current disruption signatures that originated in the near-Earth current
sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the
magnetosphere for a later strong substorm enhancement.

1. Introduction

Dipolarization fronts (DFs) are a phenomenon commonly detected near the equatorial plane of the Earth’s
tail plasma sheet. They are characterized by sharp increases in the magnetic field component normal to the
equatorial plane of the magnetosphere, often associated with intense gradients of Bz in geocentric solar
magnetospheric (GSM) or geocentric solar ecliptic (GSE) coordinates. Spacecraft typically sees an increase
of magnetic pressure and decrease of plasma pressure across the front. Such plasma and magnetic field
variations across DFs indicate that they carry an entropy-depleted flux tube, or localized “plasma bubbles”
behind them [Hwang et al., 2011; Sergeev et al., 2012]. Numerous DF observations at the near-Earth plasma
sheet by the Cluster [e.g., Nakamura et al., 2002; Hwang et al., 2011; Fu et al., 2011, 2012; Schmid et al., 2012;
Hwang et al., 2014] and Time History of Events and Macroscale Interactions during Substorms (THEMIS)
[e.g., Runov et al., 2009; Sergeev et al., 2009; Zhou et al., 2010; Deng et al., 2010; Dubyagin et al., 2010;
Ashour-Abdalla et al., 2011] spacecraft have shown that DFs predominantly propagate earthward along the
radial direction and are often embedded within fast earthward flows, i.e., bursty bulk flows [Angelopoulos
et al., 1992, 1999].

DFs have drawn wide attention because they significantly affect the acceleration and transport of plasmas
[e.g., Sergeev et al., 2009; Zhou et al., 2009; Deng et al., 2010; Hwang et al., 2011; Fu et al., 2011; Ashour-Abdalla
et al., 2011; Birn et al., 2013]. The observed energization is attributed to betatron and/or (first-order) Fermi
acceleration associated with the local magnetic pileup signature of DFs and the large-scale reconfiguration
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(shortening) of the magnetic fields caused by radial convection of DFs [Birn et al., 2003; Ashour-Abdalla et al.,
2011; Fu et al., 2011] and to other nonadiabatic processes, including wave-particle interactions [Deng et al.,
2010; Hwang et al., 2011, 2014]. DFs are also thought to play a significant role in populating the inner mag-
netosphere by transporting plasmas from the midtail (15–30 RE) to the near-Earth (10–15 RE) plasma sheet
and, in some cases, into the inner magnetosphere [Delcourt et al., 1990; Delcourt, 2002; Jones et al., 2006;
Runov et al., 2009; Ashour-Abdalla et al., 2011]. Nosé et al. [2010] presented multiple scenarios to explain
transport of O+ ions from the ionosphere to the ring current and how dipolarization in the magnetotail
can contribute to the transport or the significant increase in O+ fluxes in the ring current during magnetic
storms. Moreover, DFs have been implicated in nonadiabatic particle acceleration that might explain the
mass-dependent variation of inner-magnetospheric ring current ions (in particular, the observed significant
enhancement of energetic O+ fluxes) during geomagnetic storm time [Delcourt, 2002; Ohtani et al., 2005;
Fok et al., 2006; Keika et al., 2010].

DFs may arise during global magnetic dipolarization and are often associated with substorm, but the occur-
rence of DFs does not necessarily imply a substorm dipolarization. However, most DF observations are
linked to ionospheric responses and/or auroral signatures at any activity level [Keika et al., 2010; Nakamura et
al., 2011; Hwang et al., 2011; Zhou et al., 2012; Ge et al., 2012], which indicates that DFs that commonly form
in azimuthally narrow channels cause disturbances in the magnetic field at ionospheric heights that are
coupled to the magnetosphere and/or generate field-aligned currents [Hwang et al., 2011]. DFs also appear
to contribute to particle precipitation into the ionosphere that produces auroral signatures [Ge et al., 2012;
Zhou et al., 2012].

Dipolarization of tailward magnetic topology, which is often accompanied by observation of a DF, has been
associated with a decrease of the cross-tail current in the near-Earth region that might be caused by, e.g., a
cross-tail current instability [Lui et al., 1991]. Lui [1991] presented the synthesis model of substorm develop-
ment that includes current disruptions leading to convection surges and tailward propagating rarefaction
waves and the formation of magnetic reconnection at a downstream distance of ⪆20 RE . Lopez and Lui
[1990] used observations from four satellites (Active Magnetospheric Particle Tracer Explorers (AMPTE)/CCE,
AMPTE Ion Release Module, GOES 5, and GOES 6) in the near-Earth magnetotail region and ground magne-
tometers to demonstrate the tailward propagation of dipolarization. Jacquey et al. [1991] and Jacquey et al.
[1993] investigated magnetic field perturbations in the tail lobe to infer tailward propagation of dipolariza-
tion. Ohtani et al. [1992] paid attention to the different sensitivities of Bz and Bx components to the cross-tail
current to infer tailward propagation of dipolarization.

More recently, DFs are also thought to result from magnetic reconnection in which the exhaust jets
and entrained magnetic fluxes from the reconnection region pileup, forming a front of increased cur-
rent sheet normal magnetic field [Hoshino et al., 2001; Hoshino, 2005; Nakamura et al., 2009; Sitnov et al.,
2009]. Kinetic particle-in-cell simulations [Sitnov et al., 2009] have shown that DFs can form as a result of
transient reconnection.

In this paper, we report Cluster observations of consecutive sharp Bz jumps in the near-Earth current sheet.
The initial thickness of the current sheet is comparable to the inertial length of H+ ions. The two boundaries
of sharp Bz jumps are separated by about 5 min; the earlier front propagates radially outward and is followed
by a series of tailward moving flux ropes, consequently leaving the near-Earth plasma sheet to become
further thinned. The later DF propagates earthward very rapidly (at a speed of ∼542.5 km/s) and is associ-
ated with global magnetic dipolarization following the front. We investigate ground magnetometer data
around the meridian of Cluster’s foot points to track ionospheric responses to the localized fronts in the cou-
pled ionosphere-magnetosphere current system. Two-step positive bay enhancements are observed; one
of which started 3 min earlier than the Cluster observation of the first Bz enhancement and a second one
that started 2 min after the DF detection by Cluster. A positive bay associated with the first Bz enhancement
was seen at low latitudes before being observed at higher latitudes, indicating that the substorm onset
signatures propagated from the inner plasma sheet to the outer plasma sheet, consistent with the Cluster
observation of tailward propagating magnetic disturbances.

In the following section we present an overview of the DF events and examine magnetotail configuration
and dynamics associated with these magnetic disturbances (section 2). Ground magnetometer data during
this event are shown in section 3, where we also discuss how this event is related to the substorm onset
mechanisms and dynamics.
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Figure 1. Location of the four Cluster spacecraft during 1100–1200 UT on 3 October 2005; in the GSM (left) XY and (middle) XZ planes, superposed over magnetic
field lines obtained from the T96 model [Tsyganenko, 1995]. (right) The spacecraft configuration and separation at 1122 UT (the event start time) are shown. The
barycenter of the four Cluster spacecraft is at (−14.5, 5.15, −0.70) Earth radii (RE ) in GSM coordinates.

2. Observations of Abrupt Bz Enhancements
2.1. Initial Bz Enhancement: Tailward Propagation

During 1100–1200 UT on 3 October 2005, the four Cluster spacecraft passed the premidnight sector of the
near-Earth neutral sheet from north to south (Figure 1). The barycenter of the quartet was at (−14.5, 5.15,
−0.70) Earth radii (RE) in geocentric solar magnetospheric (GSM) coordinates. The separation between the
spacecraft along the z direction, i.e., almost along the normal to the current sheet, is significantly smaller
than is their separation in the xy plane. C3 and C4 are quite close to each other.

Cluster observations during 1120–1133 UT is summarized in Figure 2 that shows (a) negative of the space-
craft potential that is indicative of the electron density [Pedersen et al., 2008; Lybekk et al., 2012], (b–d)
the (x, y, z) components of the magnetic field, and the ion bulk velocity measured by (e) C1 and (f ) C4
(for H+ ions). (No ion moments from C3 are available during the event.) Prior to the event, e.g., between
1120:00 and 1121:40 UT, Bx components are notably different among the four spacecraft, while all the Bz val-
ues are close to zero (|Bz| ≤ 2.5 nT). The current sheet normal coordinates point along l̂ = (0.96, 0.27, 0.13),
m̂ = (−0.16, 0.90, −0.41), and n̂ = (−0.21, 0.37, 0.90) in GSM coordinates as obtained from the magnetic
field measured by C1, which marginally traversed the current sheet at ∼1122 UT. The medium-to-minimum
eigenvalue ratio in the minimum variance calculation is 6.5 for ∼2000 data points. The bootstrap error esti-
mate for the minimum variance analysis [Kawano and Higuchi, 1995] shows a standard deviation of 0.026.
We fit the magnetic field data at C1, C3, and C4 taken prior to detection of the large magnetic field fluctua-
tions (starting at ∼1122:10 UT) to a Harris sheet model, Bl(n) = B0 tanh

n−n0
L

, where B0 is lobe magnetic field

outside the current sheet along l̂, n0 is current sheet position, and L is half thickness of the current sheet,
with the result that the current sheet half thickness along n̂ to range between 1498 km and 1802 km. These
are comparable to the inertial length (∼1000 km) or gyroradius (∼1800 km) scale of H+ ions, indicating that
the near-Earth current sheet was thin before the event.

The magnetic field data at C2 neither fit the derived (l,m, n) coordinates nor are applicable for calculating
the current sheet thickness. The magnetic field profiles at C2 that differ from other spacecraft data indicate
that C2 resided in a different region topologically being away from the current sheet, although C2 was only
∼0.35 RE southward of C1 in GSM. Moreover, the large dawnward By component at ∼1122 UT measured
by C2 suggests that the background magnetic field surrounding the central current sheet was stretched
dawnward prior to the event so that the other three spacecraft were aligned in the same magnetic meridian
plane, although the model magnetic field [Tsyganenko, 1995] (see Figure 1) predicted that C2 and C3/C4
should be in nearly the same meridian.

At ∼1122:12 UT, C3 and C4 observed an abrupt jump in Bz while C1 observed a bit more gradual increase
of Bz ∼26 s later (marked by cyan and grey arrows, respectively, in Figure 2d). The earthward plasma flow
observed at C4 (Figure 2f ) starts before the enhanced Bz front and peaks at 1100 km/s 12.6 s later (at
∼1122:24.6 UT) passing the front (cyan arrow in Figure 2f; note that there are no ion moments for C3 dur-
ing this event). The peak of earthward fast flow at C1 (∼660 km/s at ∼1122:39 UT, grey arrow in Figure 2e)
almost coincides with the Bz enhancement. C2 did not observe the Bz jump and the magnetic field profiles
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Figure 2. Cluster observations of two consecutive Bz enhancements on 3 October 2005: (a) the negative of the space-
craft potential, indicative of the electron density [Pedersen et al., 2008; Lybekk et al., 2012]; the magnetic field, (b) Bx ,
(c) By , and (d) Bz ; (e, f ) the ion bulk flow, Vx (orange), Vy (green), and Vz (magenta) measured at C1 (Figure 2e) and C4
(Figure 2f, assuming that the majority is H+ ions).

between C3/C4 and C1 are not very similar, meaning that reliable multispacecraft timing analyses cannot be
performed. However, the data show a consistent trend, viz. that fluctuations propagate radially outward, i.e.,
from C3/C4 to C1: (1) the sudden Bz increases accompanying earthward fast flows (Figures 2d–2f ), (2) local
density decreases detected ∼40 s after the Bz jump (arrows in Figure 2a), and (3) the ∼50 s long Bx fluctua-
tions at ∼0.15 Hz around or following the Bz jump (Figure 2b) are all observed at C3/C4 first, and then at C1
later, by ∼26 s apart.

Increasing B̄x (the mean magnitude of Bx) with decreasing B̄z following the Bz enhancement
(∼1122:20–1122:50 UT for C3/C4 and ∼1122:40–1123:05 UT for C1) indicates that the local Bz jump led to a
more stretched current sheet, which is opposite to the more usual observation, where the DF appears as an
interface formed by earthward injected flux tubes that contain more dipole magnetic field components than
did the preexisting flux tubes. Note that a second Bz jump passed all four spacecraft ∼5 min later (marked by
red, black, green, and red arrows in Figure 2d). This second event is discussed in detail in section 2.2.

We expand the period of the first enhanced Bz front crossing in Figure 3, where the magnetic field com-
ponents (a–c), the current (d) calculated assuming that the spatial derivatives are replaced by temporal
ones using the spacecraft velocity

(
dBi
dxj

= 1
Vs∕c,j

dBi
dt

)
, the bulk plasma velocity (e, f ), and the electric field

components (g–i) are shown in the current sheet normal coordinates. The magnetic field profiles reveal
that the ∼0.15 Hz fluctuations following the Bz jump correspond to a series of flux ropes that move tail-
ward: (1) Enhancements in positive Bm and Jm (Figures 3b and 3d) mostly occur when bipolar Bn changes
its sign from positive to negative (marked by dotted, dash-dotted, and dashed vertical lines for C1, C3, and
C4; see Figure 3c). (2) Local enhancements in Bl (Figure 3a) coincide with negative-to-positive Bn changes
(see the cartoon in Figure 4 that indicates a relative spacecraft trajectory passing the tailward moving flux
ropes/plasmoids). The timings for the spacecraft to approach closest to the center of the flux ropes are
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Figure 3. Expanded for the period of the first Bz enhancement crossing with all parameters in the current sheet nor-
mal coordinates; (a–c) the magnetic field components, (d) the current along m̂ direction, calculated assuming that the

spatial derivatives are replaced by temporal ones using the spacecraft velocity
(

dBi
dxj

= dBi
Vj,s∕cdt

)
, (e, f ) the bulk plasma

velocity at C1 and C4, and (g–i) the electric field at C1. The bulk plasma velocities measured by Cluster-CIS (Cluster Ion
Spectrometry) are compared with the frozen-in convection flows (Figures 3e and 3f). Figures 3g–3i show contributions
of the convection term (cyan) and the Hall term (green), separately, and compare the sum of the two terms (magenta) to
the measured electric field (black dotted). Dotted, dash-dotted, and dashed vertical lines for C1, C3, and C4, respectively,
represent when Bn changes its sign from positive to negative as tailward moving flux ropes pass the spacecraft.

marked by A and B for C3 and C4, and A′ and B′ for C1 in the cartoon of Figure 4, corresponding to the ones
(shown at the top of Figure 3), around which Bn changes its sign.

Figure 4 demonstrates that a single period among the multiple bipolar Bn structures can be well fitted to a
force-free flux rope model, where 𝜇0J = 𝛼B (so that J × B = 0). For a constant 𝛼, Ampere’s law becomes
a Helmholtz equation whose solutions are Bessel functions [Lundquist, 1950]. The flux rope in a force-free
configuration has cylindrical symmetry, represented by the axial (BA), tangential (BT ), and radial (BR)
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Figure 4. A single period among a series of bipolar-Bn structures. The measured magnetic fields (dot-dashed curves)
are fitted to force-free flux rope model predictions (solid curves) for (a–d) C3 and (e–h) C4: Axial (Figures 4b and 4f) and
tangential (Figures 4c and 4g) components, and the angle (Figures 4d and 4h) made by the axial component to the total
magnetic strength (with 90◦ corresponding to the core of the flux rope). The bottom cartoon illustrates Cluster’s crossing
of multiple tailward moving flux ropes. The timings for the spacecraft to pass closest to the center of the flux ropes are
marked by A and B for C3 and C4, and A′ and B′ for C1, corresponding to the ones (shown at the top of Figure 3), around
which timings Bn changes its sign.
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components of the magnetic field: BA = B0J0(aR), BT = B0HJ1(aR), and BR = 0, where R is the distance from
the axis, H = ±1 determines the handedness of the magnetic field, and B0 and a are constants determined
by the fit. Figure 4 shows axial (b, f ) and tangential (c, g) components, and the angle (d, h) made by the axial
component to the total magnetic strength (with 90◦ corresponding to the core of the flux rope) observed at
C3 and C4 (dash-dotted curves in Figures 4a–4d and 4e–4h, respectively). Overplotted are the model values
shown in solid curves. B0 and a in our fit are 21.9 nT and 14.29 R−1E (26.5 nT and 15.04 R−1E ) with a standard
deviation of 0.079 and 0.010 (0.094 and 0.011), respectively, for C3 (C4). Both C3 and C4 show good consis-
tency between the measurements and the model predictions, while C1 data (not shown) are less consistent,
indicating the slight deformation of the flux ropes, similar to the enhanced Bz (Bn) front.

Two-point timings between C3 and C1 using either the Bz jumps or the two sharp negative Bn dips associ-
ated with flux ropes (Figure 3c) yield an estimate for the velocity of these structures as 399–519 km/s to the
negative (tailward) l̂ direction. The scale sizes along l̂ of a single flux rope (with an average duration of 6.5 s)
are estimated to be 2594–3374 km (0.4–0.53 RE). To test whether or not the criteria for the tearing instabil-
ity (k ⋅ Δ ≤ 1, where k is the wave number associated with the spacing along l̂ of the inferred tearing-mode
structure and Δ is the thickness of the initial current sheet) [Furth et al., 1963; Coppi et al., 1966] were met,
we assume that the scale size of a flux rope along l̂ (suggesting the separation of the two X lines along l̂ )
is an estimate of the wavelength of the initial mode (𝜆). Using the thickness of the initial current sheet (Δ)
obtained from the Harris model gives k ⋅ Δ = (2𝜋∕𝜆) ⋅ Δ = 5.6–8.6. The two-point timing method might
have overestimated the propagation speed and therefore scale sizes of the flux ropes. The force-free flux
rope model fitted to the data also gives the diameter of the flux rope as 0.34 RE (for C3) and 0.32 RE (C4). This
implies that k ⋅Δ can be even larger. Therefore, the tearing instability seemed unlikely to generate a series of
flux ropes during the first enhanced Bz event.

Tailward propagation of both the Bz enhancements and the following flux ropes during the earthward
plasma bulk flows (Figures 2e and 2f) indicates a breakdown in the frozen-in condition. Figures 3e and
3f compare velocity components obtained by the electric and magnetic fields ( E×B

B2
; red, green, and blue

curves representing l,m, and n components) and Cluster-CIS instruments (dark red, dark green, and dark
blue dash-dotted curves with asterisks pointing measurement times). Despite much lower resolution of
ion moments (4 s for C1 and 8 s for C4) compared to the field data and intermittent unavailability of the
electric field data, notable differences between the two measurements are clear. Figures 3g–3i detail rel-
ative contributions by the convection (−V × B) and Hall (J × B∕ne) terms in the generalized Ohm’s law,
E = −V × B+ J × B∕ne−∇ ⋅

←→
Pe∕ne+

me

ne2
dJ
dt
+ 𝜂J [Yoon and Lui, 2006]. The plot uses data from C1, which pro-

vides the highest resolution ion moments. The relatively poor data cadence available for electron moments
(1 sampling per ≥70 s for C1) does not allow us to consider the third term, called the electron pressure (elec-
tron viscosity) term. The fourth term, i.e., the electron inertial term, is insignificant in the present event (not
shown). Figures 3g–3i indicate that both the convection and Hall terms (cyan and green curves, respec-
tively) significantly contribute around the Bn enhancement to balance the measured electric field (dotted),
while the convection terms are dominant during the passage of a series of flux ropes (as expected for the
force-free flux ropes). However, the sums of the two terms displayed in magenta curves show a poor agree-
ment to the measured fields near the rise of the Bn enhancement, the Bn plateau during 1122:41.7–46 UT,
and bipolar n peaks associated with flux ropes. This indicates that either the electron viscosity term which
becomes important when the electron pressure tensor contains large off-diagonal components or the
anomalous resistivity (𝜂J) which arises from turbulent field fluctuations [Lui et al., 2007] might have signif-
icantly contributed. Indeed, off-diagonal components in the electron pressure tensor during the flux rope
passage are less than diagonal ones by about an order of magnitude, compared to more notable differences
by 2–3 orders of magnitude for other times.

2.2. Later Bz Enhancement: Earthward Propagation

At ∼1127 UT, i.e., about 5 min after the initial Bz enhancement, a second Bz jump passed the four space-
craft (Figure 2d). The arrival of a DF is observed sequentially by C2, C1, C4, and C3. Figure 5 expands this
period, using the same format as Figure 2 except that the spacecraft potential in Figure 5a is replaced by
the electron density estimated from the spacecraft potential using Lybekk et al. [2012]. Prior to the Bz jump,
all spacecraft were located close to the current sheet, with C1/C3/C4 on the northern side of the current
sheet while C2 in the southern side observing stretched field lines along the +ŷ direction (Figures 5b–5d).
An abrupt Bz increase, marked by colored arrows in Figure 5d is preceded by a typical Bz dip ahead of it. A
notable difference of the DF observations among the spacecraft is that the DF forms as a single Bz rise at
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Figure 5. Detailed profiles of the (a) electron density, estimated from the spacecraft potential using Lybekk et al. [2012], (b–d) magnetic field components, plasma
bulk velocities measured by (e) C1 and (f ) C4, and entropy calculated from the ion distribution function (solid black and blue lines for C1 and C4, respectively)
or the flux tube entropy parameter (using Wolf et al. [2006]’s formula, dash-dotted grey and light blue lines for C1 and C4) (g) during the passage of the later
Bz enhancement.

C2 while it is seen as a double rise at C1 or multiple rises at C3 and C4 later with time. This indicates either
that the front was bifurcated consecutively due to kinetic processes occurring at the DF or that recurrent
bursty magnetic reconnection injected multiple outflowing reconnected flux tubes into the inner plasma
sheet. Figures 5e and 5f show that the DF observed at C1 and C4 accompanies multiple-peaked earth-
ward fast flows, possibly supporting the latter scenario. In particular, the later earthward flow speed at C4
(marked by a blue arrow in Figure 5f ) is about 1.6 times the earlier one seen at ∼1127:10 UT. This might cor-
respond to the larger Bz rise detected later at ∼1127:15.5 UT as being generated by larger compressions due
to faster earthward flows. Four-spacecraft analysis using timings of the first rise of Bz jumps (red, black, blue,
and green arrows in Figure 5d) gives the normal propagation of the front to be ∼542.5 km/s along (0.75,
−0.39, −0.53) in GSM coordinates (almost identical to LMN coordinates during the later front period). The
four-spacecraft timing analysis assumes that the boundary front is nearly planar and quasi-stationary, which
is often satisfied for DFs. The technique also assumes that the front moves with constant velocity over the
scale of the spacecraft separation. Two-point timings using C1 and C3/C4 observations overestimate the
speed as ∼770 km/s in GSM/LMN. Therefore, the later DF propagated earthward significantly faster than the
tailward motion of the initial Bz enhancement.
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Figure 5g shows the entropy calculated from the ion distribution function (solid black and blue lines for
C1 and C4, respectively) [Hwang et al., 2011] or the flux tube entropy parameter usingWolf et al. [2006]’s
formula (dash-dotted grey and light blue lines for C1 and C4). Despite unfavorable temporal resolution of
the ion distributions and moments, one can see a decrease in the entropy during the passage of the later
Bz enhancement, in particular for C1, which is situated in closer proximity to the neutral sheet than C4, as
indicated from the magnetic field components prior to the Bz enhancement. The decrease in the (flux tube)
entropy could be linked to the fast propagation of the later DF.

3. Discussion

We report Cluster observations of two consecutive Bz enhancements separated in time by ∼5 min. The first
Bz jump and subsequent flux ropes, both propagating tailward, seem to be associated with non-MHD and
non-reconnection processes while the second event propagates rapidly earthward and is consistent with
generation via magnetotail reconnection. Between the two Bz enhancements (during 1125:00–1126:50 UT
in Figure 2), the current sheet shows a reduction in magnetic flux (in which |B| decreased to ∼25%, 64%, and
49% of before-the-event levels for C2, C3, and C4, respectively). This indicates that the tailward moving first
Bz enhancement together with a series of flux rope structures resulted in a significant removal of magnetic
flux from the near-Earth plasma sheet outward to the distant tail. This leads the magnetotail to be glob-
ally stretched so that the thinnest current sheet forms tailward of the location of Cluster’s detection of the
first Bz jump. The region of the most thinned current sheet facilitates magnetic reconnection that quickly
evolves from the plasma sheet to the lobe field reconnection, which can generate a rapid earthward prop-
agating DF associated with a large decrease in plasma density and flux tube entropy within reconnected
flux tubes behind the DF. Figure 2a and Figure 5a show a significant density decrease of 2 orders of magni-
tude after the passage of the later front. Figure 5g also indicates a large (flux tube) entropy decrease behind
the later DF. This series of magnetotail processes will likely lead to subsequent dipolarization of magnetotail
topology, which is observed by Cluster near the end of the event (see the reduced Bx with enhanced Bz in
Figures 2b and 2d after 1132:15 UT).

This scenario of the near-Earth tail dynamics suggests that the two consecutive Bz enhancements are
causally linked. This relationship may be represented by ionospheric responses to the two Bz jumps and
their outward/inward motions. Black, red, green, and blue traces in Figure 6 (top) are the footprints of the
Cluster spacecraft as derived from T96 [Tsyganenko, 1995] during 1100 to 1200 UT, with dots corresponding
to the footprints at 1122 UT. Geocentric longitudes and latitudes of C1 are −176◦ and 72.2◦ at 1122 UT and
−179◦ and 72.5◦ at 1127 UT. Below are panels that show northward (H), eastward (D), and vertical (Z) com-
ponents of ground-based magnetometer data recorded at four stations marked in the map. (Note that for
this event, all-sky imaging data are unavailable.) The magnetogram from the IRT station displays clear fea-
tures of a two-step positive bay. The initial one starts at ∼1119 UT (marked by a hollow magenta arrow), i.e.,
∼3 min prior to the traverse of the first Bz enhancement through Cluster. The later one starts at ∼1129 UT
(marked by a solid magenta arrow), ∼2 min after the second Bz jump was seen at Cluster. These positive
bays are associated with the upward, i.e., tailward, field-aligned currents on the western side of the sub-
storm current wedge [Atkinson, 1967;McPherron et al., 1973]. Around the time of the first Bz enhancement
at Cluster (∼1122 UT), we see a positive bay features at the lower latitudes (MMB starting at ∼1118 UT and
IRT at ∼1119 UT) before it is observed at the higher latitudes at CHD (∼1121:30 UT) and KTN (∼1122:30 UT),
which is consistent to the tailward motion of the first Bz enhancement. Around the time of the later earth-
ward DF event observed by Cluster at ∼1127 UT, a negative bay, starting at ∼1124 UT at KTN and reversed
from having been positive at ∼1125 UT at CHD, continues until ∼1132 UT (KTN) and ∼1133:30 UT (CHD). A
weaker negative bay appears during 1126–1129 UT at IRT and 1128–1129 UT at MMB. More dominant pos-
itive bays start at ∼1129 UT and last until ∼1135 UT as seen at IRT/MMB. In particular, between ∼1129 and
1132 UT, the higher latitude stations (KTN and CHD) observe a negative bay while lower latitude stations see
a positive bay. This indicates that the westward substorm electrojet developed somewhere between CHD
and IRT/MMB stations. These bay features demonstrate that the westward auroral electroject, which formed
northward of the four stations (tailward of the location mapped to the magnetotail), propagates to the lower
latitudes (earthward in the magnetotail), consistent with the earthward motion of the second DF. Although
the two positive bays observed at IRT might represent separate substorms, the later one shows larger varia-
tions with wider and prolonged impacts (over all four stations). This, together with the fact that substorms
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Figure 6. Ground magnetograms observed at four stations (KTN, CHD,
IRT, and MMB) located around the meridian of (top) Cluster’s foot points
that are marked in the map.

are unlikely to last less than 5 min
suggests that the initial variations are
associated with preconditioning of a
later strong substorm enhancement.

Both in situ observations in the
near-Earth tail and magnetometer mea-
surements on the ground correlate to
the cross-tail current disruption model
[Lui, 1991] in that the current disrupted
structures propagating tailward (corre-
sponding to the initial Bz enhancement)
coincide with earthward plasma flows
and that signatures indicative of tailward
reconnection (corresponding to the later
Bz enhancement) shortly follows being
associated with (stronger) substorm. The
current disruption model attributes the
abrupt disturbances in the near-Earth
current sheet to the cross-tail current
instability [Lui et al., 1991], which evac-
uates plasmas tailward of the disrupted
region by the convection surge, giving
rise to earthward bulk flows to fill up the
evacuated region together with tailward
moving rarefaction waves [Lui, 1991].
Such rarefaction waves may serve as a
trigger for midtail reconnection in the
current disruption model. Figure 2 shows
that a density dip (marked by arrows
in Figure 2a) appears shortly after the
peak of earthward fast flows (Figures 2e
and 2f) and propagates tailward. Iono-
spheric responses also correspond well
to the substorm onset signatures prop-
agating from the inner plasma sheet to
the outer plasma sheet, consistent with
the Cluster observations. The sequence
of events suggests strongly that the first
event may have been a different form
of current disruption that originated
near Earth and propagated tailward,
triggering or facilitating midtail recon-
nection, thereby serving to precondition
the magnetosphere for a later strong
substorm enhancement.

4. Conclusions

We presented a case study detected by
the Cluster spacecraft and ground-based

magnetometers that shows substorm onset propagating from the inner plasma sheet to the outer plasma
sheet. When the spacecraft traversed a thin current sheet of thickness comparable to the ion inertial length,
sudden enhancements of the z component of the magnetic field were consecutively observed∼5 min apart.
The initial Bz enhancement and a series of flux rope structures that immediately followed by the local Bz
enhancement propagated tailward. Along with those structures, there was a region of rarefied plasma that
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also moved tailward. The later Bz enhancement, featuring a typical dipolarization front, was observed to
rapidly propagate earthward at the speed of ∼542.5 km/s and is followed by a large density and flux tube
entropy decrease. Between the two Bz enhancements, the current sheet experienced significant removal of
magnetic flux from the near-Earth plasma sheet, possibly out to the distant tail, associated with the tailward
moving Bz enhancement and flux rope structures. The sequence of observations indicates that the mag-
netic flux removal caused the magnetotail to be globally stretched so that the thinnest region of the current
sheet formed tailward of Cluster. The thinned current sheet, then, would likely facilitate magnetic reconnec-
tion that quickly evolved from the plasma sheet to the magnetotail lobe and generated a rapid earthward
moving DF that was followed by a significant reduction in density and entropy, as was observed by Cluster.
Ground magnetograms located near the meridian of Cluster’s magnetic foot points show two-step pos-
itive bay enhancements; one of which started 3 min earlier than the Cluster observation of the initial Bz
enhancement in the near-Earth plasma sheet and the later one started 2 min after the later DF detection
by Cluster. A positive bay associated with the first Bz enhancement was seen at low latitudes before being
observed at higher latitudes, indicating that the substorm onset signatures propagated from the inner
plasma sheet to the outer plasma sheet, consistent with the Cluster observation of tailward propagating
magnetic disturbances and rarefaction waves. More intense negative and positive bay features associated
with the later Bz enhancement form northward of the magnetometer stations and propagate to the lower
latitudes, also consistent with the earthward motion of the later DF. The present event highly suggests that
the current disruption signatures that originated in the near-Earth current sheet propagated tailward, trig-
gering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong
substorm enhancement.
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