AEROSPACE MEDICINE

Vince Michaud, MD, MPH
Colonel, USAF (Retired)
TCU ’84
Deputy, Chief Health and Medical Officer
Director, Health and Medical Systems
NASA Headquarters
Acknowledgement and Disclaimer

• This presentation represents the views of the author and not necessarily of NASA
• No financial relationships to declare
A Different Perspective

- On medical specialty Aerospace Medicine
Where did 25 years go?

- Texas Christian University
- Southwestern Medical School, Dallas
- Internship in General Surgery with US Air Force
- Duty as Squadron Flight Surgeon in United Kingdom and Germany
- Residency in Aerospace Medicine and Occupational Medicine
- Other assignments in Florida, DC, Germany, and Korea
- Now at NASA as a civil servant
NASA Centers
Major Center Functions

- **Ames Research Center** - IT, fundamental aeronautics, bio and space science technologies
- **Armstrong Flight Research Center** - Flight research
- **Glenn Research Center** - Aeropropulsion and communications technologies.
- **Goddard Space Flight Center** - Earth, the solar system, and Universe observations
- **Jet Propulsion Laboratory** - Robotic exploration of the Solar System
- **Johnson Space Center** - Human space exploration
- **Kennedy Space Center** - Prepare and launch missions around the Earth and beyond
- **Langley Research Center** - Aviation and space research
- **Marshall Space Flight Center** - Space transportation and propulsion technologies
- **Stennis Space Center** - Rocket propulsion testing and remote sensing technology
Occupational Health Program

- 18,000 Civil Servants and 20-40,000 Contractors

- All Center OH clinics are contracted out

- Very few civil servant medical professionals

- **Hazardous Environments**
 - Explosive Chemicals like rocket fuel
 - Reactors
 - Largest indoor pool in the world
 - Confined Space: to include vacuum and microgravity

- **Astronaut Health Care**
 - Full spectrum while actively flying
Recently invited to be a NIOSH affiliate

Recognized for several decades of strong occupational health and health promotion activities
Aerospace Medicine

- Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.
Why Aerospace Medicine

The physiologic environment changes the moment you leave the surface of the earth

\[F_{\text{gravity}} \propto \frac{Mm}{d^2} \]

1 atm pressure at surface

14.69 lbs/in\(^2\) at Sea Level
Physiologic Effects of Air Travel

- Hypoxia
- Decompression Sickness
- Trapped Gas
- Acceleration
- Spatial Disorientation
- Visual Illusions
- Somato-sensory Illusions
- Human Factors
As altitude increases, available oxygen decreases.

- **TROPOSPHERE**
- **STRATOSPHERE**

Mt Everest 29,028 ft

Mt Whitney

Andes

ARMSTRONG’S LINE

PRESSURE SUIT NEEDED

OXYGEN UNDER PRESSURE NEEDED

OXYGEN NEEDED

Highest Human Habitation...18,000 ft

Aerospace Medical Association
Hypoxia

- **Subjective symptoms**
 - Breathlessness, apprehension, headache, dizziness, fatigue, nausea, blurred vision, tunnel vision, numbness, tingling

- **Objective signs**
 - Increased respiratory depth and rate, cyanosis, confusion, poor judgment, behavioral changes, loss of coordination, somnolence, unconsciousness

- **Effective Performance Time**
 - 18000 ft – 20 to 30 minutes
 - 25000 ft – 3 to 5 minutes
 - 30000 ft – 1 to 2 minutes
 - 35000 ft – 0.5 to 1 minute
 - 40000 ft – 15 to 20 seconds
 - 43000 ft – 9 to 12 seconds
What’s the big deal

• Huge consequences, in flight
• There isn’t always a curb to pull over too
Challenges to Humans of Space Travel

- No Air
- Different Gravity
- Really High Speeds
- Really Long Distances
- Too much Radiation
- Isolation
Weightlessness
High Speeds

- Orbital velocity is 17,000 miles per hour
- Escape velocity is 25,000 miles per hour

Airliners fly at about 600 miles per hour
Long Distances

The average distance from the Earth to the Moon is 238,854 miles.

The average distance from Mars to the Earth is about 142 million miles, with a range of 56 to 401 million miles.

Voyager 1, 1977
119 AU
Radiation Protection
Isolation
Eating and Drinking in Space
Human Spaceflight Risks Derive from Hazards

- **Altered Gravity - Physiological Changes**
 - Balance Disorders
 - Fluid Shifts
 - Visual Alterations
 - Cardiovascular Deconditioning
 - Decreased Immune Function
 - Muscle Atrophy
 - Bone Loss

- **Space Radiation**
 - Acute In-flight effects
 - Long-term Cancer Risks
 - CNS & Cardiovascular Risks

- **Distance from Earth**
 - Drives the need for additional “autonomous” medical care capacity – cannot come home for treatment

- **Hostile/ Closed Environment**
 - Vehicle Design
 - Environmental – CO₂ Levels, Toxic Exposures, Water, Food

- **Isolation & Confinement**
 - Behavioral Aspect of Isolation
 - Sleep Disorders
Space Physiology

- Eyes become the main way to sense motion.
- Otoliths in the inner ear respond differently to motion.
- Fluid redistribution causes head congestion and puffy face.
- Changed sensory input confuses the brain, causing occasional disorientation.
- Loss of blood plasma creates temporary anemia on return to Earth.
- Higher radiation doses may increase cancer risk.
- Weight-bearing bones and muscles deteriorate.
- Kidney filtration rate increases; bone loss may cause kidney stones.
- Fluid redistribution shrinks legs.
- Touch and pressure sensors register no downward force.
Top 3 Human Health Risks

- Visual Impairment and Increased Intracranial Pressure (VIIP)
- Bone Loss
- Radiation Exposure
Intracranial Pressure (ICP)

• This risk was “recently” found
 – First case noted in 2008
• Visual degradation and increased cerebral spinal fluid pressure found after “long duration” space flight
• Symptoms include visual disturbances after long duration space flight
• Postulated causes: microgravity fluid shift or physiologic response to increased CO2 levels
• New assessments and research initiated
VIIP Pathophysiological Hypotheses: Vascular, CNS & Ocular

1. A. Venous Cephalad Fluid Shift: Decreases Venous Compliance \uparrowCVP
2. Cerebral Venous Congestion: Loss hydrostatic drainage \uparrowICP
3. Decreased CSF Absorption: Increased pressure gradient to CSF outflow \uparrowICP
4. Increased CSF Production: \uparrowBlood flow \Rightarrow \uparrowCSF Prod \Rightarrow \uparrowICP
5. Interstitial Edema: \uparrowICP \Rightarrow \uparrowTranscapillary Pressure \Rightarrow Interstitial Edema \Rightarrow Glymphatic blockage \uparrowICP
6. Optic Nerve Head Pressure Gradient: compresses axons causing papilledema
7. Venous Compression: \uparrowICP & expanding brain compresses venous sinuses exacerbating \uparrowICP
8. Δ's AQP1 Expression: inflight/postflight \uparrowICP

Image adapted from Rekate Cerebrospinal Fluid Research 2008 5:2
Clinical Findings

After long-duration spaceflight astronauts had findings consisting of:

- **Hyperopic Shifts**
 - Up to +1.75 diopters

- **High Intracranial Pressure**
 - Up to 28.5 mmHg

- **Choroidal Folds**
 - Parallel grooves in the posterior pole

- **Optic Disc Edema (swelling)**

- **Globe Flattening**

- **Altered Blood flow**
 - “cotton wool” spots

- **Increased Optic Nerve Sheath Diameter**

MRI Orbital Image showing globe flattening

Normal Globe
Flatten Globe
CO₂ Levels on ISS

- CO₂ is an extremely potent vasodilator
 - Every 1mmHg increase PaCO₂=4% increase in dilation
 - Cerebral blood vessels are already congested

- CO₂ mission average=3.56mmHg (0.33%)
 - 10x normal sea level atmospheric: 0.0314%
 - Average Peak CO₂=8.32mmHg (0.7%) (20x)

- CO₂ also causes increased CSF production

Adapted from Alperin et al. Radiology, 2000
Bone Loss

- Given some parameters of skeletal adaptation may not be reversible after return to earth, there is the possibility that an early onset of osteoporosis may occur.
Bone Loss

- Loss of horizontal trabecular struts
Risk/Concern Description

Peak Bone Mass

Age-related Loss

Menopause-induced Loss

Bone mass (g/calcium)

Age (yr)

Riggs BL, Melton LJ: Adapted from Involutional osteoporosis Oxford Textbook of Geriatric Medicine SLIDE COURTESY OF Dr. S. AMIN, Mayo Clinic
Age-Related Fractures

Incidence/100,000 person-yr

- Hip
- Spine
- Wrist

Age group (yr)

Men

Women

Cooper and Melton, 1992

SLIDE COURTESY OF Dr. S. AMIN, Mayo Clinic
QCT: Trabecular BMD at hip does not appear to show a recovery 2-4 years postflight.

PRE: n= 16 POST: n= 16 1 YEAR: n=16 EXT: n=8

What is the impact of Trabecular Bone Loss on whole hip bone strength?

- Impact on hip, on its microarchitecture UNKNOWN*

- Knowledge base: Vertebral trabecular bone loss with menopause.

- Loss of horizontal trabecular struts and directionality, perforation of trabeculae*, reduction in mechanical strength, and increase in fracture risk (Mosekilde, 2000; Seeman, 2002, Silva 1997; Kleerekoper 1985)
Radiation Risk

- Risk Statement
 - Given that crewmembers are exposed to radiation from the space environment, there is a possibility for increased cancer morbidity or mortality
Radiation

• Space radiation is a major challenge to exploration:
 – Risks are high…potentially limiting mission length or crew selection
 – Large mission cost and uncertainties to protect against risks
 – New findings may change current assumptions
Categories of Radiation Risk

- **Cancer**

- **Acute and Late Central Nervous System (CNS) risks**
 - Immediate or late functional changes

- **Chronic & Degenerative Tissue Risks**
 - Cataracts, heart-disease, etc.

- **Acute Radiation Sickness**
 - Prodromal risks

Differences in biological damage of heavy nuclei in space with x-rays, limits Earth-based data on health effects of heavy ions
The Space Radiation Problem

- Interplanetary crews will be exposed to a high LET radiation environment comprised of high-energy protons and heavy ions (HZE’s) as well as secondary protons, neutrons, and fragments produced in shielding and tissue.

- Heavy ions are qualitatively different from X-rays or Gamma-rays: High LET vs. low LET
 - Densely ionizing along particle track
 - Cause unique damage to biomolecules, cells, and tissues
 - Distinct patterns of DNA damage (mutation spectra, chromosome aberrations) and distinct profiles of oxidative damage

- No human data exist to estimate risk from heavy ions found in space
 - Animal and cellular models with simulated space radiation must be applied or developed

- Synergistic modifiers of risk from other spaceflight factors

DNA Damage
\(\gamma H2AX \) foci in EPC2-hTERT cells. (Patel and Huff)

1 GeV/u \(^{56} \text{Fe} \) nucleus
LET \(\sim 150 \text{ keV/\mu m} \)

Quality differences due to track “core” and correlated tissue damage along a particle path. (Plante, 2011)
Space Radiation Risks

Risk of Radiation Carcinogenesis
• Morbidity and mortality risks

Risk of Acute (in flight) & Late Central Nervous System Effects
• Possible in-flight risks: altered cognitive function including short-term memory, reduced motor function, and behavioral changes which may affect performance and human health
• Possible late (post-mission) risks: neurological disorders such as Alzheimer’s disease (AD), dementia, cerebrovascular disease or premature aging

Risk of Cardiovascular Disease and other Degenerative Tissue Effects
• Degenerative changes in the heart, vasculature, and lens
• Diseases related to aging, including digestive, respiratory disease, premature senescence, endocrine, and immune system dysfunction

Risk of Acute Radiation Syndromes due to Solar Particle Events
• Prodromal effects (nausea, vomiting, anorexia, and fatigue), skin injury, and depletion of the blood-forming organs
Why space radiation research?

- Astronauts on the International Space Station approach limits for acceptable radiation risks after 1 to 3 missions
- Acceptable levels of risk can be approached or exceeded for Lunar habitat missions after 4-7 months
- Acceptable levels of radiation risk are exceeded for all current Mars Mission Designs

GCR doses on Mars
Doctors versus Engineers

• Are humans the reason for the space program, or an inconvenience to the program?
Language Gap

The importance of Human Systems Integration is a lesson that gets relearned over and over again

Health professionals and engineers speak different technical languages

Consistent HSI success occurs when health professionals understand and correctly communicate with engineers using “requirements”
Human Factors

• Results:
 – Tough lessons relearned
 • Frequently noted in mishap reports
 – Human factors being considered after the hardware was developed
 • Past aircraft and today’s spacecraft have similar HSI short comings
Conclusion

• HSI is prevention
• Early HSI consideration saves
• Human health risks may be mission limiting, given current technology

• Solutions for the risks of long duration space flight
• We just need to solve the “big three”
 – Non-chemical based propulsion
 – Control gravity
 – Active Shielding for radiation
Space Technologies

• Wireless Devices
 – Hospital Telemetry Systems
• Infrared Thermometers
• Cordless Tools
• Dehydrated food…and ice cream too.

• Space program has inspired thousands students to go into Math and Engineering
Questions