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I. PROGRAM REQUIREMENT 

 

The Risk of Crew Adverse Health Event Due to Altered Immune Response is identified by the National 

Aeronautics and Space Administration (NASA) Human Research Program (HRP) as a recognized risk to 

human health and performance in space. The HRP Program Requirements Document (PRD) defines these 

risks. This Evidence Report provides a summary of the evidence that has been used to identify and 

characterize this risk. It is known that human immune function is altered in- and post-flight, but it is unclear 

at present if such alterations lead to increased susceptibility to disease. Reactivation of latent viruses has 

been documented in crewmembers, although it is still unknown if this reactivation is directly correlated 

with immune changes and is clinically asymptomatic. As described in this report, further research is 

required to better characterize the relationships between altered immune response and susceptibility to 

disease during and after spaceflight. This is particularly important for future deep-space exploration 

missions. 

 

 

II. EXECUTIVE SUMMARY 

 

There is a large body of evidence associated with immune dysregulation and spaceflight. However, 

current studies onboard the International Space Station (ISS) that are defining space normal for the human 

immune system remain insufficient to determine clinical risk during exploration space missions. In 

particular, more in-flight studies are needed using human subjects. The in-flight studies that have been 

performed historically have used small numbers of subjects or been limited to short-duration flights. This is 

being rectified, however, as several larger studies on ISS are ongoing or are being planned. More data have 

been obtained from post-flight testing of crew members, but these findings do not necessarily reflect the 

in-flight conditions. Rather, landing-day observations may be skewed by the effects of re-entry and 

readaptation to gravity following deconditioning. Ground-analog testing of humans, while extremely useful 

for some applications (e.g., assay development, countermeasure validation), can never be said with 

certainty to mirror physiological changes during spaceflight. Each analog may simulate some aspect of 

flight, but no analog can completely replicate all the aspects of flight. A well-defined ground analog for 

space immune dysregulation has yet to be identified and validated, although Antarctica winter-over 

remains a promising candidate. 

During long-duration flight, cell-mediated immunity has been demonstrated to be reduced in some 

subjects, and there may be a relationship between the observed in-flight immune changes and reactivation 

of latent viruses. Post-flight human testing has revealed severely depressed T cell function following 6 

months of flight, but unaltered function following short-duration flight. Altered cytokine production 

patterns and potentially a shift to the Th2 pattern have been observed following spaceflight. Natural killer 

(NK) cell, monocyte, and neutrophil functions have all been found to be reduced following spaceflight. 

Stress hormone levels have been found to be elevated following flight, heavily dependent on mission 

duration. Newer published data confirm that more broad immune changes occur during short-duration 

flight, and preliminary ISS data indicate that the phenomenon indeed persists during long-duration flight. 

In-flight testing of humans has revealed that latent herpes viruses reactivate to a high level during short-
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duration spaceflight, and new preliminary data indicate that this phenomenon also persists during 

extended-duration flight. Long duration flight has also recently been shown to result in elevations in an 

array of plasma cytokines, indicating that in-vivo immune alterations associated with various physiological 

adaptations persist during flight. Various animal studies have demonstrated similar findings either during or 

after flight. These data necessarily imply that dysregulation and viral reactivation are not transient 

launch/landing stress phenomena but are legitimately associated with the spaceflight environment. 

Human ground analog data have varied widely depending on the analog selected. To date, the 6-

month Antarctic winter-over analog appears to be the best terrestrial analog for long-duration spaceflight 

relevant to immunity. Reactivation of latent herpes viruses, immune dysregulation, and physiological stress 

that appear similar to spaceflight-associated immune dysregulation have all been observed in the Antarctic 

analog; however, it appears that not all of the immune alterations observed during flight are mimicked with 

this analog. Shorter-duration analogs, such as the NASA Extreme Environment Mission Operations (NEEMO) 

missions (off Key Largo, 2 weeks in duration) and Arctic expeditions on Devon Island (Haughton-Mars 

Project, ~1.5 months in duration), also appear to be promising analogs for short- and intermediate-duration 

spaceflight, respectively. Recent pilot studies have found immune dysregulation similar to that associated 

with spaceflight during both of these analogs, and both are far easier to use, from a logistical perspective, 

than the Antarctic winter-over analog. An ongoing ESA-NASA joint study is assessing immunity, viral, and 

stress parameters during winter-over at Concordia Station, interior Antarctica. Bed rest has been reported 

by some investigators to induce immune changes, but the contrary has been reported by other 

investigators. While prolonged bed rest is an excellent analog for bone loss and muscle deterioration from 

lack of use, it does not simulate the primary suspected causes of spaceflight-associated immune 

dysregulation (including physiological stress, disrupted circadian rhythms, and microgravity). 

Terrestrial clinical research has repeatedly demonstrated that altered immunity is associated with 

adverse conditions, as well as that immune “balance” is essential for good health. For example, depressed 

immunity may lead to an increased incidence of infections, but elevated immunity may lead to allergies or 

autoimmunity. More specific alterations in Th1/Th2 cytokine balance may be associated with many 

conditions, including rheumatoid arthritis, multiple sclerosis, asthma, lupus, and allergies. A recent NASA 

study has provided a linkage between immune dysregulation (and a Th2 shift) and viral reactivation. If 

immune dysregulation were found to persist in the deep space environment, clinical risks could include 

hypersensitivities, allergies, autoimmunity, increased infection rates, and even malignancies associated 

with impaired tumor surveillance. Rather than develop gradually, the risks related to altered immunity have 

the potential to suddenly impact a mission, likely in a manner very difficult to treat remotely. The 

reactivation of latent viruses, while not typically a clinical concern terrestrially, could pose a health risk if it 

persists for the duration of an exploration-class mission.  

We now have established immune dysregulation as a legitimate in-flight phenomenon, and 

preliminary analysis indicates that it persists during long-duration spaceflight. However, knowledge gaps 

exist related to unexamined immune parameters including clinical relevance of immune alterations, 

validation strategies, and an appropriate terrestrial analog. Immune dysregulation, in conjunction with an 

increased radiation environment and prolonged mission duration, may be a significant clinical risk during 

exploration-class missions. This argues strongly for in-flight assessments of immunity, viral reactivation, and 
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physiological stress that will explore unexamined areas, such as innate immunity during flight. This is 

necessary to better define and understand the nature of dysregulation during flight and properly interpret 

clinical risk, as well as decide upon candidate countermeasures. 

 

III. INTRODUCTION 

 

The assessment of immunocompetence is a fast-developing, ever-changing scientific discipline, 

made difficult by the complexity of the immune system. A number of distinct subpopulations of leukocytes 

(white blood cells) populate the blood, lymph nodes, and gut, and they generally traffic around all body 

tissues. The specific functions of these cell populations can vary widely. In many cases, they act in synergy, 

while they are counter-regulatory in other cases. In addition, the emerging science of neuroimmunology 

illustrates the complexity with which the immune system interacts with other physiological systems via a 

communication network involving hormones, cytokines, and cells. The finding that altered immune 

regulation is directly related to the presence of clinical disease is well-accepted and may be related to an 

increased incidence of infection, autoimmunity, and an increased risk of tumor formation. For this report, 

immune dysregulation in astronauts is defined as a deviation from “normal” or from pre-flight baseline 

values. Dysregulation, as detected by a variety of immune assays, may result in either hyper-activity or 

hypo-activity. In terrestrial medicine, hyper-immunity is associated with allergies and various auto-immune 

diseases, whereas hypo-immunity can be associated with increased incidence of infection and possibly 

tumor formation. In addition, the balance and bias of the immune system within itself (e.g., Th1/Th2 

cytokine profiles) is correlated with the risk and incidence of specific diseases. 

To advance the study of immunology, a large number of assays have been developed. In the 

hospital laboratory, determination of the number of T cells positive for the surface protein CD4 (CD4+) and 

the titer of antibodies to viruses are well-established tests utilized in clinical practice. Such tests have 

defined ‘normal ranges’. However, there are many other direct measurements of other immune 

parameters available for clinical research. Examples of immune assays are measurement of the level of 

immune cell subpopulations in the blood (phenotyping), isolation and stimulation of cultured immune cells 

followed by various functional assessments, determination of factors such as mRNA gene expression, 

secretion of cytokines, and expression of activation markers.  

Published data strongly suggest that immune dysregulation is associated with spaceflight, regardless 

of duration, and several excellent reviews have been published regarding this subject (Borchers et al. 2002; 

Gueguinou et al. 2009; Sonnenfeld and Shearer 2002b). U.S. and Russian space scientists have investigated 

human immune responsiveness following space flight since the late 1960s. As evidence for immune 

dysregulation amasses, the potential clinical risks associated with this altered immunity during long-

duration flight are beginning to be explored (Crucian and Sams 2009b; Mermel 2013). Immune system 

dysregulation, should it persist for the duration of an exploration-class deep-space mission, could result in 

specific clinical risks for crewmembers (Crucian and Sams 2009b). The specific cause of immune 

dysregulation during flight remains unknown but is likely associated with one or more of the following: 

physiological stress, disrupted circadian rhythms, microgravity, isolation, altered environment, altered 

nutrition, and radiation. While the post-flight status of the human immune system has been well 
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characterized, the status of the immune system during flight (and particularly during longer duration flight) 

is incomplete. Only recently have studies onboard International Space Station (ISS) begun to define space 

normal for the immune system. A general overview of spaceflight-associated immune dysregulation 

(potential causes, summary of observations to date, and potential clinical risk) is presented in Figure 1. A 

current goal of NASA, the International Partners, and the space life science community is to determine the 

specific clinical risks associated with all flight effects on human physiology so that countermeasures may be 

developed prior to the initiation of exploration-class space missions. This need has been heightened by the 

impending advent of deep-space missions, likely to be initiated within the next decade. Possible 

destinations include asteroids, the lunar surface, or an L2 deep space station.  

The published data 

regarding spaceflight and 

immunity may fall into 

numerous categories, such as 

evidence collected during 

flight, after flight, and from 

ground analogs in humans and 

animals. For astronaut 

crewmembers, data are 

typically captured as follows: 

before flight to establish 

baseline values, during flight (if 

possible), on landing day (R+0) 

to establish spaceflight-

associated changes, and after 

flight to monitor return to 

baseline.  

 

 

Due to the limits of practicality, it is impossible to review ALL evidence compiled over the past 3 

decades in this report. However, representative evidence demonstrating our current understanding of how 

spaceflight affects the human immune system is presented. The narrative text of this report represents a 

summation of the data and likely clinical significance. Although all platforms are discussed in this report, a 

weighted priority is given to human data over animal data, and to in-flight over ground-based studies. 

Certain highly relevant studies or recent studies are described in detail in the text, and many other 

representative articles have been summarized by category in Appendix 1. In total, the evidence described 

reflects the major scientific findings for the discipline, as it currently exists. This report will be updated 

periodically as new evidence becomes available. 

 

Figure 1. Overview of spaceflight-associated immune dysregulation.  
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IV. EVIDENCE 

The narrative text that follows is a description of major relevant evidence; however, it is not 

possible to summarize the entire evidence base. Major reports, highly relevant data, or simply 

representative data are discussed. For reference, additional evidence regarding various aspects of space-

flight immunity is listed and briefly summarized in tabular form in Appendix 1.  

 

A. Spaceflight Evidence 

 

1. In-flight Human Data 

  

Historically, due to the access issues, cost, and complexities associated with in-flight experiments, 

there have been comparatively few in-flight studies of human immune function. Most of those that have 

been performed have had a small number of subjects. Depressed cell-mediated immunity (CMI), 

determined in vivo using the CMI skin test, has been observed during long-duration flight (Cogoli 1993a; 

Gmunder et al. 1994), and the reactivation of latent herpes viruses has been observed repeatedly during 

short-duration flights (Mehta et al. 2013; Mehta et al. 2004; Mehta et al. 2014; Mehta et al. 2000b; Payne 

et al. 1999; Pierson et al. 2005; Stowe et al. 2001a). 

 The in-flight reactivation of latent herpes viruses has been well-documented. Three crewmembers 

participating in a short-duration (14-day) Soyuz taxi flight to the ISS were monitored for the reactivation of 

varicella-zoster virus (VZV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) using blood, urine, and 

saliva assays (Mehta and Pierson 2007a). During flight, only saliva was assayed; urine and blood were 

tested before and after flight. The data demonstrated EBV reactivation before, during, and following flight. 

CMV was reactivated before and after flight, and VZV was reactivated during and after flight. No increases 

in the titer of antibodies to these viruses were found, suggesting that an immune response may not be 

necessary for reactivation to occur. These data support the Shuttle findings, as similar changes were found 

following short-duration flight on different vehicles. In a sample of 17 Shuttle astronauts completing short-

duration missions (12-16 days), latent virus reactivation was examined before, during, and after flight 

(Mehta et al. 2014). Of the 17, 14 shed EBV during all phases of the flight, 8 of which also shed CMV and 7 

of which also shed VZV. Further, in 6 of the astronauts, EBV, CMV, and VZV were all shed during one or 

more flight phases. The average levels of EBV and VZV DNA were higher in-flight compared to pre- and 

post-flight samples. Interestingly, the mean molar ratio of cortisol to DHEA was also elevated in-flight, 

although this ratio was not correlated with viral shedding. No in-flight data exist regarding latent viral 

reactivation during long-duration flight.  

Taylor and Janney (1992) reported reduced delayed-type hypersensitivity responses to a panel of 

intra-dermally applied recall antigens on flight days 3, 5, or 10 from 10 astronauts when compared with 

their preflight control values. This demonstrates that alterations in cell-mediated immunity do occur in vivo 

and supports the hypothesis that the immune system is functionally altered during space flight.  

More recently, expanded in-flight studies that assess the various aspects of human immunity in an 

integrated manner during long-duration space missions are now using the ISS as a research platform to (A) 

characterize in-flight dysregulation; (B) develop a monitoring strategy for the validation of 
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countermeasures; and (C) validate any candidate countermeasures. The recent European Space Agency 

(ESA) in-flight “Immuno” study (long duration, ISS/Soyuz, n=6) and the NASA in-flight “Integrated Immune” 

(long duration, ISS/Shuttle, n=17) as well as the currently operating “Salivary Markers” (long duration, ISS, 

n=6) studies have begun to characterize immune alterations during long-duration spaceflight. 

Comprehensive in-flight immune data will enable a determination of clinical risk (if any) associated with 

immunity during prolonged exploration-class flights. 

Strewe et al. (2012) reported the first findings from the European Immuno study, which assessed 

innate immunity and stress parameters in European and Russian ISS crewmembers. Assays included plasma 

levels of endocannabinoids, salivary cortisol, and crew-perceived stress as quantified via a questionnaire. 

Flight onboard ISS resulted in a sustained increase in endocannabinoids, which returned to baseline 

following mission end. The authors interpreted the results to suggest that enhanced EC signaling is required 

for adaptation and tolerance to the microgravity environment. 

The NASA Integrated Immune study, an integrated assessment of immune, viral, and stress 

parameters during short- and long-duration spaceflight, was recently completed. The aim of this study was 

to collect blood and saliva samples on-orbit and return them to earth for evaluation. Because live cells were 

required for immune functional measures, samples were collected as near to a vehicle undock as possible 

to reduce the transit time. Blood samples were collected in nutrient-containing anticoagulated tubes to 

ensure 48-72-hour viability for the live blood samples. This study was successful in defining the in-flight 

status of some adaptive immune parameters and latent herpes virus reactivation. Both baseline and post-

flight recovery samples were collected, and for short-duration Shuttle crewmembers, a single in-flight 

sample was collected immediately prior to Shuttle landing. The short-duration component of this study was 

recently completed and confirmed that immune dysregulation is a legitimate in-flight phenomenon, as 

opposed to merely a post-flight phenomenon (Crucian et al. 2013a; Mehta et al. 2013). Assays included 

peripheral immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral 

reactivation (EBV, CMV, VZV), and stress hormone measurements.  

 The short-duration study data revealed that the constitutive distribution of most peripheral 

leukocyte subset populations was largely unaltered during flight (Crucian et al. 2013a; Mehta et al. 2013). 

Exceptions included a mild increase in levels of memory CD4+ T cells and a decrease in naïve CD8+ T cells, 

accompanied by a corresponding increase in central/effector memory CD8+ T cells. No increase in 

constitutively activated T cells was observed during flight. Various functional measurements were 

employed. Cytokine-producing T cells (intracellular measurement; both CD4+/interleukin-2+ and 

CD8+/interferon-+) were mildly reduced during flight and further reduced upon landing. General T cell 

function (early blastogenesis response to mitogenic stimulation) yielded varying results. T cell stimulation 

with Staphyloccoal enterotoxins was dramatically reduced in-flight, whereas T cell stimulation with anti-

TCR antibodies was unchanged in-flight (and elevated post-flight). The post-flight elevation is in 

concurrence with previously published findings for that mitogen as described above (Crucian et al. 2008). 

Bulk-secreted Th1/Th2 cytokines were measured following T cell activation, and mitogen-dependent in-

flight reductions were observed in interferon- (IFN-), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-

α), and IL-6 production. Secreted inflammatory cytokine levels were also measured following monocyte 

stimulation via lipopolysaccharide (LPS); however, a flight-associated decrease was only observed for IL-10, 
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whereas IL-8 levels were increased during flight. The number of virus-specific CD8+ T-cells was measured 

using MHC tetramers, while their function was measured using intracellular cytokine analysis following 

peptide stimulation. Both the number and function of EBV-specific cells decreased during flight compared 

with preflight levels. The number of CMV-specific T-cells generally increased as the mission progressed, 

while their function was generally unaltered. The viral (EBV) load in blood was elevated post-flight. Elevated 

anti-EBV viral capsid antigen (VCA) antibodies were evident in ~40% of the astronauts, and anti-CMV 

antibodies generally increased during and after flight. Stress hormones were measured in plasma, urine, 

and saliva before, during, and after flight. There was generally a higher level of cortisol as measured in 

blood, urine, and saliva in the astronauts during flight. Circadian rhythm of salivary cortisol was normal 

before and after flight in most of the astronauts; however, changes were observed during the flight phase. 

From this comprehensive in-flight data, it may be concluded that immune dysregulation is indeed an in-

flight phenomenon and not merely a post-flight stress response.  

Preliminary analysis of the long-duration study data indicates that the dysregulation of certain 

adaptive immune parameters observed during short-duration flight persist for the duration of a 6-month 

orbital spaceflight (Crucian et al. 2013b). Recently published reports indicate a pattern of cytokine 

dysregulation that persists during long-duration missions. Elevated plasma concentrations of TNF-α, IL-8, IL-

1ra, thrombopoietin, vascular endothelial growth factor, C-C motif chemokine ligand 2, chemokine ligand, 

and C-X-C motif chemokine 5 were observed in-flight, indicating persistent immunological shifts that may 

be the result of inflammation, leukocyte recruitment, and angiogenesis (Crucian et al. 2014b). Further, both 

WBC and granulocyte numbers were found to be elevated in flight, and alterations in the CD8+ T cells 

subsets were observed. T-cell activation following mitogen stimulation also appears to be reduced during 

flight, with concomitant reductions in the mitogen-stimulated production of IFN-, IL-10, IL-17A, IL-5, TNF-

α, and IL-6 (manuscript in review). The preliminary results of this study provide additional evidence that 

immune dysregulation persists in-flight during long-duration missions. Further studies onboard ISS will 

hopefully characterize other aspects of immunity, such as humoral or innate parameters or host-pathogen 

interactions. The ongoing NASA Salivary Markers study seeks to continue examining many of the adaptive 

immune parameters studied in Integrated Immune onboard ISS, and to further explore the effects of long-

duration spaceflight on innate immunity with assays measuring NK cell function and levels of salivary 

antimicrobial proteins. As a collective, it is anticipated that these, and other planned NASA and external ISS 

investigations, will allow a determination of crew clinical risks for deep-space missions.  

 

2. In-flight Incidence Rates (Unpublished) 

 

Immune dysregulation during orbital flight is generally perceived to be subclinical. However, 

information that can be referenced regarding the incidence of adverse medical events during spaceflight 

that may be related to immune dysregulation is lacking. Such events may include a variety of bacterial or 

viral infections (e.g., skin, upper respiratory infection (URI), urinary tract infection (UTI)), clinical viral 

reactivation (e.g., zoster), documented hypersensitivities, or increased incidence of allergies. More 

downstream concerns are the consequences of persistent latent herpes virus reactivation, as well as 

possibly autoimmunity or malignancies.  
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 Analysis of medical records during the early Apollo missions indicated that approximately 50% to 

60% of the crewmembers experienced some symptoms of “infectious illness” during the preflight or in-

flight time period. To minimize the mission impact of these incidents, the Health Stabilization Program 

(HSP) was implemented prior to Apollo 14 (discussed further below). The program limits exposure of the 

crew to potentially infectious individuals and significantly reduced the incidence of reported illnesses 

during subsequent Apollo missions. The HSP program remains an element of the current Shuttle and ISS 

medical support program and continues to minimize the incidence of illness in the crews. However, even 

with the HSP in place, a significant number of Shuttle missions have included reports consistent with 

infectious disease during the immediate preflight and in-flight time periods. This suggests that a reduction 

in immune function is associated with the stress of preparing for and executing space missions.  

 In addition to the experimental evidence, with regard to in-flight testing of human subjects, there is 

also substantial anecdotal data regarding immunity during flight. These data are almost entirely clinical and 

consist of crew reports regarding adverse medical events that occurred during various space missions. Such 

data are potentially very useful if they reflect consistent flight-related alterations in disease progression or 

wound healing. However, in accordance with Health Insurance Portability & Accountability Act of 1996 

regulations, such clinical data are generally restricted and may be available for science purposes only in an 

un-attributable manner. Several efforts have been made to review and categorize in-flight incidence, as 

well as tabulate those findings in a non-attributable manner. Recently, Dr. Kathy Johnson-Throop of the JSC 

Life Sciences Data Archive surveyed the Shuttle clinical data archive for in-flight incidence rates of 

infectious disease. The number of events that occurred in these very healthy, screened, and essentially 

isolated individuals (presented in the following table) was remarkable, especially in consideration of the 

pre-flight quarantine of all Shuttle crewmembers.  

 

 

 

3. Post-flight Human Data 

 

Given the relative ease of performing post-flight assessments of human immunity, a significant 

number of studies have been performed. Until either in-flight sample return or on-orbit analysis became 

Table:  Shuttle incidence of in-flight infectious disease* (STS-1 through STS-108).

Number Infectious Disease

8 Fever, chills

5 Fungal infection

3 Flu-like syndrome

4 Urinary tract infections

3 Aphthous stomatitis

2 Viral gastrointestinal disease

2 Subcutaneous skin infection

2 Other viral disease

29 Total incidents in 106 Shuttle/742 flown crewmembers

*Based on postflight medical debriefs [Longitudinal Study of Astronaut Health] – Dr. Kathy Johnson-Throop
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available, measurements to assess the nature of spaceflight-associated immune system dysregulation were 

limited to post-flight evaluation. Advantages of post-flight evaluations include lower cost, readily available 

access to human participants, and minimal technical barriers. The primary disadvantage of a post-flight 

assessment is the potential that data do not reflect the in-flight condition and are skewed by the 

confounding physiological stress of re-entry and re-adaptation to unit gravity; however, as an important 

starting point, much has been learned about crewmember immune status immediately following both 

short- and long-duration spaceflights. 

Specific immune system alterations that have been observed when evaluation was performed 

immediately after spaceflight include dysregulation of cytokine production patterns (Chapes et al. 1994; 

Crucian et al. 2000; Gould et al. 1987; Gould et al. 1985; Konstantinova et al. 1995; Miller et al. 1995; 

Sonnenfeld 1994; Sonnenfeld et al. 1996; Sonnenfeld et al. 1988), NK cell function (Buravkova et al. 2004; 

Konstantinova et al. 1995; Meshkov and Rykova 1995; Rykova et al. 1992), leukocyte distribution (Crucian 

et al. 2000; Stowe et al. 1999), monocyte function (Kaur et al. 2005; Manie et al. 1991), granulocyte 

function (Kaur et al. 2004; Stowe et al. 1999), T cell intracellular signaling (Cogoli 1997; Cogoli et al. 1993b; 

Pippia et al. 1996; Schwarzenberg et al. 1999), neuroendocrine responses (Stowe et al. 2003), and 

leukocyte proliferation following activation (Grove et al. 1995; Nash et al. 1992).  

Russian scientists have reported reduced in vitro proliferative responses after 140-day missions that 

were associated with lymphopenia in crewmembers (Konstantinova et al. 1993; Manie et al. 1991). 

Reduced NK cytotoxicity and decreased in vitro interferon production after space flight have also been 

documented (Konstantinova et al. 1993; Manie et al. 1991). Further evidence of in vitro immune 

dysregulation was reported by French and Russian investigators from 5 cosmonauts who resided between 

26 and 166 days on-board the Russian space station Mir (Taylor and Janney 1992). They reported reduced 

numbers of cells expressing IL-2 receptors 48 h after stimulation in culture, without changes in the number 

of T suppressor/cytotoxic (CD8+) or T helper/inducer (CD4+) cells. The supernatants from these cultures 

contained normal levels of IL-1 and increased amounts of IL-2.  

A comprehensive post-flight immune assessment was performed on 17 short-duration Space 

Shuttle crewmembers and 8 long-duration ISS crewmembers (Crucian et al. 2008). The testing consisted of 

a comprehensive peripheral leukocyte subset analysis, determination of early T cell functional capabilities, 

and intracellular/secreted cytokine profiles. For short-duration crewmembers, the distribution of the 

peripheral leukocyte subsets was found to be altered post-flight. The percentage of granulocytes, B cells, 

CD4+ T cells, and memory-specific CD4+ T cells was increased, whereas the percentages of lymphocytes 

and monocytes were decreased. Early T cell activation (progression through the first 24 h of blastogenesis) 

was actually elevated post-flight; however, the percentage of T cell subsets capable of being stimulated to 

produce IL-2 and IFN- was decreased. The ratio of secreted IFN- :IL-10 following T cell stimulation 

declined after landing, a finding that could indicate a Th2 shift associated with spaceflight. For the long-

duration crewmembers, some alterations in peripheral leukocyte distribution were also detected after 

landing. In contrast to short-duration crewmembers, the long-duration crewmembers demonstrated a 

statistically significant reduction in early T cell activation potential immediately post-flight. The percentage 

of T cells capable of producing IL-2 was reduced, but IFN- percentages were unchanged. A reduction in the 

secreted IFN-:IL-10 ratio (Th2 shift) was also observed post-flight in the ISS crewmembers. Therefore, 
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peripheral phenotype changes and altered cytokine production profiles are demonstrated to occur 

following spaceflight of both short and long duration; however, functional immune alterations may vary 

with mission duration. A Th2 cytokine shift appears to be associated with spaceflight, which may explain 

the observed alterations in cell-mediated immunity during flight, in the context of unaltered humoral 

immunity. The differential responses to T cell activation are likely explained by the complicated relationship 

between acute versus chronic stress effects on T cell function and/or the precise nature of the gravisensing 

defect in T cell intracellular signal transduction. Early events associated with the expression of cellular 

activation antigens are unaltered or actually enhanced in Shuttle crewmembers, but downstream events 

such as cytokine secretion are depressed. These results are in line with our current hypothesis, which states 

that a threshold shift for T cell activation occurs in conjunction with microgravity exposure. Note that for 

long-duration ISS crewmembers, even the early-event sensitization becomes depressed, which indicates 

that prolonged exposure to spaceflight results in further depressed immunological responses. 

 In parallel with the adaptive immune assessment described above, innate monocyte phenotype and 

function were also assessed following short- and long-duration spaceflight (Crucian et al. 2011). While bulk 

monocyte percentages were unchanged following short-duration flight, some monocyte functional 

parameters, such as IL-6 expression, were depressed. Constitutive monocyte expression of both CD62L and 

HLA-DR was reduced following spaceflight in a mission-specific manner. Loss of either molecule indicates a 

functional disability of monocytes, either by inhibition of adhesion and tissue migration (CD62L) or by 

impaired antigen presentation (HLA-DR). Following in vitro monocyte stimulation, post-flight expression of 

IL-6, TNF-α, and IL-10 were significantly reduced (by 43, 44, and 41%, respectively) and expression of IL-1b 

was elevated (65%). IL-8 production was either elevated or reduced, in a mission-specific manner. 

Following PMA+ionomycin stimulation of all leukocyte populations, only the expression of IL-6 was 

significantly reduced post-flight. It therefore appears that dysregulation of both adaptive and innate 

parameters are evident following spaceflight, which may impact overall crewmember immunocompetence.  

 More recent Russian post-flight studies have included assessments of various innate or adaptive 

parameters after flights on-board ISS. Rykova et al. (2008) reported findings from 30 cosmonauts who flew 

on-board ISS (15 long-duration subjects), employing a variety of assays, including peripheral leukocyte 

distribution, NK cytotoxic activity, phagocytic activity of monocytes and granulocytes, proliferation of T-

cells in response to a mitogen, levels of immunoglobulins (Ig), and serum cytokine levels. Following 

spaceflight, the percentage of NK cells was significantly reduced and NK activity was suppressed. T-cell 

function decreased in 5 of 13 cosmonauts, with no alteration in the levels of CD3+, CD4+, and CD8+ T-cells. 

Overall, virus-specific antibody levels were not altered post-flight, and there were no consistent patterns of 

alterations in plasma cytokine levels. The same group found that levels of allergen-specific IgE and IL-4 

were also unaltered following spaceflight (Rykova et al. 2006). The authors concluded that despite many 

improvements that have been made to the living conditions on-board the ISS, there persists a remarkable 

depression in the immunological function of certain cell types after ISS missions.  

Morukov et al. (2010) reported post-flight findings from 12 cosmonauts who flew on-board ISS. The 

level of leukocytes, lymphocytes, monocytes, and granulocytes was increased post-flight, and there was an 

increase in the percentage and absolute level of CD3+CD4+ cells, CD4+CD45RA+ (naïve) cells, and 

CD4+CD25+ regulatory cells in peripheral blood after landing. Following T cell stimulation in vitro, the 
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authors reported a trend toward reduced proliferation of T cells and an apparent post-flight decrease in 

secreted IFN- and IL-10.  

Although latent herpes virus reactivation has been found to occur at high levels during short-

duration space flight, some researchers had speculated that the salivary measurements of viral DNA might 

not reflect infectious viral particles. To investigate this further, immediately following a recent Space 

Shuttle mission, cultures were performed to determine if infectious viruses were being shed. In 2 of 3 

astronauts who participated in the study, following landing, live VZV was found to be present in the saliva 

samples (Cohrs et al. 2008).  

Another recent post-flight investigation established a direct correlation between immune 

dysregulation and the reactivation of latent herpesviruses in astronauts (Mehta et al. 2012). Seventeen 

astronauts were studied for reactivation and shedding of latent EBV, VZV, or CMV following short-duration 

spaceflight. No shedding of viruses occurred before flight, but 9 of the 17 (designated “virus shedders”) 

shed at least one or more viruses during and after flight. The remaining 8 astronauts did not shed any of 

the 3 target viruses (non-virus shedders). Virus-shedders showed elevations in 10 plasma cytokines (IL-1α, 

IL-6, IL-8, IFN-, IL-4, IL-10, IL-12, IL-13, eotaxin, and IP-10) at R+0 over baseline values. Only IL-4 and IP-10 

were elevated in the plasma of non-virus shedders. In virus shedders, plasma IL-4 (a Th2 cytokine) was 

elevated 21-fold at R+0, whereas IFN- (a Th1 cytokine) was elevated only 2-fold, indicating a Th2 shift. The 

powerful inflammatory cytokine IL-6 was elevated 33-fold at R+0. In non-shedding astronauts at R+0, only 

IL-4 and IP-10 levels were elevated over control values. Elevated cytokines began returning to normal by 

R+3, and by R+120, all except IL-4 had returned to baseline values. These data show an association 

between elevated plasma cytokines, potentially a Th2 shift, and increased viral reactivation in astronauts. 

EBV-specific T cell immunity, responsible for controlling viral reactivation, is altered following 

spaceflight (Stowe et al. 2011b). Levels of EBV-specific T cells (measured by the MHC tetramer method) rise 

following flight, likely indicating an attempt to control latent virus reactivation. However, EBV-specific T cell 

function (IFN- cytokine expression following EBV peptide stimulation in culture) was dramatically reduced 

following spaceflight. These data (derived from the Epstein Barr flight study [DSO-500, E129]) indicated that 

the immune defect that allows viral reactivation to occur is altered T cell function, not a loss of specific T 

cells responsible for virus control. Prolonged similarly reduced function of the entire T cell population could 

result in immunosuppression and disease susceptibility.  

The level of EBV mRNA gene expression in infected peripheral B cells was found to be altered 

following spaceflight compared with both the pre-flight baseline and normal healthy controls (Stowe et al. 

2011a). Several EBV genes were measured by quantitative polymerase chain reaction (PCR); they were 

subdivided into genes expressed during EBV latency, genes expressed intermediate-early or early (IE/E), 

and genes expressed late in the active replicative phase of infection and reactivation. For this assay, actin 

mRNA was measured as a positive control and the EBV EBER gene was measured as a control for the 

presence of infected B cells. Transcripts of the EBER gene are expressed to varying degrees in all infected B 

cells, regardless of the viral latency state. EBV gene expression in peripheral blood from healthy adults is 

highly restricted. Five of 24 samples obtained from control subjects were positive for latent gene 

expression, while only 3 of 24 samples were positive for IE/E expression; none of the 24 control subjects 

were positive for any of the late replication EBV genes. For Shuttle crewmembers, 5 of 12 samples showed 
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evidence of latent gene expression, while 9 of 12 samples exhibited IE/E gene expression. Notably, some of 

the samples were positive for multiple viral gene transcripts. None of the pre- or post-flight samples were 

positive for late gene transcripts. For ISS crewmembers, 9 of 12 samples were positive for latent gene 

transcripts, while 11 of 12 were positive for IE/E gene transcripts. In addition, a much higher percentage of 

samples were positive for multiple viral gene transcripts. Importantly, for the first time, evidence of late 

(i.e., replicate) gene transcription was found, post-flight only; specifically, four of the six landing day 

samples were positive for one or more of the late genes. None of the samples from healthy controls or the 

Shuttle post-flight samples demonstrated any late EBV gene expression. These data (derived from the 

Epstein Barr flight study [DSO-500, E129]) suggest that reactivation of latent EBV is to some degree 

observed at the L-10 post-flight timepoint. However, it is known that for some stress measurements, L-10 

may be too close to launch to serve as a fair baseline, as crewmember stress is present by this point in the 

countdown. Additionally, the data show that EBV reactivation is affected by mission duration. This may be 

due to poorer cellular immune control over viral replication during prolonged space missions. Alternatively, 

spaceflight may have a more direct effect on viral reactivation and replication. Persistent reactivation of 

latent herpes viruses during long-duration space missions, in conjunction with dysregulated immunity, 

elevated radiation exposure, and other factors, may represent a significant clinical health risk to 

crewmembers participating in exploration-class deep-space missions.  

Another recent report by the same group examined the effects of long-duration spaceflight on 

neuroimmune responses by comparing adrenocortical and immune responses between short- (11 d) and 

long- (180 d) duration spaceflight (Stowe et al. 2011b). In Shuttle crewmembers, increased stress hormone 

levels, altered leukocyte subsets and T cell function were observed prior to launch and at landing. No 

preflight changes occurred in ISS crewmembers, but long-duration crewmembers exhibited significantly 

greater spikes in both plasma and urinary cortisol at landing compared with Shuttle crewmembers. The 

percentage of T cells capable of producing intracellular IFN- was decreased in ISS crewmembers. Plasma IL-

10 was increased post-flight. Unexpectedly, stress-induced shifts in lymphocyte subpopulations were 

absent after long-duration flights despite significantly increased stress hormones at landing. These results 

demonstrated significant differences in neuroimmune responses between astronauts flying on short-

duration Shuttle missions versus long-duration ISS missions, and they agree with prior studies (Stowe et al. 

2008) demonstrating the importance of mission duration in the magnitude of these changes. 

One may briefly summarize these collective post-flight observations as follows: there appears to be 

a generalized multi-faceted immunosuppression that is detectable post-flight. Production of various 

cytokines (intracellular, secreted, or otherwise) is reduced, and the functional capabilities of the various 

immunocytes (granulocytes, monocytes, NK cells, and T cells) are reduced. Although some of these findings 

are almost certainly related to landing and readaptation, more recent findings indicate that at least some 

post-flight observations may reflect in-flight immune alterations.  

 

4. In-flight Animal Data 

Unfortunately, the majority of spaceflight immunity studies with animal subjects have involved 

post-flight testing of animals flown in space. Those studies are listed under “post-flight animal data”. Some 

animal studies have assessed immunity during spaceflight; these primarily involved dissection of animals 
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during flight and return of samples to Earth. On the Shuttle SLS-2 mission, rats were flown and samples 

returned for analysis. Spleen T cell and NK cell function were reduced during and after flight; however, 

marrow NK cells appeared to be unaltered. Altered cytokine production patterns were also reported 

(Lesnyak et al. 1996). 

 

5. Post-flight Animal Data 

A number of animal studies during spaceflight have provided biosamples available for post-flight 

testing. In particular, immune splenocytes and thymocytes have been available from rats and mice flown in 

space on several SLS Shuttle missions. On several flights of Russian COSMOS satellites, live rats were flown 

and recovered. Several variables in these studies cannot be controlled, such as mission duration, launch 

vehicle, and animal species. These additional variables make comparison of data from different studies 

difficult; however, actual flight data remain extremely valuable, regardless of the launch vehicle used.  

The post-flight animal data include observations of altered leukocyte distribution (Sonnenfeld et al. 

1992; Sonnenfeld et al. 1990) and altered cytokine production (Gould et al. 1987; Grove et al. 1995; Miller 

et al. 1995; Sonnenfeld et al. 1996). One study indicated that post-flight mitogenic and proliferative 

responses of lymph node lymphocytes, as well as IL-2 production, were unaltered in space-flown rats (Nash 

et al. 1992). Recently, however, activated splenocytes from mice flown on Space Shuttle Discovery were 

shown to have depressed gene expression of key early T-cell activation genes (IL2, IL2ra, IFN-, and Tagap) 

compared with splenocytes from ground-control mice. These results were also mimicked in mouse 

splenocytes activated in simulated microgravity using either a rotating wall vessel or a random positioning 

machine (Martinez et al. 2015). In general, the animal data are similar to the post-flight human data, 

revealing immune dysregulation post-flight. Changes include dysregulated cell function (proliferation, 

cytokine production, and other functions). Interestingly, it was suggested that microgravity has a tissue-

specific effect on lymphocyte function (Nash et al. 1992), a finding that is impossible to evaluate in human 

subjects and highlights the greater utility of animal studies for in-flight immune investigations. 

Recently, mice flown on the STS-118 Space Shuttle mission were available for immunological 

studies. For this study, spleen and thymus from flown mice were evaluated and results compared with 

similarly held ground controls. Samples were collected 3-6 h following Shuttle landing. In general, the 

observations were similar to those obtained from human subjects and included alterations in the 

distribution of the lymphocyte subsets, a reduction in blastogenesis following mitogenic stimulation, and 

shifted cytokine profiles. Specifically, IL-2 production was decreased, whereas IL-10 and IFN- production 

was increased. In addition, alterations in the expression of 30 cancer-related genes were reported (Gridley 

et al. 2009). During the same mission, innate immune function was investigated by determining responses 

to LPS stimulation. Secretion of IL-6 and IL-10, but not of TNF-α, was increased in the flown mice compared 

with the ground control mice (Baqai et al. 2009), and the genes responsible for scavenging reactive oxygen 

species (ROS) were upregulated. Also performed by this group on the STS-118 space-flown murine subjects 

was microarray gene expression analysis of the thymus lobes, in conjunction with quantitative real time-

PCR (QRT-PCR) (Lebsack et al. 2010). Examination of the microarray data revealed 970 individual probes 

that had a 1.5-fold or greater change. The authors identified genes that were significantly dysregulated by 
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at least 1.5-fold after spaceflight, that differed from the controls, and that were confirmed via QRT-PCR as 

follows: Rbm3 (up-regulated) and Hsph110, Hsp90aa1, Cxcl10, Stip1, and Fkbp4 (down-regulated). QRT-PCR 

confirmed the microarray results and demonstrated additional gene expression alterations in other T cell-

related genes, including Ctla-4, IFN-alpha2a (up-regulated) and CD44 (down-regulated). The authors 

concluded that spaceflight induced changes in the thymic mRNA expression of genes that regulate stress, 

glucocorticoid receptor metabolism, and, in particular, T cell signaling activity. These data may explain, in 

part, the postulated gravi-sensitive compromise of the immune system related to signal transduction after 

exposure to spaceflight.  

A follow-up to these studies, conducted on mice flown on the STS-135 Space Shuttle mission, found 

that spleen mass was significantly reduced in mice following 13 days of spaceflight. While thymic mass was 

not significantly reduced following flight, flown mice showed significantly more DNA fragmentation, which 

is indicative of apoptotic cell death, in the thymus. This study also confirmed alterations in gene expression 

during flight. Six of the 84 evaluated T-cell genes were affected, and gene expression alterations were 

found in 15 cancer-related genes in the thymus and 8 cancer-related genes in the spleen (Gridley et al. 

2013). Similarly, following a 30-day high-orbit satellite mission, murine splenic and thymic mass and 

lymphocyte counts were reduced. Apoptosis also appeared to be elevated in the thymus in these mice, as 

measured by elevations in the ratio of the activated form of the p53 protein (ph-53) to the inactive form of 

this protein. The elevations in this ratio not only persisted but were exacerbated 7 days after flight. 

Measurements of caspase-3 in thymic cells also confirmed the increased apoptosis following flight 

(Novoselova et al. 2015). In addition, the plasma concentrations of IL-6 and IFN- were reduced in these 

mice post-flight, which the authors postulate is reflective of the increased apoptosis of lymphoid cells. The 

authors theorize that these observed alterations are indicative of a strong immunosuppressive effect of 

spaceflight. 

In another intriguing animal experiment, Drosophila fruit flies were recently flown on-board the 

Space Shuttle to assess various molecular and functional aspects of innate immunity (Marcu et al. 2011). 

The Drosophila innate immunity is simple, yet shares many similarities with human innate immunity at the 

level of molecular pathways. A total of 50 male and 25 female fruit flies were housed and bred on-orbit, 

and a new generation of flies was born in microgravity. The ability of larval plasmatocytes to phagocytose E. 

coli in culture was attenuated following spaceflight, and the expression of genes involved in cellular 

maturation was downregulated. In addition, the authors found that the level of constitutive expression of 

pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozyme, 

antimicrobial peptide (AMP) pathway, and immune stress genes, hallmarks of humoral immunity, were also 

reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following systemic 

infection with E. coli post-flight remained robust. The post-flight analysis of space-flown flies indicated that 

spaceflight alters both cellular and humoral immune responses in Drosophila.  

 

6. In-flight Cell Culture Data 

Several studies involving in-flight culture/in-flight activation of immune cells have been performed. 

Such studies investigated the effect of microgravity directly on the ability of cells to grow, mature, or 

function in vitro. These studies are important for identifying the effect of microgravity on cell function and 
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identifying potential mechanistic causes of the in-flight immune dysregulation manifested by humans and 

animals. However, these data should be interpreted with caution, as it is unknown if in-flight culture 

observations accurately reflect altered (or unaltered) in vivo human immune function. Although 

microgravity culture may be altered, it is difficult to say that such culture conditions represent the in vivo 

responses, considering additional in vivo influences such as shear flow, hemodynamics, soluble factors, and 

non-artificially purified cell lines. For example, T cells from perfectly healthy individuals generally do not 

activate during simulated microgravity culture (Hashemi et al. 1999). Astronauts display altered T cell 

function following spaceflight using common 1xG terrestrial cell culture conditions (Crucian et al. 2008). 

Either of these results may or may not reflect the in-flight condition, nor is it understood how other 

variables, such as radiation or physiological stress, may influence the complicated immune situation that 

equilibrates during flight. 

Specific findings revealed by in-flight culture of various immunocyte populations include unaltered 

NK function (Buravkova et al. 2004), altered cytokine production profiles (Chapes et al. 1994), and various 

observations of altered progression of cellular activation following mitogenic stimulation (Cogoli 1997; 

Cogoli et al. 1993b; Hashemi et al. 1999; Hughes-Fulford 2001; Hughes-Fulford 2003).  

Fitzgerald et al. (2009) studied the immune responses of human lymphoid tissue explants in 

microgravity on-board ISS. During spaceflight, lymphoid cells did not respond to antigenic or polyclonal 

challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine 

responses in space. This indicates that immune activation of cells derived from lymphoid tissue is blunted in 

microgravity, which the authors feel reflects the immune dysfunction observed in astronauts during space 

flights. In-flight cultures also indicate that microgravity inhibits the transcription of key immediate early 

genes required for T cell activation. Microarray expression analysis showed that T cells stimulated with Con 

A and anti-CD28 on-board ISS showed down-regulation of the transactivation of Rel/NF-kB, CREB, and SRF 

gene targets when compared with T cells stimulated on-board ISS in a 1g centrifuge, indicating that 

microgravity may be responsible for the reduced T cell activation observed during spaceflight (Chang et al. 

2012). 

Certain functions of immune cells in returning astronauts are known to be altered. A dramatic 

depression of the mitogenic in vitro activation of human lymphocytes was observed in low gravity. T-cell 

activation requires the interaction of different types of immune cells, such as T-lymphocytes and 

monocytes. Cell motility based on a continuous rearrangement of the cytoskeletal network within the cell is 

essential for cell-cell contacts. Meloni et al. (2011) recently studied the influence of microgravity on 

cytoskeletal structures and migration capacity in monocytes on-board ISS. During flight, a monocyte line 

was incubated on a colloid gold substrate attached to a cover slide. Migrating cells removed the colloid 

gold, leaving a track recording cell motility. A severe reduction of the motility of J-111 cells was found 

during spaceflight compared with 1g in-flight and ground controls. Cell shape appeared more contracted, 

whereas the control cells showed the typical morphology of migrating monocytes, i.e., elongated and with 

pseudopodia. A qualitative and quantitative analysis of the structures of F-actin, β-tubulin, and vinculin 

revealed that exposure of J-111 cells to low gravity affected the distribution of the different filaments and 

significantly reduced the fluorescence intensity of F-actin fibers. The authors indicated that the highly 

reduced motility of monocytes in low gravity, attributed to the disruption of the cytoskeletal structures, 
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may be one of the contributing factors of in-flight immune dysregulation. Microgravity also appears to 

affect monocyte signal transduction. Activation of the Jun-N-terminal kinase was significantly impaired in 

monocytes stimulated with LPS in spaceflight when compared with those stimulated in a 1g in-flight control 

condition. Interestingly, activation of the p38 map kinase was not affected, despite the fact that these two 

kinases display similar activation kinetics and are typically co-activated by inflammatory stimuli (Verhaar et 

al. 2014).  

It has been speculated that a decreased number of lymphocytes might be a cause of spaceflight 

immunosuppression, possibly due to the induction of apoptosis. Early activation of 5-lipoxygenase (5-LOX) 

might play a central role in the initiation of the apoptotic program. Battista et al. (2012) recently performed 

an ISS experiment to ascertain the induction of apoptosis in human lymphocytes under authentic 

microgravity and to elucidate possible mechanisms. The results, which mimic many of the results obtained 

by Gridley et al. (2013) and Novoselova et al. (2015) in rodent models, demonstrated that exposure of 

human lymphocytes to microgravity for 48 h on-board the ISS remarkably increased apoptotic hallmarks 

such as DNA fragmentation and cleaved-poly polymerase protein expression, as well as mRNA levels of 

apoptosis-related markers such as p53 and calpain. These changes were paralleled by an early increase in 5-

LOX activity. The authors concluded that the findings provided a molecular background for the immune 

dysfunction observed in astronauts, as well as possible new biomarkers that could be used as part of a 

monitoring strategy. 

 

B. Ground-based Evidence 

1. Ground-analog Human Data 

To evaluate the effects of mission-associated factors on human physiology, ground-based 

“spaceflight analogs” may be used (Schmitt and Schaffar 1993). A variety of analogs are available, each 

unique and exerting some influence on human physiology that is similar to one or more aspects of 

spaceflight. Examples of the most well-known human ground-based spaceflight analogs are presented in 

the following table and were recently reviewed in Crucian et al. (2014a):  

 

Table: Human analogs for spaceflight 

Analog Spaceflight Relevance 

Extended head-down bed rest Fluid shifts, bone demineralization, muscle loss 
Circadian Misalignment Circadian rhythms, psychological issues 
Closed-chamber confinement Psychological and isolation issues 
Haughton-Mars Project (Arctic) Isolation, extreme environment, circadian rhythms 
NEEMO (undersea station) Isolation, real mission activities, risk, EVA, extreme 

environment, circadian rhythms 
Antarctic winter-over Isolation, confinement, extreme environment, 

circadian rhythms, physiological stress, long duration 
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Terrestrial analogs may be augmented. For example, a recent study at Brooks Air Force Base by 

Stowe et al. (2008) added high-G human centrifugation prior to and after a 16-day prolonged head-down 

tilt bed rest to simulate launch and landing and thus better replicate the physiological aspects of a shuttle 

mission. Another study added a daily 1-h 2.5xG human centrifugation session to a 16-day bed rest study to 

evaluate artificial gravity as a possible countermeasure (Mehta et al. 2007b). For ground-based studies, it is 

very important to choose the analog that is most appropriate for the physiological system of interest. For 

example, bed rest may be an excellent analog for muscle loss, whereas NEEMO or Antarctic winter-over 

would not, as the prime causal factor (microgravity) is not replicated.  

Because analog use is much more cost-effective compared with flight, the immunology discipline at 

NASA is pursuing validation of an appropriate ground-based spaceflight analog for spaceflight-associated 

immune dysregulation. This is based on suggestions made at the 2006 Immunology Program Review and on 

consensus direction statements provided during the 2007 NASA Human Research Program Workshop. 

Validation of a ground-based analog would be extremely useful for basic science as well as countermeasure 

development, especially considering that spaceflight-associated immune dysregulation is now believed to 

persist during long-duration flight (Crucian et al. 2013b) and countermeasure development is warranted. 

An excellent ground-based flight analog for immune studies would simulate mission-associated stress, 

isolation, and disrupted circadian rhythms. An overview of immune data collected during various analog 

studies follows. 

a. Antarctic Winter-over Analog. During Antarctic winter-over (AWO), subjects experience 

prolonged isolation in a harsh extreme environment, and several comprehensive immune studies have 

been conducted during these expeditions. It is likely that AWO represents the closest analog to long-

duration or exploration-class spaceflight available on Earth. This is because the mission length, extreme 

environment, extreme isolation, mission-associated activities, disrupted circadian rhythms, and other 

factors are similar to those of long-duration spaceflight. During AWO, participants are completely isolated, 

as no aircraft are capable of reaching the various Antarctic outposts during this time. Immune studies 

performed during winter-over missions have shown decreased cell-mediated immune responses (Mehta et 

al. 2000a; Muller et al. 1995a; Muller et al. 1995b), reduced T cell function (Tingate et al. 1997), altered 

cytokine production profiles (Shearer et al. 2002; Tingate et al. 1997), and latent herpes virus reactivation 

(Mehta et al. 2000a; Tingate et al. 1997). A study of antibody production following immunization during 

AWO revealed no mid-mission alterations (Shearer et al. 2001a), potentially indicating that humoral 

immunity is unchanged in the presence of altered cellular immunity. These data support the Antarctic 

analog as the most successful analog to date in simulating long-duration spaceflight-associated immune 

dysregulation. The only serious limiting factor regarding physiology studies during AWO is the logistical 

access during a mission. Ironically, this is directly related to the isolation factors that make AWO such a 

good analog, thus truly making it “flight-like.” Studies that require simple collection and freezing of samples 

(blood, saliva) are obviously very compatible with mid-mission AWO studies. However, as recent data have 

indicated, it is immune functional capacity that appears to be compromised during spaceflight (Crucian et 

al. 2013a). Assessments of immune function typically require live cell culture and more immediate 

processing and analysis of samples. NASA and ESA have recently performed a comprehensive assessment 

of immune parameters, viral reactivation, and physiological stress at the French-Italian Concordia Station. 

This base is located in the harsh Antarctica interior at 3233 M altitude, under conditions of persistent 
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hypobaric hypoxia. The implementation of this study was similar to that of the Integrated Immune flight 

study. Preliminary data analysis indicates that immune alterations (some similar and some dissimilar to 

flight) did persist during the winter-over period (Crucian et al. 2012b). The hypobaric hypoxia at this station 

may be a confounding factor and may account for some of the dissimilar findings. Final analysis of these 

data will hopefully confirm that AWO at an isolated interior base is, or is not, an appropriate analog for in-

flight immune dysregulation. 

b. Haughton-Mars Project Analog (Canadian Arctic). Another potentially useful analog for 

spaceflight-associated immune dysregulation is the NASA Haughton-Mars Project (HMP). The HMP is an 

international field research project centered on the scientific study of the Haughton meteorite impact 

structure and surrounding terrain on Devon Island, Nunavut Territory, Canadian High Arctic. It is viewed as 

an analog for planetary exploration, in particular for exploration of the moon and Mars. It is particularly 

well suited for exploration-related human physiology studies because field personnel are subject to actual 

and relevant environmental stressors, although they are clearly not as extreme as those encountered in 

space. In addition, personnel are engaged in field exploration tasks that, in many cases, are direct analogs 

of those anticipated for the moon and Mars. The following factors encountered by HMP field participants 

are particularly relevant to spaceflight or planetary exploration: 

 Long travel to and from Devon Island (several days of travel followed by weeks of stay) 

 Relatively harsh polar desert environment 

 Disrupted circadian rhythms (24 h of daylight during the summer field season) 

 Relative isolation from the outside world (with limited exception) 

 Limited local infrastructure (HMP Research Station is analogous to early lunar or Martian outpost) 

 Activities relevant to those that crewmembers on lunar and Mars missions would be expected to 

perform, including exploration, field work, and EVA  

 Reliance on remote telemedicine and communications equipment. 

 

These factors and mission duration make the HMP a potentially good analog for spaceflight-

associated immune dysfunction studies. The 30- to 45-day mission duration seems to make HMP a 

potentially useful analog for ISS Flight Engineer-2 subjects, who rotate on successive Shuttle flights and 

have mission durations longer than those of Shuttle-only crewmembers but shorter than those of ISS-Soyuz 

(6-month) crewmembers. In 2002, a NASA pilot study was performed with the following objectives: (1) 

develop and field-evaluate methods for processing biological samples to support immune function testing 

in remote locations, and (2) use the protocol to assess mission-associated immune changes during an HMP 

mission. The data demonstrated that in the HMP participants, changes in immune function and 

physiological stress occurred that were in some ways similar to those observed in astronauts following 

spaceflight (Crucian et al. 2007). Specifically, phenotypic alterations, reductions in intracellular cytokine 

levels, humoral data that suggested EBV reactivation, and altered stress hormone levels were all observed 

during this intermediate-length HMP mission. 

c. NEEMO Undersea Analog. A third likely relevant analog for immune changes observed during 

short-duration spaceflight is the NASA Extreme Environment Mission Operations (NEEMO) project. The 
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NEEMO project was developed by NASA to use extended undersea missions based in Aquarius (the world’s 

only permanent undersea station) as a high-fidelity ground-based spaceflight analog. Aquarius was 

constructed and is operated by a partnership of the National Oceanic and Atmospheric Administration, the 

University of North Carolina at Wilmington, and the National Undersea Research Center, and it is utilized 

routinely for undersea oceanic research. It is located 7 miles offshore of Key Largo, Florida, at a depth of 

approximately 65 feet. During research missions, which typically last 7-14 days, crewmembers 

(“aquanauts”) use saturation diving. In this dive protocol, easy return to the surface is not possible and 

nominal resurfacing requires approximately 18 h of decompression. NEEMO missions are timelined and 

executed in such a way that the spaceflight analog conditions are the best possible: 

 

 Confinement to the station lasts the duration of the mission. 

 EVA activities are performed while the crewmembers are linked to Mission Control Center in 

Houston for support. 

 A variety of Shuttle and ISS experiments are performed. 

 Telemedicine is used to communicate with NASA flight surgeons. 

 For high fidelity, only Shuttle or ISS food may be consumed (NEEMO-5). 

 

It is important to note that although the NEEMO missions simulate high-fidelity spaceflight 

conditions, they are actual missions in their own right with real health risks and are not necessarily only 

simulations. Given the short mission duration and high-fidelity similarity to a Shuttle mission, NEEMO may 

represent a useful analog for the spaceflight-associated immune dysregulation that has been observed 

during short-duration spaceflight. Additionally, NEEMO is extremely easy to use logistically, making it an 

attractive test bed for hardware and initial countermeasure development. Pilot data generated during the 

NEEMO 4, 5, 12, and 13 missions have indicated that immune dysregulation and viral reactivation during 

NEEMO missions are similar to those observed during or following spaceflight. 

To investigate whether NEEMO induces in-flight immune alterations similar to those observed 

during Shuttle missions, as well as to evaluate assays developed for SMO-015, a pilot study was performed 

on NEEMO 12 and 13, during 2007. Assays were performed that assessed immune status, physiological 

stress, and latent viral reactivation. Blood and saliva samples were collected at pre-, mid-, and post-mission 

timepoints. The data revealed minimal changes in peripheral leukocyte subsets, as would be expected from 

healthy subjects in an adverse environment in the absence of actual illness. Dramatic alterations in T cell 

function were observed. Intracellular cytokine profiles within T cell subsets were altered, and generalized T 

cell function was diminished during the missions, in a manner similar to that observed post-flight in ISS 

crewmembers. Serological evidence of EBV reactivation was observed in 50% of the subjects. As evidence 

of latent VZV reactivation, salivary VZV DNA was detected in 2 of the 4 NEEMO-12 subjects. Plasma cortisol 

was elevated in some of the NEEMO subjects, and salivary concentrations of cortisol were greater during 

the mission than before or after it. Taken together, the pilot study data seem to validate the NEEMO analog 

as being appropriate to induce some of the aspects of spaceflight-associated immune dysregulation that 

are observed during short-duration Shuttle flights. In addition, the ease of utility and high-fidelity of the 

analog make it attractive for rapid investigations. However, to investigate immune dysregulation associated 
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with prolonged missions (a key element to determining clinical risk for exploration-class missions), another 

analog would be required. 

d. Closed-Chamber Confinement Analogs. The stresses associated with prolonged confinement and 

isolation may also contribute to alterations in immunity during spaceflight. Multiple terrestrial analogs 

mimicking these conditions have been developed. A ground-based space module designed by the Russian 

Institute for Biomedical Problems has been used to determine the effects of mission-like confinement and 

isolation with limited communication on various parameters. The intent of the Russian study is to re-create, 

to as high fidelity as possible, some of the psychological stressors which will occur during a Mars mission 

(Feichtinger et al. 2012). During a 105-day test mission, few alterations in the immune system were 

observed. No changes in the number of WBCs or leukocyte subpopulations were observed, nor were 

alterations in levels of catecholamines, cortisol, or plasma cytokines. While the production of hydrogen 

peroxide by stimulated neutrophils was elevated during the mission, indicating enhanced cytotoxicity, their 

phagocytic function was decreased, indicating decreased microbicidal capacity (Strewe et al. 2015). 

Subsequent to the habitat validation and trial mission, a full ‘Mars duration’ 520-day mission was 

completed using this analog. Immune parameters were among the variables analyzed for the six volunteers 

(Yi et al. 2014). Persistent elevations in salivary cortisol were observed from mission day 360 onward. While 

total leukocyte numbers were only marginally elevated, the proportion of lymphocytes in the total 

leukocyte population increased, as a result of increases in CD3+ and CD19+ cells, but not NK cells. The 

increase in the proportion of lymphocytes was accompanied by a decrease in the proportion of neutrophils. 

The production of IL-2, IFN-, and TNF-α in response to a simulated EBV infection was determined by 

measuring these cytokines in supernatant collected after a 48hr incubation with an EBV lysate. While the 

production of IL-2 remained constant during the mission, IFN- and TNF-α production was upregulated. The 

authors postulate that the elevations in lymphocyte numbers and the heightened response to EBV infection 

in vitro are indicative of heightened immune responses, likely as a result of the chronic stress of isolation, 

as evidenced by elevated cortisol levels (Yi et al. 2014).  

e. Head-Down-Tilt Extended Bed Rest Analog. The use of long-duration head-down-tilt bed rest 

(HDBR) has also been investigated to determine whether this analog is appropriate for spaceflight-

associated immune dysregulation. The most obvious relevance of bed rest is to study muscle loss and bone 

demineralization, but some investigators believe that the fluid shifts replicated during bed rest may be 

relevant to in-vivo immune alterations. Some of the evidence conflicts regarding validation of the bed rest 

analog as a replicate for spaceflight-associated immune dysregulation. Published data indicate that some 

immune changes, including decreases in T cell activation potential and altered cytokine patterns, are 

associated with this analog (Schmitt et al. 1996; Uchakin et al. 2007). However, these data were induced by 

exogenous delivery of stress hormones to the participants.  

Data generated during a general immune assessment as part of the recent NASA Flight Analogs 

Project bed rest campaigns (70-90 days HDT) did not show altered leukocyte distribution, altered cytokine 

production patterns, reduced T cell function, or significant viral reactivation during the campaigns (Crucian 

et al. 2009a). This is a battery of assays recently found to be associated with significant immune 

dysregulation observed during spaceflight (Crucian et al. 2013a; Crucian et al. 2013b; Mehta et al. 2013). 

The authors speculate that given the absence of the most likely causes of spaceflight-associated immune 
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dysregulation (e.g., disrupted circadian rhythms, mission-associated stress, and isolation), bed rest most 

likely does not represent the best analog for exploration-class spaceflight-associated immune 

dysregulation.  

However, other recent studies also found immunological alterations, to some degree, during HDBR. 

Kanikowska et al. (2008) investigated various stress-associated proteins and cytokines during HDBR (20 

days) with and without an exercise countermeasure. Adrenaline and noradrenaline concentrations 

increased significantly in both groups, while the concentration of C-reactive protein decreased. The 

concentration of C-reactive protein was significantly higher, and that of adrenaline was significantly lower, 

in the control group compared with the exercise group. The authors concluded that several neuroendocrine 

and immunological parameters are modulated by prolonged HDBR and that these changes may be 

counteracted at least in part by artificial gravity with exercise. Similarly, Hoff et al. (2014) recently found 

that exercise during 60 days of bed rest mitigated both depressions in IgD+ B-cells and elevations in the 

pro-inflammatory cytokine IP-10. Furthermore, exercise during bed rest increased levels DHEA-S. The 

authors hypothesize that these findings are evidence of immunoprotective effects of exercise. Rai and Kaur 

(2011) investigated the effects of 21 days of HDBR on psychological stress and the production of various 

salivary stress hormones. After one week of HDBR, all volunteers developed psychological stress, and the 

secretions of chromogranin-A (CgA), cortisol, alpha-amylase, and beta-endorphin were all significantly 

higher. In seven healthy subjects subjected to 3 weeks of HDBR, Kelsen et al. (2012) studied 90 mmol 

potassium bicarbonate as a nutritional countermeasure aimed against bone demineralization. Whole blood 

was stimulated with antigen, i.e., Candida albicans, purified protein derivative (PPD) tuberculin, tetanus 

toxoid, and Cytomegalovirus. The authors observed a significant decrease in the production of IL-2, IFN-, 

and TNF-α following phytohemagglutinin (PHA) stimulation, with a rapid normalization being observed 

after HDBR. Only three individuals responded to the specific T cell antigens without showing signs of an 

altered response during HDBR, and we did not observe reactivation of CMV or Epstein-Barr virus (EBV). The 

authors cite the data as evidence of a potential Th2 shift and alterations in cell-mediated immunity during 

HDBR, which could have utility for space physiology studies. Some of these findings were recently 

corroborated by Xu et al. (2013), who found decreased T-cell production of IFN- and IL-17 following T-cell 

stimulation with anti-CD3 and anti-CD28, although depressions in IL-2 production were not observed. 

It is unclear why the data is discordant among immune investigations during HDBR. A NASA study 

found little adaptive alterations nor viral shedding occurred during 70-90 day HDBR (Crucian et al. 2009a), 

whereas other investigations have found stress or immune system dysregulation during HDBR as short as 7-

21 days (Kanikowska et al. 2008; Kelsen et al. 2012; Rai and Kaur 2011). The explanation is likely in the 

myriad of differences between the two experimental platforms related to environment, isolation, subject 

screening, etc., and the degree of influence required to result in differences in the various stress or immune 

parameters measures. However, in the absence of further investigation, the fidelity of the HDBR platform 

as an analog for the immune dysregulation associated with spaceflight appears to remain questionable.  

In an effort to better mimic the stresses of flight, a modified bed rest study in which subjects were 

spun in a human centrifuge prior to and at the end of a 16-day bed rest period was conducted (Stowe et al. 

2008). The subjects were spun at the same G-forces experienced during launch and landing to simulate 

these stressors. When compared to landing data collected following 9- and 16-day shuttle missions, this 
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analog produced similar alterations in the catecholamines and in plasma and urinary cortisol levels at the 

time of simulated landing. In addition, spikes in cortisol were observed after simulated launch, as they were 

in actual Shuttle launches. Some alterations in circulating leukocytes following simulated landing mimicked 

those alterations observed after 9- and 16-day missions (white blood cells and neutrophils), while others 

mimicked only those alterations observed following the 9-day flights (monocytes, eosinophils) or the 16-

day flights (lymphocytes). These findings indicate that, while hemoconcentration likely does not contribute 

to the alterations in circulating leukocytes, launch and landing stress do. Therefore, this model may be 

useful in examining stress responses during spaceflight (Crucian et al. 2014a; Stowe et al. 2008). 

A further example of augmented bed rest may be seen in the recently completed “envihab” 

(environmental habitat) research facility at the German Aerospace Center. This facility may prove to be a 

valuable tool for examining the complex interactions between many of the factors that likely contribute to 

alterations in immunity during spaceflight. Envihab has the potential to examine the combined effects of 

bed rest, human centrifugation, hypoxia, isolation, targeted stress, disrupted sleep, and alterations in 

atmospheric pressure (Koch et al. 2013). The many capabilities of this research facility may, therefore, 

make it a useful analog, providing a better understanding of those factors that most influence immunity 

and aiding in the development of countermeasures. 

f. Circadian Misalignment Analogs. Currently ongoing studies by Dr. Steven Shea at Brigham and 

Women’s Hospital in Boston are utilizing a novel analog to examine the effects of circadian misalignment 

and inadequate sleep on immune parameters. Not only do astronauts experience altered day-night cycles 

as a result of orbiting the earth approximately every 90min, but many report not sleeping well. These 

factors, combined with periodic “slam shifts,” result in circadian misalignment, as evidenced by alterations 

in the circadian rhythm of cortisol (Mallis and DeRoshia 2005). In this study, circadian rhythms of test 

subjects are advanced 4hr per day over two 11-day laboratory stays. During one stay, this circadian shift is 

completed with adequate (9hr) sleep; while during the other stay, the shift is completed with inadequate 

(5hr) sleep. This protocol is meant to mimic the circadian misalignment observed in astronauts during 

spaceflight, and preliminary data presented at the 2013 NASA HRP Investigators Workshop indicates that T 

cell function is, indeed, altered when circadian misalignment is combined with inadequate sleep (Crucian et 

al. 2014a; Ruger et al. 2013). 

 

2. Ground-analog Animal Data 

The primary animal ground analog is the rodent hind limb suspension model, which mimics the 

spaceflight-induced fluid shifts to the head and the muscle and bone loss. While an excellent model for 

examining the effects of unloading on the musculoskeletal and cardiovascular system, this analog has also 

been used to examine the effects of these unloading conditions on the immune system. Altered cytokine 

production patterns and reduced ability to fight infection have been observed using this analog (Berry et al. 

1991; Sonnenfeld et al. 1988). While stress hormones are elevated in hind limb suspended mice, such 

findings cannot be contributed to stress alone, as hind limb suspended mice exhibit greater reductions in 

the ability to clear bacteria from the organs and greater mortality following pathogen exposure than mice 

undergoing restraint without hind limb suspension (Aviles et al. 2003a; Belay et al. 2002). Reductions in 
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immune function and proliferative responses have been demonstrated during the adaptation period (the 

first 48 hours) to hind limb unloading (Aviles et al. 2005), and the proportions of splenic B cells and NK cells 

were also reduced during this period (O'Donnell et al. 2009). Recently, some of these immune alterations 

were shown to persist during more prolonged (21 days) unloading (Gaignier et al. 2014; Lescale et al. 2015). 

Large reductions in B cell lymphopoiesis and in the number of B cells in the spleen were observed, with 

concomitant decreases in lymphoproliferative responses and in the T helper:cytotoxic T cell ratio following 

21 days of unloading, despite the absence of elevated levels of stress hormones (Gaignier et al. 2014; 

Lescale et al. 2015). These results, along with findings that antibody production and T-cell mediated 

immune responses to spindle cell tumor antigens are reduced, indicate that hind limb unloading affects 

primarily adaptive immune responses (Crucian et al. 2014a; Lee et al. 2005; Yamauchi et al. 2002).  

Although these results are extremely interesting, direct correlation with human astronaut clinical 

risk from prolonged spaceflight-associated immune dysregulation is, to some degree, debatable. There are 

obvious differences between humans and rodents, and the animal suspension/restraint analogs are clearly 

different from prolonged spaceflight. However, an animal model has certain unique utility compared with 

human descriptive studies. Animal subjects may be exposed to variables which are not possible in human 

studies, such as radiation, altered nutrition, or pharmacological interventions. Indeed, recent studies have 

shown that hindlimb unloading in combination with radiation exposure led to higher levels of IFN-alpha, IL-

6, and LPS, a lower proliferation index of splenic T-cells, and greater morbidity following bacterial challenge 

than either condition alone (Li et al. 2014; Sanzari et al. 2013; Zhou et al. 2012). Similarly, the combined 

effects of radiation and the iron overload observed in astronauts was recently studied in a rodent model, 

and was shown to contribute to the oxidative stress that, in turn, affects the immune system (Morgan et al. 

2014). Furthermore, animal models may be useful as a first step in testing potential countermeasures. 

Active hexose correlated compound improved resistance to infection and blunted many of the alterations 

in immunity observed in the hind limb suspension model, indicating it as a possible nutritional 

countermeasure for the immune system (Aviles et al. 2003b; Aviles et al. 2004). Given the utility of animal 

models for studying spaceflight factors that cannot be studied in humans, validation of an appropriate 

animal model remains a priority. 

 

3. Ground-analog Cell Culture Data 

Ground cell culture analogs for modeled microgravity, such as clinorotation, bioreactors, and the 

High-Aspect-Ratio Vessel, all essentially subject cultured cells to a continuous free fall, which has been 

shown to replicate some cellular effects of microgravity exposure. A variety of cellular effects, including 

altered actin polymerization, reduced lymphocyte locomotion, disrupted transmission of intracellular 

signals, and altered gene expression, are all commonly observed results that are believed to be similar to 

spaceflight observations (Aviles et al. 2003b; Aviles et al. 2004; Chang et al. 2012; Hughes-Fulford et al. 

2005; Licato and Grimm 1999; Pellis et al. 1997; Ward et al. 2006). Sundaresan et al. (2002) identified the 

intracellular defect responsible for altered locomotion in modeled microgravity at the level of PKC or 

upstream, with lymphocyte calcium signaling pathways found to be functional. Hughes-Fulford et al. (2005) 

found that alterations in 10 key genes were associated with simulated microgravity culture, indicating that 

the intracellular protein kinase A pathway was a key pathway altered during microgravity conditions and is 
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likely responsible for some of the observed spaceflight-associated immune dysregulation effects in humans. 

Fitzgerald et al. (2009) examined responses of lymphoid tissue cells to modeled microgravity. Terrestrial 

simulated microgravity was achieved by solid-body suspension in a rotating, oxygenated culture vessel. The 

data revealed that tissues or cells challenged by a recall antigen or polyclonal activator in simulated 

microgravity lost their ability to produce antibodies and cytokines and to increase their metabolic activity. 

In contrast, if the cells were challenged before being exposed to simulated microgravity suspension culture, 

they maintained their responses. The production of reactive oxygen species (ROS) by macrophages 

following stimulation has also been found to be diminished in microgravity, simulated via clinorotation 

(Brungs et al. 2015). These findings were also supported by similar experiments recently performed during 

parabolic flight (Adrian et al. 2013). As the production of ROS is a key process in providing the first line of 

defense against pathogens, these findings could partially explain the elevated susceptibility to infection 

during spaceflight (Brungs et al. 2015). Recent evidence also suggests that NK cell function is inhibited in 

simulated microgravity (Li et al. 2013). Decreased cytotoxicity, with concomitant decreases in the 

expression of IFN- and perforin were observed following clinorotation. In addition, the surface expression 

of NKG2A and NKG2D was decreased in simulated microgravity while NK cell apoptosis and necrosis was 

increased. Ground cell-culture analogs may have significant utility for mechanistic studies that will 

determine the root causes of cell-specific microgravity-induced immune system changes. However, any 

conclusions regarding clinical risk for exploration-class missions will require human subject studies, as 

variables such as stress and isolation cannot be replicated by these cellular analogs. 

 

V. MICROBIAL ENVIRONMENT AND VIRULENCE DURING SPACEFLIGHT  

 A growing body of evidence indicates that microbial virulence may be altered during spaceflight. In 

the context of host-pathogen interactions, increased microbial virulence may increase crew clinical disease 

risk, even in the absence of any immune dysregulation. Therefore, the Space Habitability and Human 

Factors (SHFH) Element has baselined a dedicated risk related to this phenomenon. This evidence is 

described in the SHFH Evidence Report entitled: ‘Risk of Adverse Health Effects Due to Alterations in Host-

Microorganism Interactions’. This report can be accessed on the Human Research Roadmap at the 

following publicly available link: http://humanresearchroadmap.nasa.gov/Evidence/  

 

VI. INTERDISCIPLINARY FACTORS 

As a sentinel system, immunity is known to be influence by a variety of influences. The multitude of 

stressors associated with spaceflight, including microgravity, radiation, alterations in the microbial 

environment, isolation, altered circadian rhythms, and confinement, likely all contribute in a synergistic 

fashion to the observed immune alterations. Alterations in environment or stress conditions, and the 

diverse number of physiological adaptations that occur in response to these alterations, are likely to also 

impact the immune system (Figure 2). While no Terrestrial flight analog can perfectly mimic the spaceflight 

environment, some analogs do provide the ability to take an interdisciplinary approach to examining the 

complex factors that result in altered physiology, including immune system dysregulation. However, in-
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flight immune studies will be required to fully understand the ways in which all of the spaceflight-

associated factors, including radiation and microgravity, interact to affect the immune system. 

 

 

Many of the other Risks currently baselined in the Human Research Roadmap likely possess an 

interactive relationship with the immune system. An obvious interaction between the altered microbial 

environment and the immune system exists, as is outlined in the previous section; however, additional 

risks, such as those regarding bone loss, radiation exposure, nutrition, and the nervous system, likely also 

impact the immune system. The effects of radiation on the immune system have been studied in murine 

models, and immune cells (particularly marrow precursor cells) are particularly susceptible to radiation 

damage. Also known is an interplay between the immune system and bone loss and altered bone 

homeostasis observed during flight also exists, as does an interaction between alterations in the nervous 

system and the immune system (Figure 2). Further, both altered nutrition and exercise (either the absence 

of, or also exhaustive) are known to impact the immune system terrestrially. Altered nutrition during 

spaceflight may account to some degree for some of the immune alterations observed, and indeed, studies 

involving both murine and human analogs have begun to examine the effects of nutrition and exercise on 

the immune system in the context of spaceflight. Both nutritional supplements and exercise regimens are 

Figure 2: Spaceflight-associated factors affecting the immune system. Adapted from: Huston (1997). 
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considered to be potential immune system spaceflight countermeasures; however, more research is 

required.  

The immune system is constantly evolving and adapting, and is therefore particularly sensitive to 

physiological and environmental alterations. Due to the myriad of physiological and environmental 

alterations observed during spaceflight, examining the effects of spaceflight on the immune system without 

considering these variables would not reveal the true nature of spaceflight-induced immune dysregulation. 

Much of the evidence obtained from the previously described analogs has examined the effects of multiple 

factors on the immune system, and ongoing and future in-flight experiments are seeking to understand the 

immune dysregulation from an interdisciplinary standpoint, considering the multitude of factors that may 

contribute to alterations in the immune system.  

 

VII. COMPUTER-BASED SIMULATION INFORMATION 

 In the last ten years, techniques and computing paradigms for modeling complex biological systems 

have been developed (reviewed in Milanesi et al. (2009)); however, given the large number of interacting 

parameters that contribute to the immune system and the maintenance of immune health, computer-

based simulations are relatively inadequate. While advanced computing techniques and methodologies are 

being developed (Milanesi et al. 2009), we know of no fully validated and clinically relevant computer-

based simulations for the human immune system. 

 

VIII. RISK IN CONTEXT OF EXPLORATION MISSION OPERATIONAL SCENARIOS  

 The likelihood of an adverse clinical event (allergy, hypersensitivity, infection, or malignancy) related 

to immunology is difficult to estimate due to limited in-flight data and a lack of understanding of the in-

flight condition. Current studies on ISS are rectifying this situation, examining alterations in the immune 

system in-flight and seeking to quantify adverse clinical events onboard the ISS. Unfortunately, the 

environment experienced by crewmembers on such missions will likely be vastly different from the 

environments experienced by crewmembers on long-duration lunar or Mars missions. In general, although 

the precise clinical incidence during orbital flight is still being assessed, the NASA Immunology Discipline 

Team generally feels that low-Earth orbital flight of up to 6 months in duration does NOT pose a significant 

health risk resulting from immune dysregulation. This is because of several factors unique to orbital flight, 

including a readily available return option and protection from certain types of high-energy radiations that 

are more prevalent beyond the Earth’s magnetosphere. Additionally, orbital flight is likely a vastly different 

experience with regard to physiological stress than will be encountered during exploration-class flight. It is 

expected that exploration-class flight, with up to six-fold increases in mission duration, planetary 

exploration, and exposure to higher energy radiation will increase the clinical risk. Radiation is a factor that 

should be considered in assessing clinical risk related to immunology due to the link between immunity, 

radiation, and cancer. Immune precursor cells residing in the marrow are particularly sensitive to radiation. 

Additionally, if immune dysregulation is found to persist during longer missions, the clinical risk related to 

tumor surveillance and development of malignancies may become significant.  
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IX. GAPS 

The body of evidence regarding immune alterations during spaceflight has grown immensely, but 

many questions still remain. Extensive research characterizing the nature, causes, and mechanisms of these 

alterations has been conducted and continues to be undertaken; however, as evidence indicating the 

prevalence and persistence of immune dysregulation during spaceflight amasses, additional questions 

arise. Currently, the Human Research Program Roadmap has currently baselined six prioritized Research 

Gaps that future studies should seek to address. These research gaps are as follows: 

 IM1: We do not know to what extent spaceflight alters various aspects of human immunity 

during spaceflight mission up to 6 months. 

 IM2: It is necessary to define a flight standard related to spaceflight-associated immune 

system dysregulation. 

 IM3: We have not defined and validated a terrestrial human analog for spaceflight-

associated immune system dysregulation. 

 IM6: We do not know the cumulative effects of chronic immune dysfunction on missions 

greater than six months. 

 IM7: It is necessary to correlate the observed effects of spaceflight-associated immune 

system dysregulation with known terrestrial clinical conditions. 

 IM8: We do not know the influence, direct, or synergistic, on the immune system of other 

physiological changes associated with spaceflight. 

These six research gaps remain a priority in the immune discipline, and addressing these knowledge gaps 

will be vital for understanding the immune dysregulation observed during long-duration flight and for 

developing potential countermeasures to be used during exploration-class missions. 

While future studies will largely be directed to focus on addressing these identified research gaps, the 

addition of new knowledge Gaps is possible, and could support additional areas of research. These 

additional research priorities could comprise uninvestigated areas of immune biology, or the 

interdisciplinary interactions between the immune system and other physiological systems. For example, 

while some cellular subsets have been extensively studied, little is known about other cells, such as B cells 

and dendritic cells during spaceflight. Further, a more mechanistic understanding of the immune 

alterations observed during spaceflight will also be required, as such mechanistic insight may form the basis 

to target (yet to be designed) countermeasures. Research should be aimed at understanding the extent to 

which immune changes are a direct effect of microgravity altering cell function, or the result of indirect 

effects of microgravity on factors such as hydrostatic pressure and fluid shear. To fully understand the 

impact of spaceflight on the immune system and the associated clinical risk, the effects of flight on 

inflammatory response and antibody production should be further examined. In addition, little research to 

date has examined sex differences in the immune alterations observed during flight, although it is an area 

of research that may warrant further investigation (Kennedy et al. 2014). The field of spaceflight 

immunology is rapidly growing, and the body of knowledge regarding the effects of spaceflight on the 

immune system is quickly expanding. In the past two decades, extensive research has been conducted 
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characterizing the spaceflight-induced alterations in the immune system. As these studies advance our 

knowledge, they also lead to additional questions, resulting in an ever-evolving discipline.  

 

X. CONCLUSION 

Determining the effect of space travel on the human immune system has proven to be extremely 

challenging. Limited opportunities for in-flight studies, varying mission durations, technical and logistical 

obstacles, small subject numbers, and a broad range of potential assays have contributed to this problem. 

Additionally, the inherent complexity of the immune system, with its vast array of cell populations, sub-

populations, diverse regulatory molecules, and broad interactions with other physiological systems, makes 

determining precise variables to measure very difficult. There is also the challenge of determining the 

clinical significance of any observed immune alterations. Will such a change lead to disease, or is it a 

transient subclinical observation related to short-term stress? The effect of this problem may be observed 

by scanning publications associated with immunity and spaceflight, which began to appear during the 

1970s. Although individually they are each valid studies, the comprehensive literature to date suffers from 

widely varying sampling methods and assay techniques, low subject counts, and sometimes a disparate 

focus on narrow aspects of immunity.  

The most clinically relevant data are derived from in-flight human studies, which have 

demonstrated altered cell-mediated immunity and reactivation of latent herpes viruses. Much more data 

are available from post-flight testing of humans, with clear evidence of altered cytokine production 

patterns, altered leukocyte distribution, continued latent viral reactivation, and evidence of dramatically 

altered virus-specific immunity. It is unknown if post-flight assessments relate to the in-flight condition or 

are a response to landing stress and readaptation. In-flight culture of cells has clearly demonstrated that 

immune cells are gravity-sensitive and display altered functional characteristics. It is unknown if these data 

are related to in vivo immune cell function or are an artifact of microgravity culture. Ground analog testing 

of humans and animals, as well as microgravity-analog cell culture, has demonstrated utility. However, in all 

cases, it is not known with certainty if these data would reflect similar testing during space travel. Given 

their ready availability, ground analogs may be extremely useful for assay development and the evaluation 

of potential countermeasures. 

In general, the evidence base suffers from widely disparate studies on small numbers of subjects 

that do not directly correlate well with each other or spaceflight itself. Also lacking are investigations of the 

effect of gender on adaption to spaceflight. This results in significant knowledge ‘gaps’ that must be filled 

by future studies to completely determine any clinical risk related to immunity for human exploration-class 

space missions. These gaps include a significant lack of in-flight data, particularly during long-duration 

space missions. The International Space Station represents an excellent science platform with which to 

address this knowledge gap. Other knowledge gaps include lack of a single validated ground analog for the 

phenomenon and a lack of flight-compatible laboratory equipment capable of monitoring astronauts (for 

either clinical or research purposes). 

However, enough significant data exist, as described in this manuscript, to warrant addressing this 

phenomenon during the utilization phase of the ISS. A recent Space Shuttle investigation has confirmed the 
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in-flight nature of immune dysregulation, demonstrating that it is not merely a post-flight phenomenon. 

Several current studies are ongoing onboard the ISS that should thoroughly characterize the phenomenon. 

NASA recognizes that if spaceflight-associated immune dysregulation persists during exploration flights in 

conjunction with other dangers, such as high-energy radiation, the result may be a significant clinical risk. 

This emphasizes the need for a continued integrated comprehensive approach to determining the effect of 

prolonged spaceflight, separated from transient launch and landing stresses, on human immunity. After 

such studies, the phenomenon will be understood, and, hopefully, a monitoring strategy will have been 

developed that could be used to monitor the effectiveness of countermeasures. 
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XIII. LIST OF ACRONYMS 

AMP: antimicrobial peptide 

AWO: Antarctic winter-over 

CD: Cluster of Differentiation 

CGA: Chromagranin A 

CMI: Cell-mediated immunity 

CMV: Cytomegalovirus 

DHEA: Dehydroepiandrosterone 

DHEA-S: Dehydroepiandrosterone Sulfate 

EBV: Epstein-Barr Virus 

ESA: European Space Agency 

EVA: Extravehicular activity 

HDBR: Head-down-tilt Bed Rest 

HLA: Human leukocyte antigen 

HMP: Haughton-Mars Project 

HRP: Human Research Program 

HSP: Health Stabilization Program 

IE/E intermediate-early or early 

IFN: Interferon 
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Ig: Immunoglobulin 

IL: Interleukin 

ISS: International Space Station 

L-180: Launch – 180 days; 180 days prior to launch (similar for L-45; etc.) 

LPS: lipopolysaccharide 

MHC: Major Histocompatibility complex 

mRNA: Messenger ribonucleic acid 

NASA: National Aeronautics and Space Administration 

NEEMO: NASA Extreme Environment Mission Operations 

NK: Natural Killer 

PCR: polymerase chain reaction 

PHA: phytohemagglutinin 

PRD: Program Requirements Document 

QRT-PCR: quantitative real time-PCR 

R+0: Return + 0; landing day (similar for R+30; etc.) 

ROS: Reactive Oxygen Species 

SHFH: Space Habitability and Human Factors 

TCR: T-cell receptor 

TNF: Tumor Necrosis factor 

URI: Upper Respiratory Infection 

UTI: Urinary tract infection 

VCA: Viral Capsid Antigen 

VZV: Varicella-Zoster Virus 
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XIV. APPENDIX 1: Additional Representative Evidence by Category 

    

A. FLIGHT DATA   

In-flight human data   

Category Reference # Level of 

Evidence 

Summary of Evidence 

Latent viral 

reactivatio

n 

(Mehta et al. 

2000b) 

2 Shuttle astronauts: latent CMV reactivated before 

and during space flight, correlates with stress 

hormone levels and Ab titers. 

  (Payne et al. 

1999) 

2 Assessment of in-flight reactivation of EBV via 

salivary detection of EBV DNA by PCR; 11 sero-

positive Shuttle astronauts. Highest level of 

reactivation was pre-flight, in-flight levels similar to 

post-flight. Suggests highest stress is before mission. 

  (Pierson et al. 

2005) 

2 Assessment of in-flight reactivation of EBV via 

salivary detection of EBV DNA by quantitative PCR; 

32 Shuttle astronauts. Although subject incidence of 

shedding is actually higher pre-flight than in-flight, 

the mean copy number per ml was much higher in-

flight (417) compared with pre-flight (40) and post-

flight (44).  

  (Stowe et al. 

2001a) 

2 In-flight assessment during STS-95, includes elderly 

astronaut. Viral reactivation occurred during flight, 

as well as increased DHEA-S/cortisol ratio. Suggests 

hormone changes during flight influence CMI.  

  (Mehta et al. 

2004) 

2 Short-duration shuttle flights, subclinical latent VZV 

reactivation observed during flight (salivary VZV 

DNA), not present in control subjects. 

Altered 

cell-

mediated 

immunity 

(Cogoli 1993a) 2 In-flight CMI test altered, T cell responses to 

mitogens depressed in-flight and post-flight. Clinical 

significance unclear. 

  (Gmunder et al. 

1994) 

2 Long-duration/Mir: In-flight and post-flight CMI skin 

test reduced in some crewmembers. In-flight DTH 

alterations potentially associated with high-stress 

EVA schedule. 
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In-flight animal data   

  (Lesnyak et al. 

1996) 

1 Rats were dissected during the Shuttle SLS-2 mission, 

and biosamples were returned to Earth. Summary: T 

cell activity decreased in-flight, spleen NK cell 

function decreased in-flight and post-flight, and 

bone marrow NK cells were unaltered. In flight: IL-1, 

IL-2, and TNF were reduced; post-flight: IFN levels 

were reduced. 

 

 

In-flight cell culture data 

  

Altered NK 

cell 

function 

(Buravkova et 

al. 2004) 

1 ISS culture experiment: NK cell target interaction 

unaltered during flight. Low activity for flight and 

ground (ISS-8).  

Altered 

cytokine 

production 

(Chapes et al. 

1994) 

1 Secretion of IL-1 and TNF-α by cell line following LPS 

stimulation elevated during flight. 

Altered 

activation 

(Cogoli 1997) 1 Cytoskeletal involvement, Ras/Rap, and PKC all 

altered during microgravity exposure, leading to 

altered T cell responses and lack of cell activation. 

Review of in-flight studies. 

  (Cogoli et al. 

1993b) 

1 In-flight: suspended T cells fail to activate, bead-

bound T cells do activate. Suggests failure of 

monocytes to act as APCs in microgravity.  

  (Pippia et al. 

1996) 

1 In-flight stimulation of human PBMC with or without 

exogenous IL-1/IL-2 to determine if a monocyte IL-1 

defect explains in-flight lymphocyte function loss. 

Exogenous cytokines did not prevent loss of activity, 

measured as the mitotic index. 

  (Hughes-

Fulford 2001) 

1 Osteoblasts cultured during space flight 

demonstrated alterations in gene expression. 

Immediate early growth genes showed diminished 

mRNA induction in microgravity, and the osteoblasts 

were slower to enter the cell cycle. Thus, 

microgravity alone may be a significant factor in 

bone loss associated with flight. 

  (Hughes-

Fulford 2003) 

1 Multiple studies have shown that changes in 

cytoskeleton and extracellular matrix are associated 

with space flight, as well as actin and microtubule 

modifications. 
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  (Hashemi et al. 

1999) 

1 Activation of human PBMC/T cells during spaceflight 

results in failure to progress through CD69/CD25 

expression. Indicates that inhibition of the T cell 

proliferation response occurs during early activation 

intracellular signaling steps.  

  (Meehan 1987) 1 T cell proliferation is blunted during short-duration 

missions. Similar responses seen to those resulting 

from terrestrial stress and hypoxia. In-flight studies 

needed to determine contribution of microgravity to 

observed effects. 

    

 

Post-flight human data 

  

Latent viral 

reactivatio

n 

(Stowe et al. 

2001b) 

2 Increases in EBV VCA antibodies were observed 

immediately before and following space flight. EBV 

NA antibodies were decreased at L-10 and found to 

further decrease following flight, indicating reduced 

CTL killing of infected cells. Those astronauts 

displaying EBV reactivation also had increases in 

stress hormone levels. 

  (Stowe et al. 

2000) 

2 Shuttle astronauts: lytic EBV reactivation observed 

pre- and post-flight by distinguishing EBV-VCA and 

EBV-EA antibody titers. Correlates with stress 

hormone alterations. 

Altered 

cytokine 

production

/ leukocyte 

distribution 

(Crucian et al. 

2000) 

2 Altered cytokine profiles and leukocyte distribution 

following short-duration flight. 

  (Manie et al. 

1991) 

2 Post-flight study with 5 cosmonauts: Enhanced IL-2 

production but reduced IL-2r expression at landing. 

No changes in IL-1 expression or peripheral blood 

bulk phenotype. 

Altered NK 

cell 

function 

(Konstantinova 

et al. 1995) 

2 21-day space flight resulted in post-flight reductions 

in NK cell levels, NK cell target binding, and NK cell 

cytotoxicity. Additionally, lymphocytes 

demonstrated a reduced capacity to produce TNF at 

landing day. 
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  (Meshkov and 

Rykova 1995) 

2 NK cell function altered in cosmonauts following 

space flight.  

  (Mehta et al. 

2001) 

2 Short-duration Shuttle flights: NK cell number 

unaltered post-flight, but NK cell cytotoxicity 

reduced following flight.  

Altered 

leukocyte 

distribution

/neutrophil 

function 

(Stowe et al. 

1999) 

2 Following short-duration space flight, crewmembers 

displayed neutrophillia with increased neutrophil 

adhesion. At landing, there were alterations in the 

expression of adhesion molecules.  

Altered 

monocyte 

function 

(Kaur et al. 

2005) 

2 Monocyte study, short-duration post-flight: 

monocyte number was unaltered, but monocyte 

capacity to engulf E. coli, oxidative burst, and 

degranulation were all reduced following landing. 

N=25 crewmembers. 

Altered 

granulocyte 

function 

(Kaur et al. 

2004) 

2 Short-duration Shuttle flights: Neutrophil number 

increased post-flight, and phagocytosis and oxidative 

burst were lower following flights of > 9 days. 

Altered 

neuroendo

crine 

response 

(Stowe et al. 

2003) 

2 Post-flight Shuttle study tests the hypothesis that 

mission duration impacts neuroimmune responses. 

Data suggest that sympathetic nervous responses 

dominate following shorter flights, whereas longer 

flights are characterized by glucocorticoid-mediated 

changes.  

 

 

 

Post-flight animal data 

  

Cytokine 

dysregulati

on/T cell 

function 

(Gould et al. 

1987) 

1 Splenocytes from rats flown on Shuttle mission SLS-3 

for 1 week demonstrated reduced IFN- production 

but normal IL-3 production following CON-A 

stimulation. 

  (Grove et al. 

1995) 

1 Splenocytes from rats flown on Shuttle mission SLS-

57 demonstrated reduced IL-2 production using TCR 

independent mitogen, but normal production using 

TCR-dependent mitogen. Splenocytes demonstrated 

increased integrin expression, whereas LN 

expression was decreased. Thus, microgravity may 

induce lymphocyte redistribution among organs, 

influencing organ-specific activation potentials. 
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  (Miller et al. 

1995) 

1 Splenocytes and thymocytes were recovered post-

flight from rats flown on STS-54 and secreted 

significantly higher titers of IL-3 and IL-6 (thymocytes 

only). Thus, spaceflight can enhance the expression 

of certain cytokines. 

  (Nash et al. 

1992) 

1 Study of inguinal lymph node lymphocytes from rats 

flown on the COSMOS 2044 mission. Proliferation 

and mitogenic responses of lymphocytes (3H 

method) were not significantly altered. Production 

of IL-2 was not altered. Data suggest tissue-specific 

microgravity alterations. 

  (Sonnenfeld et 

al. 1996) 

2 Post-flight study of Rhesus monkeys flown on the 

Russian COSMOS satellite. Reduced IL-1 production 

and IL-2 receptor expression were observed after 

space flight. 

  (Sonnenfeld et 

al. 1992) 

1 Post-flight assessment of rats flown on the COSMOS 

2044 satellite. Leukocyte distribution was altered 

post-flight compared with control rats. 

  (Rykova et al. 

1992) 

1 Post-flight assessment of rats flown on the COSMOS 

2044 satellite. NK cell function was altered post-

flight. Antiorthostatic suspension did not affect 

cytotoxicity. Effect was dependent on type of target 

cell utilized for assessment. 

  (Sonnenfeld et 

al. 1990) 

1 Post-flight assessment of rats flown on the COSMOS 

1887 satellite. Leukocyte distribution was altered 

post-flight compared with control rats. 

 

 

 

B. GROUND DATA 

  

Ground-analog human data   

Arctic 

analog 

(Crucian et al. 

2007) 

2 Haughton Mars Project, Devon Island, Canadian 

Arctic with 10 field season participants. Altered T cell 

function and cytokine profiles during mission. 

Sleep 

deprivation 

(Shearer et al. 

2001b) 

2 To assess if sleep deprivation may explain some 

space flight observations. Plasma cytokines 

measured. Data reveal that sleep loss increases 

levels of plasma sTNF-α RI and IL-6 (that connect the 

nervous, endocrine, and immune systems). 
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Bed rest 

analog 

(Schmitt et al. 

1996) 

2 Six subjects, 4 weeks of head-down tilt (HDT); 2 

subjects, 113 days of HDT. Significant decrease in IL-

2 secretion by PHA-stimulated T cells. Increased IL-1 

production.  

  (Uchakin et al. 

2007) 

2 28-day bed rest results in changes in peripheral 

leukocyte distribution, T cell functional responses, 

cytokine secretion patterns, and reactivation of 

latent EBV. 

 
(Feuerecker et 

al. 2013) 
2 

To determine if artificial gravity via centrifugation 

mitigates physiological effects of 5 days bed rest. 

Decreased CD62L on lymphocytes and elevated 

soluble CD62 were observed at day 3 of bed rest in 

all subjects, with no effects of artificial gravity. 

Antarctic 

analog 

(Shearer et al. 

2002) 

1 Evaluation of IL-10/IL-1ra and IFN- (anti-

inflammatory vs. pro-inflammatory) in 21 Antarctic 

winter-over participants. Data showed time-

dependent increase in IFN- during the mission and 

decreases in IL-1ra/IL-10 compared with control 

subjects. 

  (Tingate et al. 

1997) 

2 Alterations in T cell function, depressed CMI 

responses, and reduced T cell proliferative capacity 

all observed during Antarctic winter-over. 

Additionally, monocytosis and changes in the 

production of inflammatory cytokines were 

observed. Viral reactivation is also observed during 

winter-over. 

 (Mehta et al. 

2000a) 

2 EBV reactivation and decreased CMI in Antarctic 

winter-over subjects. 

 
(Mishra et al. 

2014) 
2 

No alterations in soluble HLA-G during Antarctic 

winter-over. 

  
(Yadav et al. 

2012) 
2 

Elevated serum IgA and altered cytokine levels 

during Antarctic winter-over. 

 

 

Ground-based animal data 

  

Rat 

suspension, 

MC 

unloading, 

restraint 

(Berry et al. 

1991) 

1 Musculoskeletal unloading affected IFN- responses, 

while IL-1 and IL-2 were affected by the physiological 

stress of restraint. 



 46 

Mice, anti-

orthostatic 

intolerance 

(Sonnenfeld et 

al. 1988) 

1 Suspension model simulates some effects of 

microgravity. During suspension, secretion of 

interferon alpha and beta was inhibited, and mice 

showed a loss of resistance to infection 

(encephalomyocarditis virus). 

Mice, total 

body 

irradiation 

(Pecaut et al. 

2014) 
1 

Splenocytes of mice undergoing total body 

irradiation exhibited greater oxidative burst capacity 

and elevated pro-inflammatory cytokine production 

following bacterial challenge. 

Mice, 

unloading, 

muscle 

regeneratio

n 

(Kohno et al. 

2012) 
1 

Infiltration of neutrophils and macrophages into 

damaged muscle tissue was delayed in hindlimb 

suspended mice, and those macrophages recruited 

were primarily pro-inflammatory and exhibited 

reduced function. This may contribute to the 

observed delayed muscle regeneration in the 

suspension model. 

 

 

Ground-based cell culture 

data 

  

  (Licato and 

Grimm 1999) 

1 NK and LAK activity from PBMC stimulated during 

clinorotation was unaltered except for CD25 

expression (IL-2r alpha chain). Ability of IL-2 to 

induce secondary cytokines was completely 

abrogated.  

  (Schwarzenber

g et al. 1999) 

1 Discussion of effect of microgravity on T cell 

activation. Effect is attributed to cytoskeletal 

changes and loss of IL-2 receptor. For ground 

assessments, data from a random-positioning 

machine are in good agreement with data from 

space flight.  

  (Boonyaratana

kornkit et al. 

2005) 

1 Ground-based assessment of multiple gene 

expression during free-fall culture in a random-

positioning machine. Alterations in the expression of 

10 key genes during simulated microgravity were 

identified. Data suggest that the PKA pathway is the 

key pathway related to loss of T cell activation in 

microgravity. 
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C. REVIEW ARTICLES 

  (Borchers et al. 

2002) 

4 Comprehensive review of spaceflight and immunity. 

  (Sonnenfeld 

and Shearer 

2002b) 

4 Comprehensive review of spaceflight and immunity. 

  (Sonnenfeld 

2002a) 

4 Comprehensive review of spaceflight and immunity. 

  (Sonnenfeld 

1994) 

4 Review of the effect of space flight on cytokine 

production.  

  (Konstantinova 

et al. 1993) 

4 Review of Russian in-flight and post-flight immune 

data during long-duration flight. Summary: some 

alterations in Ig classes, lower in-flight DTH in 1 of 3 

cosmonauts. 

  (Lesnyak et al. 

1993) 

4 Review of data from rats flown during a Space 

Shuttle mission. In-flight immune dysregulation is 

detailed. 

  (Taylor et al. 

1997) 

4 Review of immune changes during and after space 

flight. 

 (Crucian et al. 

2014a) 
4 

Review of terrestrial analogs. 

 


