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ABSTRACT

The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to
2.5 RE is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid
to ice–silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and
may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative
to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity
regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as
allowed by the Preliminary Earth Reference Model. For ice–silicate hybrid worlds, dramatically greater dissipation
is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater
orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for
distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for
a range of forcing frequencies. Rates of orbital circularization are found to be 10–100 times faster than standard
predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for
a diverse range of ice–silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for
planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice
or silicate melting.

Key words: celestial mechanics – planetary systems – planets and satellites: general

Online-only material: color figures

1. INTRODUCTION

One of the unexpected discoveries that has come out of the
rapid and ongoing growth in the number of known exoplanets is
the wide distribution of orbital eccentricities in contrast to our
own solar system. A similarly unexpected result has been the
number of planets in short orbital periods, such as the population
of Hot Jupiters and Hot Neptunes. Because two of the primary
ingredients required to drive strong long-term tidal heating
in a planetary body are high eccentricity, and proximity to a
massive host, these two features of the exoplanet population
taken together suggest a rich environment for planets within
which tidal heating can play a significant role. Even if the orbital
conditions to maintain steady long-term tidal heating, such as
the mean motion resonance configuration of the Galilean moon
system of Jupiter, remain rare in exosystems, we still desire
improvements in our understanding of the tidal response of
terrestrial worlds in order to better model their orbital evolution
and damping, and to help inform the selection of Quality factors
(Q) used for astronomical studies of terrestrial class objects.

There are three core reasons why it is critical to study the
allowable rates of tidal heating in terrestrial class exoplanets at
this time. First, there is simply the desire to understand specific
planets in terms of their internal heating, temperature histories,
and levels of volcanism. Second, tidal heating plays a central
role in the stability of planetary orbits. Planets with high tidal
dissipation may circularize rapidly from high eccentricities,
reducing the probability of orbit crossings with other nearby
objects, and thus reducing the probability of close encounters
and scattering events (e.g., Chatterjee et al. 2008; Matsumura
et al. 2013, 2010b). Low tidal dissipation, primarily caused
by the melting of initially solid material, may allow high
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eccentricities to remain for far longer timescales, and reduce
overall terrestrial planet stability. Lastly, emerging theories for
the formation of short period extrasolar planets are based on
tidal circularization from high eccentricity scattered orbits, and
the limits of tidal heating in terrestrial class exoplanets is central
to determining if such a mechanism is applicable to this category
of worlds.

Eccentricities in the overall extrasolar planet population are
proving to be far higher than initially expected (Tremaine &
Zakamska 2004; Namouni 2005; Butler et al. 2006; Udry &
Santos 2007; Matsumura et al. 2008; Schneider 2014). High
eccentricities are found not only for long period or high-mass
Jupiter class targets, but also for many short-period objects,
including members of the growing catalog of super-Earths
(objects with roughly 1 to 10 Earth-masses (ME)). While
eccentricities show a gradual trend toward more circular orbits
at short periods, with some planets at zero eccentricity, there
remains a significant population across all mass classes at
higher eccentricities even for very close-in orbits. Eccentricity
values are difficult to measure for exoplanets, and are often
reported based on the best fit of radial velocity lightcurves
to multiple orbital elements. In some cases values may be
overestimated (Shen & Turner 2008; Zakamska et al. 2011;
Pont et al. 2011), while in other cases short period planets
are only assumed to have zero eccentricity based on presumed
rapid tidal circularization timescales in order to refine the fit
of other parameters. In a few cases eccentricity is cautiously
not reported. Despite such uncertainties, the broad distribution
of eccentricities remains in need of explanation. Theories for
the cause of high eccentricities include: ongoing circularization
(e.g., Matsumura et al. 2008), the prevalence of early scattering,
unseen outer perturbers, and the Kozai mechanism (Kozai 1962;
Lidov 1962) where high inclination perturbers interact with
inner objects.
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Early theories for the formation of Hot Jupiters and Hot
Neptunes focused upon the role of migration induced by early
disk interactions. More recently it has been proposed that
planet-planet scattering in early solar systems followed by
tidal circularization may better explain certain features of the
observed short period population (Ford & Rasio 2006; Fabrycky
& Tremaine 2007; Wu et al. 2007; Nagasawa et al. 2008; Wu
& Lithwick 2011). The discovery of a sub-population of Hot
Jupiters with their orbits misaligned to the spin axis of their
host stars, as determined by the Rossiter–McLaughlin effect, is
difficult to explain by alternative migration theories (Ohta et al.
2005; Triaud et al. 2010; Winn et al. 2010). For gas giant planets,
the high tidal dissipation rates required for circularization down
from high eccentricities needed to explain this population has led
to research on enhanced tidal dissipation in gas giant interiors.

Numerous super-Earths also exist in short period orbits,
although population statistics are not fully clear on if their
presence in such positions is high or low compared to other
orbital regions. Howard et al. (2012) find that for solar-type
stars, a super-Earth excess at very short periods analogous to
the Hot Jupiters does not appear to exist in the Kepler catalog.
The eccentricities meanwhile of most Earth and sub-Earth class
exoplanets are not yet well established. The existence of short
period terrestrial class worlds, however, is sufficient to motivate
analysis of their past and present tidal behavior. Whether
formed in-situ or via migration, the role of layer structures
and of alteration via melting is essential for understanding the
tidal dynamics of these worlds. In previous work (Henning
et al. 2009), we analyzed the eccentricity component of tidal
heating of terrestrial exoplanets using a variety of temperature-
dependent viscoelastic homogenous interior models, looking at
overall features of a possible tidally active population in terms
of observability. This work indicated that for exoplanets with
periods under ∼20–30 days around G to K class stars, extreme
heating results are easily possible at modest eccentricities for
Earth-sized worlds. Solutions with extreme heat production, on
the order of thousands to millions of times the ∼44 terawatt
(TW) heat rate of the modern Earth, are obtained using both
the standard fixed Quality factor approach, as well as using
viscoelastic methods including melting. This analysis, however,
considered melting as a homogeneous phenomenon, with a
single melt fraction to describe the entire planetary mantle.
Real systems may instead experience strong stratification, and
subsequently require an advanced method to determine true tidal
outcomes and the resulting constraints on orbital evolution.

In this paper we update this approach by considering mul-
tilayered models. A multilayer method is necessary both as a
prerequisite for models which track the production of partial
melt in extreme worlds, and for the more basic purpose of im-
proving the accuracy of tidal heat production predictions even
in less extreme cases where material layers remain largely un-
melted. Many authors have investigated the tidal response of
the solid Earth (e.g., Wahr 1981; Dehant 1987; Mathews et al.
1995; Wang 1997), including the use of multiple layers, but
generally with a focus upon Love numbers at the surface, and
not on the distribution and magnitude of heating in extraso-
lar Earth-analog cases as explored here. Super-Earth planets
(Valencia et al. 2006, 2007b) are of particular interest in this
work, due to the natural selection bias of most exoplanet detec-
tion methods toward larger bodies. Regardless of the galactic
population, there will be a large number of super-Earth worlds
for which we will wish to have a robust understanding of the
their tidal response behavior.

In previous work we have treated super-Earth worlds as
scaled-up Earth analogs dominated by iron and silicate, how-
ever, studies (Raymond et al. 2004, 2006, 2009; Mandell et al.
2007; Valencia et al. 2007a; Fu et al. 2010) suggest that it will
be common for super-Earths to have accreted large ice mantles.
Indeed, it can be expected that there is a continuum of planetary
compositions from super-Earths, into mini-Neptunes (Barnes
et al. 2009; de Mooij et al. 2012), on up to the deep ice mantles
of full Neptune-class worlds. For this reason, in this study we
also examine the tidal impact of adding ice mantles to generate
ice–silicate hybrid planets within the Earth to super-Earth mass
range.

It is important to emphasize that tidal heating values reported
in this work are for eccentricity-tides only, and are based on
an assumption of spin-synchronization relative to the orbital
host. This assumption is best at very short orbital periods, how-
ever, it is not guaranteed, and some short period exoplanets
may instead lock to higher spin-orbit resonances other than 1:1.
Makarov et al. (2012) and Makarov & Berghea (2014) have
suggested such higher order spin states for GJ 581 d and GJ
667C c respectively, based on advanced rheology models. For
the same reason that the timescales for spin-synchronization
and obliquity damping are often assumed to be short (on the
order of a few millions of years) in proximity to a mas-
sive host, heating from such tidal components is expected to
be very large, and if present may readily contribute to global-
scale melting. The total tidal heating with ongoing spin, obliq-
uity, and eccentricity tides may be approximated by a linear sum
of contributions (e.g., Wahr et al. 2009, Equation (1), or Jara-
Orué & Vermeersen 2011, Equation (2)), although at similar
periods summation at the tidal potential stage will not always
translate into summation of net deformation, and the material
result will be complex if for example one additional heat source
shifts a layer across a threshold into a partial melt regime. If
heating from any ongoing non-synchronous spin tides is mod-
erate, then it may here be considered akin to the additional ra-
dionuclide heating of young planets, as both would bias a planet
toward hot and high melt-fraction eccentricity-tide solutions.
In addition, note that only values computed after application
of the eccentric external tidal forcing potential (such as heat
production rates; see the Appendix) embed an eccentricity-tide
only assumption, while results prior to application of the tidal
potential such as Love numbers, and the radial distribution of
deformation, are functions of the assumed layer structure and
forcing frequency only.

In Section 2 we discuss general issues for tidal modeling. In
Section 3 we describe the propagator method for computing
multilayer tides, along with selection criteria for material
parameters. In Section 4 we report results for Earth analog
worlds of 1 RE, and then for ice–silicate hybrid worlds up to
2.5 RE. In Section 5 we discuss the impact of water ocean
presence, position, and size, as well as the impact of gradations
in material properties and the production of magma oceans.

2. BACKGROUND

Fundamental tidal heating theory (Darwin 1879; Love 1927;
Munk & MacDonald 1960; Kaula 1968; Zschau 1978; Platzman
1984) has been used to extensively study solar system targets,
including silicate systems such as Earth’s moon (Peale & Cassen
1978), and Io (e.g., Peale et al. 1979; Reynolds et al. 1980;
Yoder & Peale 1981; Fischer & Spohn 1990; Tackley et al.
2001; Hussmann & Spohn 2004), and for ice–silicate hybrid
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systems such as Europa (e.g., Cassen et al. 1979; Squyres et al.
1983; Ojakangas & Stevenson 1989; Moore & Schubert 2000;
Showman 2003; Moore 2003a; Tobie et al. 2005; Hurford et al.
2005), Ganymede (Showman & Malhotra 1997), Enceladus
(e.g., Meyer & Wisdom 2007; Hurford et al. 2007a; Roberts
& Nimmo 2008), and many additional objects. More recently,
numerous studies have investigated the role and impact of tidal
heating and tidal evolution for terrestrial exoplanets (Jackson
et al. 2008a, 2008c; Barnes et al. 2008, 2013; Henning et al.
2009; Bĕhounková et al. 2010, 2011; Matsumura et al. 2010a;
Heller et al. 2011; Efroimsky 2012; Bolmont et al. 2013; Heller
& Barnes 2013; Heller & Armstrong 2014) with an emphasis
on habitable worlds, as well as multilayer tidal heating in the
cores of gas giant planets (Remus et al. 2012a, 2012b; Storch
& Lai 2014). Recently, Auclair-Desrotour et al. (2014) have
investigated the role of frequency-dependent tidal damping on
the orbital evolution of solid and fluid exoplanets.

To date, a handful of extrasolar super-Earths are already
candidates for geologically significant tidal heating, including
GJ 876 d (Rivera et al. 2005; Valencia et al. 2007b; Bean &
Seifahrt 2009; Correia et al. 2010; Rivera et al. 2010b), 55
Cancri e (McArthur et al. 2004; Dawson & Fabrycky 2010),
GJ 1214 b (Charbonneau et al. 2009), HD 1461 b (Rivera
et al. 2010a), and GJ 667C b (Bonfils 2009). Super-Earths
already detected with reported eccentricities of zero may also
have experienced extreme tidal conditions in their past, such as
CoRoT-7 b, CoRoT-7 c, Kepler-10 b, and Kepler-11 b (Queloz
et al. 2009; Léger et al. 2009; Batalha et al. 2011; Lissauer et al.
2011). For these worlds, due to very short orbital periods, even
very small eccentricities (e.g., below 0.001) may still generate
geophysically significant tidal heating.

Large radii, as determined by transit, suggest some Hot
Jupiters with higher eccentricities may be tidally active
(Laughlin et al. 2005; Gu et al. 2003), such as HD209458 b
(Bodenheimer et al. 2001, 2003), HAT-P-1 b (Bakos et al. 2007),
and many recent objects, e.g., WASP-4 b, WASP-6 b, WASP12
b, WASP15 b, and TrES-4 (Ibgui et al. 2010). The discovery of
the Neptune-class GJ 436 b at e = 0.150 ± 0.012 (Deming et al.
2007) with a period of only 2.64 days suggests potentially strong
tidal activity. Such anomalies often hint at unseen companions.
The resonant multi-body system GJ 876 b, c, d, e (Marcy et al.
1998, 2001; Rivera et al. 2005, 2010b) and the five-planet sys-
tem 55 Cancri b, c, d, e, f (Marcy et al. 2002; Fischer et al. 2008)
with the likely eccentric tidal planet 55 Cancri e (McArthur et al.
2004; Dawson & Fabrycky 2010) each suggest the importance
and high prevalence of multiple planet interactions. Mean mo-
tion resonances, critical for sustaining long duration eccentricity
driven tidal activity, already appear common and stable among
exoplanet systems (Marcy et al. 2001; Lee & Peale 2002; Lee
2004; Haghighipour et al. 2003; Lecoanet et al. 2009), likely
due to systematic assembly during convergent migration (Yu &
Tremaine 2001), perhaps analogously to the Galilean moon sys-
tem (Canup & Ward 2002). Tidal activity may also occur due
to ongoing circularization alone (Jackson et al. 2008b). High
inclination outer perturbers may also be responsible for driv-
ing some of the observed eccentricity distribution via the Kozai
mechanism (Kozai 1962; Takeda & Rasio 2005).

Observability of such tidal activity faces numerous challenges
(Kaltenegger et al. 2010). The primary issue is that to obtain
high tidal response rates, a planet generally needs to be in a very
close orbit around a host star, and there its surface environment
is overwhelmingly dominated by insolation. For bright main
sequence hosts, a planet, even despite tidal activity, may have a

magma ocean solely due to insolation heating, e.g., CoRoT-7 b
(Barnes et al. 2010; Léger et al. 2011). Spin synchronization
may restrict the highest insolation levels to one face of a planet,
but even modest atmospheres may be sufficient to transport
enough heat to a nightside to mask the few degrees Kelvin
change typically possible from tidal enhancement.

For ice-hybrid worlds we focus here additionally on colder
terrestrial planetary cases, where surface water ice is plausible,
and tidal heat competes less with insolation for significance.
This category will include exomoons (Barnes & O’Brien 2002;
Scharf 2006; Heller & Barnes 2013), where it is easier for tidal
heating to play a more dominant role due to arbitrary distances
from a host star (Stevenson 1999; Debes & Sigurdsson 2007),
but detectability may be further off. Kepler-class photometry
(Borucki et al. 2008) may have sufficient sensitivity in low
noise cases to begin detecting extrasolar moons (Kipping et al.
2009). Tidal heating scales roughly by the fifth power of body
radius, and the second power of host mass (Equation (1)), and
therefore larger icy exomoons, around nonluminous hosts at or
above Jupiter’s mass, will be particularly susceptible to tidal
activity.

3. METHODS

The basis of computing tidal dissipation for layered self-
gravitating planetary bodies is a method known as the propagator
matrix technique (Love 1927; Alterman et al. 1959; Takeuchi
et al. 1962; Peltier 1974; Sabadini & Vermeersen 2004). De-
tails of this method are given in the Appendix, and are further
presented in comprehensive detail in Sabadini & Vermeersen
(2004). As input, this technique takes a model world composed
of spherically symmetric shells, each with prescribed density,
shear modulus, and viscosity. An external gravitational poten-
tial, typically a degree 2 tidal disturbance of a given magnitude,
is then applied to this model body. Boundary conditions are
solved at each interface to yield solutions for the radial and
tangential displacements, strains, and stresses. The result of
the propagator matrix approach is a set of coefficient functions
which are then composed into full 9 × 9 element stress and strain
tensors in spherical coordinates and combined to determine the
work per unit volume.

The viscoelastic solution is found by computing the purely
elastic solution for the system of propagator equations resulting
from the above methods, then invoking the viscoelastic-elastic
correspondence principle (Biot 1954; Peltier 1974; Henning
et al. 2009). In the complex-valued viscoelastic solution (a
Fourier domain approach), the imaginary component of the
computed work carries the information for the energy lost
per cycle, and thus the tidal dissipation rate, while the real
component represents instantaneous stored elastic energy. This
technique leads to maps of tidal dissipation in each layer in
latitude and longitude, each averaged over one orbit, which
may then be summed over depth. Dissipation integrated over all
layers is often assumed to represent a useful first approximation
of the equilibrium surface flux of heat, or in particular, the flux
of heat prior to re-distribution into heat pipes, perhaps at the
base of an object’s lithosphere.

In addition, Tobie et al. (2005) report a fast method for
multilayer tidal computation, which determines the distribution
of heating with depth for a given layer structure, while not
resolving the solution in latitude and longitude. This approach
has been used here to double-check for numerical error buildup
in other methods, as well as to perform high grid density studies
in depth.
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Table 1
Symbols and Parameters

Parameter Symbol

Tidal heat rate W
Semimajor axis a
Eccentricity e
Mass of the primary Mpri

Mass of the secondary Msec

Radius of the secondary Rsec

Second-order gravitational Love number k2

Second-order radial displacement Love number h2

Second-order tangential displacement Love–Shida number l2
Orbital mean motion n
Orbital period P
Pressure p
Temperature T
Ice layer thickness tice

Displacement ur , uθ , uφ

Strain ε

Stress σ

Internal gravitational potential ϕ

External gravitational potential Φ
Gravitational potential stress ψ

Colatitude θ

Longitude φ

Colatitude relative to tidal symmetry axis θT

Longitude relative to tidal symmetry axis φT

Harmonic degree �

Density ρ

Propagator matrix Y
Aggregate propagator matrix B
Propagator boundary matrix M
Propagator solution vector y
Propagator solution kernel c
Propagator boundary vector b
Seismic parameter β

Quality factor Q
Circularization timescale τcirc

Maxwell timescale τMax

Universal gas constant R
Gravitational constant G
Defining viscosity ηo

Viscosity setpoint ηset

Shear modulus μ

Activation energy E∗
Activation volume V ∗

The propagator method traditionally handles boundary con-
ditions for solid-solid interfaces, however, our code has been
extended following Jara-Orué & Vermeersen (2011), to han-
dle layer interfaces with static liquid layers which propagate
neither displacement nor stress. We note this method uses an
alternative to the more common Fourier domain approach for
viscoelasticity, through the Laplace domain, however, for a har-
monic periodic system, results such as surface Love numbers
and total dissipation are the same as from the Fourier methods
above. In addition, we have computed liquid layer results using
the TideLab suite of code provided by William Moore (Moore
& Schubert 2000), which generates the propagator solution for
a planetary model using a separate method in which the core-
to-surface propagation of gravitational (liquid and solid layers)
and mechanical (solid layers only) terms are mathematically
separated (Wolf 1994). These two methods were used as checks
on one another for validation purposes.

In this work we have chosen to only implement the viscoelas-
tic Maxwell rheology (e.g., Bland 1960; Nowick & Berry 1972;

Spada 2009), but other rheologies may also be useful for ex-
trasolar worlds. Alternatives include both the Burgers rheol-
ogy, helpful for modeling multiple grain scale creep mecha-
nisms (Burgers 1935; Zener 1941; Sabadini et al. 1987; Faul &
Jackson 2005; Henning et al. 2009), and the Andrade model
(e.g., Efroimsky & Williams 2009; Efroimsky 2012; Shoji et al.
2013), which can be tuned to achieve a material response closer
to the weak frequency dependence often observed in labora-
tory creep response tests (Karato & Spetzler 1990; Gribb &
Cooper 1998). In the Andrade model, a rheology is primarily
characterized by an empirically determined power law coef-
ficient, commonly designated α, however, a drawback of the
technique is that this parameter is not directly linked to the ma-
terial properties of viscosity and shear modulus. To help limit
the already very large number of free parameters in this work,
and because it allows characterization of planetary responses
in terms of true viscoelastic material parameters, the Maxwell
model was utilized here. The primary impact of both the Burg-
ers and Andrade models is to broaden the material resonance
peak in the frequency domain, reducing the effective frequency
dependence of Q, and bringing the tidal response closer to that
of the fifth power of mean motion dependence of a fixed Q ap-
proach in the region of a broadened peak. Conversely, the only
major weakness of the Maxwell rheology is that its frequency
dependence may be greater than real systems. Therefore, one
may keep in mind how such advanced rheologies are likely to
impact future work, by reducing the sensitivity of results in this
work to tidal forcing frequency or orbital period.

In general, such planet modeling is limited by the very large
number of unknown parameters. When gradations of parameters
are considered, the number of degrees of freedom becomes
potentially infinite. It is therefore our goal not to model all
possible variability and material physics, but to constrain the
top level behavior of multilayer rocky and icy planets, while
identifying the smaller subset of degrees of freedom which
are of primary importance. We also seek to determine which
structural features matter most for the response, and why.
Henning et al. (2009) includes detailed discussion of the impact
of material melting on tidal exoplanets addressed only briefly
here. Valencia et al. (2006) and Valencia et al. (2007a) include
detailed discussion of the impact of various equations of state
on structure.

3.1. Classical Tidal Equations

Results are compared with a homogeneous tidal heating
approach for exoplanets, described in detail in Henning et al.
(2009). The problem of computing the tidal heat production
rate for a simplified planetary body is approached using the
viscoelastic form of the standard homogeneous tidal equation
(Segatz et al. 1988):

Wtidal = −Im(k2)
21

2

R5
secn

5e2

G
, (1)

where each parameter is given in Table 1, and Im(k2) is the
imaginary component of the complex valued load Love number.
This term contains all information in this equation regarding
viscous dissipation in the material, and is derived from a
material’s constitutive equation and complex valued rigidity.
In Henning et al. (2009) Im(k2) was computed for the Maxwell,
Standard Anelastic Solid, and Burgers rheologies.

The classical tidal circularization timescale may be written in
terms of the energy loss rate to tides (Goldreich & Soter 1966;
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Murray & Dermott 2005),

τcirc = GMpriMsece
2

(1 − e2)aWtidal
(2)

where the (1−e2) term can be neglected at small e. This form of
the equation assumes negligible eccentricity change due to the
tidal bulge raised on the primary by the secondary, which is true
for most cases of a terrestrial class planet and star. This form
of the circularization equation, in terms of Wtidal instead of in
terms of Q, highlights the fact that circularization rates depend
on a quantity that is time-dependent, and will vary both with the
evolution of the system frequency n, and the internal planetary
temperature.

Other forms of this equation expand Wtidal as in Equation (1),
allowing cancelation of terms; however, this neglects verifying
if a given planet is capable of supporting a particular dissipation
rate. If during circularization, large-scale melting occurs, then
Wtidal will change. In many cases, melting will lead to piped
advection of melt (O’Reilly & Davies 1981; Moore 2001;
Monnereau & Dubuffet 2002; Connolly et al. 2009; Spiegelman
1993; Ribe 1987) either to a surface ocean, subsurface ocean, or
both. Addition of an ocean to an otherwise initially solid world
can have a significant impact of the total tidal dissipation, and
thus alter τcirc, as discussed in Section 5.

3.2. Quality Factors

Quality factors, introduced from seismology, are a useful al-
though occasionally misleading aggregate scalar factor to de-
scribe inverse energy loss per cycle of a damped oscillator. Q
factors are often treated as effectively constant, although in real-
ity they are strong functions of forcing frequency, temperature,
layer structure, and numerous internal material properties that
vary with time. Values of Q are related to the lag angle of a tidal
bulge εt via the formula: Q = sin |εt |. For Earth, a Q of 12–34
has been measured based on the expansion of the moon’s or-
bit (Yoder 1995; Dickey et al. 1994; Murray & Dermott 2005);
however, such low values (thus high dissipation) are due to the
lunar-tide induced flow in Earth’s water ocean. Goldreich &
Soter (1966) estimated Q for Mercury, Venus, and the Moon as
Qmerc � 190, Qvenus � 17, and 10 � Qmoon � 150. However,
these values for Venus and Mercury make several assumptions
about each world’s spin history. Lainey et al. (2007) recently
estimated Qmars = 79.91 (±0.69) from the motion of Phobos.
Data summarized in Karato & Spetzler (1990) suggest Earth’s
lower mantle Q at tidal periods from 1–10 days is in the range
50–200. Based on such results, a common assumption for a
dry 1 ME exoplanet has been the round number 100. In real-
ity, Q is coupled in a viscoelastic system with the second order
tidal Love number k2 (Segatz et al. 1988), leading to the value
Im(k2) in Equation (1), which replaces the ratio k2/Q in the
non-viscoelastic form of Equation (1) (e.g., Peale et al. 1979).
For use in common astrophysical equations, however, it is often
useful to extract from Im(k2) an effective Q value, by the for-
mula Qeff = Re(k2)/ − Im(k2). Earth-sized effective Q values
range as far as ∼1–107.

For solid bodies, the common practice of adopting a fixed Q
factor and calculating a resulting circularization time can lead
to completely incorrect predictions, because it skips the step of
examining if the tidal heating rate of the planet is realistic or
sustainable. Consider GJ 876 d, with a minimum mass of 6.8 ME,
period of 1.937 days, and host mass of 0.33 Msol. Using a fixed
Q of 100 for this world leads to a rapid circularization timescale

of 4 million years. This, however, would require the planet
output 80 million TW of power for all 4 million years, which
is extremely unlikely (the global heat rate of the modern Earth
is only ∼44 TW). Instead, the planet will experience global-
scale partial melting, altering the initial assumed Q. Using a
tidal equilibrium model (Section 3.3) with partial melting, and
a starting eccentricity of 0.139 (Correia et al. 2010), leads to
a valid sustainable tidal dissipation rate of only 80,000 TW,
equivalent to a global effective Q value of 100,000, and a
circularization timescale of 4 billion years. A main argument
to proceed with the research in this work is the primary concern
of fixed Q models for icy or rocky planets, namely that Q is
highly sensitive to internal structure, and the need to assess
how Q (or by proxy Im(k2)) varies when global-scale partial
melting or liquid magma or water ocean layers exist. This work
may be seen as a precursor to the larger goal of assessing the
tidal evolution of systems including terrestrial planets in time,
particularly during orbital scattering and circularization, when
such ocean layers (or simply hotter and less viscous layers) are
very likely to develop.

3.3. Material Models

Our goal is to understand the grand scale differences in the
response of planets of different bulk structures, at a time when
even the rheological details of Earth’s own deep interior remain
in debate. For bulk tidal dissipation as a function of depth, the
critical parameters are the viscosity, shear modulus, and density,
with viscosity by far exceeding all other parameters in terms of
control of the final tidal outcome. This dominance of viscosity
allows one to begin with several simplifying assumptions in
regards to density, rigidity, and composition.

For a homogenous Maxwell rheology planet, −Im(k2) in
Equation (1) may be expressed analytically (Henning et al. 2009)

−Im(k2)Max = 57ηω

4ρgRsec(1 + [(1 + (9.5μρ−1g−1R−1
sec ))2η2ω2μ−2])

,

(3)
where η is viscosity (in Pascal-seconds), μ is the shear modulus
(sometimes referred to as rigidity), ω is the forcing frequency,
ρ is the homogeneous planet density, g is surface gravity, and
Rsec the planet radius. Similar expressions may be written for
other rheologies (Henning et al. 2009). Note that Equation (3)
embeds an assumption of incompressibility by considering only
deviatoric stress components within a world, and can thus
become less accurate for large worlds such as mini-Neptune
class planets.

While it is possible to write the analytical expression of Im(k2)
for multilayer planets, even for two-layer bodies such expres-
sions rapidly become impractical to work with. For several lay-
ers, they readily require several pages to express. We therefore
shift to staged numerical computation to determine Im(k2) in
multilayer cases. The essential character of Equation (3), how-
ever, remains the same, in that outcomes are a result of η, μ,
and ρ for each layer.

For the shear modulus of silicates we adopt a baseline value
of 5 × 1010 Pa unless otherwise noted, such as in some Earth
models below. For solid ice, we adopt a standard value of 4 ×
109 Pa. While other works use a variety of shear modulus values
for both material classes, what is most important (especially
considering the unknown role of impurities) is the comparatively
very small range of uncertainty in this parameter relative to
uncertainty in viscosity. In general, impurities weaken a pure
crystalline material, and therefore the inclusion in water ice of
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Figure 1. Silicate material property variations. Upper left: viscosity for a range of input parameters, including a baseline model set to match 1 × 1021 Pa s at T =
1000 K, as well as set points one order of magnitude above (strong) and below (weak) this baseline. An alternative activation energy is shown to modestly steepen
the slope of viscosity with temperature. For higher pressures, it is clear that the slope generally becomes steeper, however, set point selection is unclear, and is chosen
in these cases to match 1 × 1022 Pa s at T = 1500 K, roughly corresponding with the data available for the Earth’s mid-to-upper mantle. What is clear is that any
single parameterization leads to considerable uncertainty when high pressures are considered. Note the elevation in melting points at high pressures. Corresponding
Maxwell times for the single shear modulus profile shown indicate optimal tidal coupling for many silicate models in the partial melt range.

other volatiles such as CO2, NH3, and CH4, either as clathrates
or as ices themselves, may be considered in a simplified fashion
by considering lowered μ values. Because of high pressures,
weakening due to faults and material damage is not a major
consideration below the first 1–2 km of a major planet.

Viscoelastic materials typically experience a material reso-
nance as a function of forcing frequency (see e.g., Nowick &
Berry 1972), at which maximum dissipation occurs. For the
Maxwell rheology, this peak response occurs when a forcing
period equals the Maxwell timescale τMax = η/μ. A multi-
layer planet will not have one characteristic Maxwell timescale
but many, and different layers will resonate at different forcing
rates. Typical Maxwell times for silicates are shown in Figure 1
and cover a broad range from hours to years. For typical ice
with a viscosity of 1013, 1014, and 1015 Pa s, τMax = 0.6 hr,
6.9 hr, and 2.8 days. The relative separation between material
layer Maxwell times and forcing periods plays a central role
in determining tidal outcomes. Layers that are viscoelastically
well-matched to their forcing periods generally experience the
highest tidal heating rates. For silicates the very wide distribu-

tion of η and μ values makes estimation of behaviors difficult
prior to more individualized analysis. For ices, most cooler ma-
terial will have an optimal response in the lower typical range
of planetary and exomoon periods.

For silicates and ices, shear moduli are nearly constant with
temperature up until very near the melting temperature, at which
point various models of shear weakening begin to occur (Fischer
& Spohn 1990; Berckhemer et al. 1982). For pure water ice with
a single melting temperature, the shear modulus falls directly to
zero upon melting. Silicates melt across a range of temperatures,
beginning at the solidus Tsol, with zero melt fraction, and ending
at the liquidus Tliq with a melt fraction of 1.0 (with melt fraction
varying linearly in temperature in between). A typical surface
range for silicate melting is Tsol = 1600 K, and Tliq = 2000 K
(Henning et al. 2009). Higher pressure melting points may be
found via the Simon equation (Poirier 2000). The shear modulus
for silicates remains close to its solid value for approximately
half the melting range, and falls rapidly to zero at the point
where individual mineral grains loose physical contact with
one another, within a surrounding liquid bath. This point is
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referred to as the breakdown (or disaggregation) temperature Tbr,
and typically lies between 40% and 60% melt fraction (Moore
2003b).

Density may be treated either by utilizing fixed average bulk
values appropriate for a given layer, or through detailed equation
of state calculations, which in turn depend on a temperature
profile. Density primarily influences the elastic component of
the load Love number (e.g., Re(k2)) for a planet on which
tidal heating depends only linearly. Such Love numbers for the
objects studied here vary typically by less than a factor of ∼2
due to the large overall mass. By contrast, viscosity variations
may readily alter heat outputs by 4–5 orders of magnitude.
Therefore, for simplicity we focus on cases with layer densities
assigned (or in the case of Earth, taken from measurements)
rather than calculated from equations of state and accompanying
temperature/convection assumptions.

The tidal response of a planetary iron core is often weak,
however, it is straightforward to include the core in multilayer
calculations for completeness, and to verify such weakness,
especially since it comes at little computational cost. Data on
the viscosity of core analog Fe or Fe Ni alloy materials is limited.
Frost & Ashby (1982) use a value of 1 × 1013 Pa s. Dumberry
& Bloxham (2002) use a range from 1 × 1011 to 1 × 1020 Pa s.
Buffett (1997) suggests a value less than 1 × 1016 Pa s. We
discuss the results of such uncertainty further in Section 5.

Liquid metal in an outer core has very low viscosity. Ab
initio methods by de Wijs et al. (1998) suggest values of 1.3 ×
10−2 Pa s for an inner core boundary at 6000 K, 1.2 × 10−2 Pa s
for a core mantle boundary of 4300 K, and 1.5 × 10−2 Pa s
for a core mantle boundary of 3500 K. Earth observations from
the Chandler wobble and free oscillations however lead to high
values of 104–1011 Pa s (Verhoogen 1974; Won & Kuo 1973)
for the outer core. However, since even the highest value in
this range is two orders of magnitude below the lowest solid
viscosity used, tidal heating in any outer core is always found
to be entirely negligible.

Viscosity is strongly dependent upon numerous material pa-
rameters, the most important of which is temperature. Pressure,
grain size, and the total stress magnitude also play central roles.
Stress state is most important for determining which modes of
viscous behavior dominate the strain rate for an applied load-
ing. Microscale viscous behavior may occur via diffusion creep
(where crystal lattice voids migrate within grains), dislocation
creep (the migration of linear lattice nonconformities known
as dislocations), slippage along grain boundaries, or the diffu-
sion of grain boundaries. Of these mechanisms, Moore (2006)
demonstrates how diffusion creep dominates for ice under a
wide range of tidal conditions and grain sizes.

As with shear moduli, in this work we focus on selecting
informed estimates for viscosity in each material layer, as
opposed to deriving such viscosities directly from a temperature
and pressure profile. There are several reasons for this choice.
First, the method of deriving viscosities from first principles at
depth in a planetary body has not yet been fully successful even
for the Earth, where postglacial rebound studies have provided
measurements of the full mantle viscosity profile (Mitrovica
& Forte 2004), but matching such values requires numerous
posteriori adjustments to theoretical models, such as invoking
the lateral inhomogeneity of rising and falling convection
plumes and uncertainties in petrological composition. In reality,
is it likely that the pressure dependence of planetary materials as
currently modeled for low pressures does not extrapolate well
to deep mantle pressures. For the Earth, rising temperatures act

to lower viscosities, while high pressures act to raise viscosities,
and results are extremely sensitive to which of these two
processes is allowed to dominate, in effect meaning results are
largely controlled by the choice of the activation volume V ∗
(see Equation (4)), a value for which there is little laboratory
data at high pressures.

In addition, deriving viscosities from a temperature and
pressure model by depth inherently converts the problem into
a highly unstable iterative computation. Two strong feedbacks
are intertwined in this case. The vigor of convection, which
determines upper boundary layer thicknesses and heat flux
rates, is itself a strong function of viscosity. Second, heat
flux rates depend upon the level of tidal heating, and thus
tides strongly control planetary temperatures and viscosities.
In reality, these feedbacks are resolved in time for a given orbit
by an equilibrium between tidal heat input and convective heat
loss. Planets will often evolve in time (typically a few million
years) toward a very stable equilibrium temperature (Moore
2003b) where tidal heat input balances convective heat loss.
In a large fraction of rheological and orbital cases (Henning
et al. 2009), terrestrial exoplanets will reach tidal-convective
equilibrium very close to either the solidus Tsol or breakdown
Tbr temperatures. Therefore, for high tidal-heat Hot Earth cases,
the most important viscosities to consider are those expected to
reside near these states.

Previous analysis has mainly considered such tidal-
convective equilibration for mantles characterized by a single
bulk temperature and single melt fraction. While this is not a
bad assumption for a well-mixed adiabatic convecting mantle, it
may become significantly inappropriate once large-scale melt-
ing and melt mobilization begins for hotter planets. Multilayer
models, where liquid or weak solid partial melt layers may be
explicitly introduced along with homogeneous convecting lay-
ers, offer a significant improvement in their ability to determine
a true range of tidal outcomes.

For silicates, viscosity prior to melting may be computed from
an Arrhenius model

η = ηoe
E∗+pV ∗

RT , (4)

where R is the universal gas constant, E∗ is an activation energy,
T is temperature, p is pressure, and V ∗ is an activation volume. A
defining viscosity ηo coefficient is calculated based on a viscous
setpoint, for example, η(T = 1000 K) = ηset. In Figure 1 we use
ηset = 1 × 1020, 1 × 1021, 1 × 1022 Pa s for a weak, moderate,
and strong silicate rheology, and compute a corresponding ηo

for each. The low value for defining viscosity represents a more
volatile-rich mantle (Hirth & Kohlstedt 1996), while the high
value represents a more devolatilized case. Viscosity reductions
due to temperature and melting occur on top of this setpoint
selection. Therefore, ηset is a compositional choice, and is not
the actual viscosity of a planet’s mantle, which is likely to be
much lower, due to a significant partial melt fraction.

A complex falloff of viscosity occurs for silicates near the
solidus temperature (Moore 2001, 2003b; Fischer & Spohn
1990; Berckhemer et al. 1982). We omit the details of such
models here, except to note that the minimum viscosity for
silicate materials prior to complete melting is in the range 1 ×
1012–1 × 1016 (a range notably similar to the viscosity of ice).

The majority of tidal dissipation on ice–silicate hybrid planets
occurs within ice layers. For ice, viscosity prior to melting may
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Figure 2. Viscosity for ice as a function of temperature and pressure, using
parameters for Ice Ih. Note how the negative activation volume for ice (see
the text) causes viscosity to decrease with greater pressures. Very low viscosity
results at moderate pressures here (10 Pa s is the viscosity of ordinary honey) are
an example of how low-pressure parameterizations of viscosity may extrapolate
poorly to high pressures, leading to significant uncertainty for tidal heating
calculations. Neglecting pressure dependence, the temperature variation here
in ice viscosity for a plausible range of ice mantle adiabatic bulk temperatures
spans the range from 1 × 1017 to 1 × 1013 Pa s. Corresponding material Maxwell
times for a constant shear modulus of 4 × 109 Pa are shown at right.

be computed following Goldsby & Kohlstedt (2001),

ε̇ = Axσ
nσ h−mge− E∗+pV ∗

RT (5)

where ε̇ is strain rate, Ax is a creep mechanism scale parameter,
σ is stress, and h grain size. For volume diffusion creep, the
exponent values are set at nσ = 1 and mg = 2, and we may
follow Moore (2006) for Ice Ih to adopt Ax = 9.06 × 10−8/
T Pa−nσ mm

g s−1, E∗ = 59,400 J mol−1, and V ∗ = −1.3 ×
10−5 m3 mol−1. Typical values for h include the range 0.0001
to 0.01 m. Note that the activation volume here is negative,
and therefore Ice Ih is expected to decrease in viscosity at
higher pressures, unlike silicates that rise in viscosity. Figure 2
shows the results of Equation (5) for a range of pressures and
temperatures appropriate for an exoplanet ice mantle. Typical
pressures for such ice mantles are demonstrated in Figure 3.
The pressure variation must be considered cautiously however,
because the activation volume for high pressure ice phases,
especially Ice X, are not well known. Figure 2 does, however,
allow us our goal of a range of informed estimates for ice
viscosities for the cases of interest, even if not dynamically
linked by all feedback loops to the real temperature-depth profile
of each world.

The compositional complexity of ice can be great, both from
the phase diagram of water ice, as well as from the inclusion of
multiple ice species such as CH4, NH3, and CO2. Eutectic blends
of water with ammonia are often invoked as a likely mechanism
for melting point depression in outer icy satellites. As with shear
moduli, it is better to encompass such complexity by testing a
range of candidate ice viscosities. This testing method has the
additional benefit of reducing cases, since a very large range
of temperature and compositional realities may eventually lead
to the same viscosity, a handful of tests over the full viscosity
range may instead then be reverse-mapped back to a heavily
degenerate range of possible material causes.

A common central value for ice viscosity for outer moons is
1014 Pa s (Poirier et al. 1981; Goldsby & Kohlstedt 2001). The
temperature-only-dependent range of Equation (5) in Figure 2
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Figure 3. Pressure in a simplified ice–silicate hybrid super-Earth, with a
1 ME silicate/iron core of uniform density below a mantle of homogeneous
ice, demonstrating the approximate range of pressures of interest for use in
Equation (5) for the estimation of ice viscosities.

(A color version of this figure is available in the online journal.)

is 1 × 1017 to 1 × 1013 Pa s, and we therefore tested a range
of values at least two orders of magnitude around a baseline of
1 × 1015 Pa s, with low values best representing compositional
impurity, and higher values better representing cold ices.

4. RESULTS

4.1. Earth Analog Planets

Before extending an Earth model toward a super-Earth model,
we first seek to establish and characterize a reliable multilayer
Earth model. In previous work we have studied homogeneous
tidal models of extrasolar Earth mass planets. Thus it is also
of central value to investigate the degree to which a range of
improved multilayer Earth models alters the outcome of tidal
heating.

We find that an essential feature required to reproduce an
Earth-like Re(k2) value of around 0.299, is a high value for the
shear modulus of the silicate mantle. A typical value for the
rigidity of surface rocks is 5 × 1010 Pa. For the deep interior,
seismic velocity studies provide the parameter β = (μ/ρ)1/2,
which may be inverted to determine estimates of μ given an
estimate for the density. Lower mantle densities are expected
to vary in the range from 5560 to 4380 kg m−3. A nominal
value of 4600 kg m−3, coupled with an outer core density of
10,200 kg m−3 and inner core density of 12,000 kg m−3 leads to
a nominal ∼1 ME total mass, and to shear moduli in the range
from 1.6 × 1011 to 2.4 × 1011 Pa. An adopted value of μ =
2.25 × 1011 Pa reproduces the expected Re(k2) = 0.299 for such
a three-layer model.

For a four-layer model, we divide the mantle into an upper and
lower layer at the 670 km depth mark. Using an upper mantle
estimated density of 3900 kg m−3, a lower mantle density of
5000 kg m−3, upper mantle rigidity of ∼7 × 1010 Pa (from β of
the upper mantle), increases the lower mantle rigidity required
to achieve the expected Re(k2) up to 2.55 × 1011 Pa. Regardless
of these specific values, the primary point is that using a surface
rigidity of ∼5 × 1010 at depth can lead to unrealistically high
Re(k2) values of ∼0.6–0.7.
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each case, with e = 0.1 and P = 30 days, is reported in the legend. The smallest total dissipation is produced by the homogeneous case. The relative tidal contribution
of the upper and lower mantle is a strong function of the shear modulus and viscosity contrasts between these layers. The baseline bulk viscosity is 1 × 1021 Pa s, with
local parameters and viscosity modifications described in the text.

To model the continuous variation of properties within
the Earth we implement a more detailed model using the
Preliminary Reference Earth Model (PREM; Dziewonski &
Anderson 1981). This model includes 33 layers, at roughly
200 km steps, and resolves Earth’s crust, Low Velocity Zone,
Upper Mantle Transition Zone, and D′′ layers. For computa-
tional reasons the liquid outer core is still treated as one layer
with an average bulk density. Following PREM, β in the lower
mantle lies in the range 5945.1 to 7264.7 ms−1. Mapping these
β values against the range of densities leads to shear moduli
from 1.5 × 1011 Pa to 2.9 × 1011 Pa, all much greater than the
surface value of 5 × 1010. Repeating this exercise for the upper
mantle yields β = 5570.2–4491.0 ms−1. Because viscosities are
not resolved by the seismic input data of PREM, in Figure 4 we
test both a version of PREM with constant viscosities through-
out the mantle, as well as a model with viscosities adapted from
post-glacial rebound studies (Mitrovica & Forte 2004).

For the model and forcing range of primary interest, the
selection of viscosity has a weak interaction with Re(k2), but
is the principal control of energy dissipation via Im(k2). In
Equation (1), −Im(k2) is effectively used as a replacement
for Re(k2)/Q. Thus we seek viscosity values which bring
a baseline Earth model’s −Im(k2) close to that required to
achieve a reasonable global effective Qeff value. This, however,
is complicated by the strong frequency dependence of Im(k2),
and on the fact that we are modeling the solid tidal dissipation
of worlds, while the Q of the Earth from lunar retreat rates,
Q ∼12, is mainly controlled by wave activity in Earth’s surface
water oceans. Even when we include water oceans in models in
this work, we do so for their decoupling impact on layers, and
we are not including wave dissipation or dissipation due to flow

in or around specific geometries (Tyler 2008; Chen et al. 2014).
The quasi-static contribution of water oceans to dissipation is
otherwise negligible. The Q value for a dry Earth is unknown.
There are two forms of dry in this context: ocean-free, and free
of large-scale hydration in mantle minerals. A planet with little
or no mantle mineral hydration may be highly viscous, as H2O
can lower viscosities by several orders of magnitude (O’Connell
& Budiansky 1977; Hirth & Kohlstedt 1996). For ice–silicate
super-Earths, however, this is unlikely, given that a large ice
mantle implies a high water fraction to begin with, thus we are
interested in a Q for a baseline iron-rock core to these hybrid
worlds that is free of the dissipation contribution of a surface
water ocean, but is not altogether dry mineralogically. Q = 100
is often used in the literature as a dry 1 ME planet value, and
the authors have used Q = 50 previously as a compromise for
ocean free but still hydrated 1 ME worlds.

Bulk viscosities around 1 × 1020 Pa s for the rigidity model
previously cited, at a period of 30 days leads to Qeff = 1445,
and at P = 300 days to Qeff = 145. Values for silicate mantle
viscosity around 1 × 1021 Pa s typically push Q values above
10,000 as in Figure 5. At a 30 day period, bulk viscosities of
1 × 1019 Pa s can lead to Qeff = 149, 5 × 1018 Pa s to Q = 75,
and 1 × 1018 to Q = 15. As seen in Section 4.2, as soon as an
ice mantle is applied to a world, it is the ice viscosity and not
the silicate viscosity that dominates the planetary tidal result.

In Figure 4 we model multiple variations in Earth structure. In
each case the total dissipation is reported in the legend, and is a
function of the applied e = 0.1, P = 30 days, and 1 MSol orbital
model. Case 4A is a homogeneous model, set to the average
bulk density of the Earth, with a shear modulus of 5 × 1010 Pa
and viscosity of 1 × 1021 Pa s, following previously published
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Figure 5. Maps of tidal surface heat flux for three multilayer Earth models with varying upper mantle viscosity. Top row: upper mantle viscosity = 1 × 1018 Pa s.
Middle row: 3 × 1018 Pa s. Bottom row: 1 × 1019 Pa s. Viscosities are selected to show the transition region of observable flux from six minima to two minima. Right
panes show dissipation as a function of depth, with upper mantle heating decreasing as viscosity is raised. Core heating is negligible. Lower Mantle viscosity = 1 ×
1020 Pa s. Densities and shear moduli given in the text. Global response, top to bottom: W = 0.69 TW (Qeff = 600), W = 0.40 TW (Qeff = 1047), W = 0.29 TW
(Qeff = 1415), each at 30 days period and e = 0.1 with a 1 MSol host.

(A color version of this figure is available in the online journal.)

baseline homogeneous Earth analogs in Henning et al. (2009).
In homogeneous cases generally, dissipation is maximum in the
mid-mantle, finite at the surface, and zero at the core.

Note that text references to lettered Cases in figures are
prefixed by figure number to help reduce confusion due to the
large number of possible cases to be shown.

In Case 4B, only a solid core and solid mantle exist, to model
a simple two layer world, equivalent to a highly evolved Earth
where the full core has crystallized. A liquid outer core will
decouple the inner core from major tidal flexure, such that inner
core dissipation is generally weak, and the viscosity selected for
the inner core is of low importance. When the solid silicate and
iron layers are directly coupled, the iron viscosity is of central
importance. Low values around 1 × 1017 Pa s used elsewhere
lead to core dissipation dominating the response by a full order
of magnitude. However, since the viscosity of such an iron core
is highly uncertain, especially due to the uncertain geotherm of
such a high age world, we instead plot in Figure 4 a case where
the viscosity of both the iron and mantle are matched at 1 ×
1021 Pa s each, in order to detect the difference due to the density
and shear moduli otherwise hidden by a viscosity contrast.

Case 4C includes a liquid outer core where dissipation is
negligible. This decoupling allows greater flexure of the mantle
and thus greater dissipation. Inner core viscosity is switched to
1 × 1017 Pa s in this case, while mantle viscosity remains at 1 ×
1021 Pa s. Case 4D begins to approach a realistic Earth model,
with an inner and outer core, upper and lower mantle, and low
dissipation lithosphere.

The final two Cases 4E and 4F invoke the PREM model
through 33 material layers where density and shear modulus
vary continuously. The PREM model includes the D′′ layer at
the core-mantle boundary (CMB), which is found to exhibit high
dissipation due to its own low strength blending with the natural
maxima of dissipation at the CMB from Cases 4C and 4D.
Extra layers were added at this location to enhance resolution.
Tidal enhancement in the upper mantle and attenuation in the
lithosphere for each PREM model is similar in form to Case
4D where properties had remained constant. The PREM model
does not describe viscosities with depth, therefore Cases 4E and
4F test two viscosity models. In Case 4E, viscosities are roughly
based on a synopsis of models from Figure 1 of Mitrovica &
Forte (2004), where high viscosity occurs both at high depth
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due to high pressure, and at shallower depths due to lower
temperatures, with lower values in the D′′ region, mid-mantle,
and upper mantle. The modeling here is not intended to be exact,
but to illustrate the impact of such viscosity variations on tidal
output. In Case 4F, constant viscosities of 1 × 1021, 1 × 1020,
and 1 × 1021 are applied through the lower mantle, upper mantle,
and lithosphere, such that the impact of the PREM gradients in
density and shear modulus relative to Case 4D can be seen.

Figure 4 does not include a model with a very weak astheno-
sphere or magma ocean (Tonks & Melosh 1993; Elkins-Tanton
et al. 2003; Elkins-Tanton 2008), however, such models were
also tested. Inclusion of a magma ocean just below the litho-
sphere often has negligible impact on the dissipation of lower
layers, and the high rigidity of the lithosphere typically contin-
ues to generate negligible heating despite this decoupling. The
primary impact of magma ocean inclusion is therefore the sim-
ple removal of upper mantle dissipation throughout the volume
assumed to instead be liquid. Inertial effects, waves, and tidal
flow (Tyler 2008) in a magma ocean, not modeled here, may
however contribute in a similar manner to Earth’s water ocean.

The primary result from Figure 4 is that non-homogeneous
cases often produce tidal dissipation greater than the homoge-
nous model, and very rarely produce less. Further enhancement
may occur with large weak asthenospheres as in Figure 5. En-
hancements by a factor of ∼1.25–1.50 are common. This occurs
for two main reasons: first, including a liquid outer core allows
greater tidal flexure, and second, more detailed models typically
allow inclusion of local low viscosity zones. These effects often
dominate over the reduction in heating caused by the removal of
the liquid outer core volume from contributing to global heating.
Even when low viscosity zones are small compared to overall
planet volume, their dissipation typically dominates, similar to
the expected dominance of the asthenosphere of Io (Segatz et al.
1988). The relative shape of depth profiles for the above cases at
P = 2 or 365 days are similar to those in Figure 4, despite dra-
matically higher/lower overall magnitudes. At P = 3 days, total
dissipation for Cases 4A–4F are: 96, 185, 281, 295, 172, 247
TW, or enhancements by factors of ∼1.8–3.1, with all multilayer
results higher than the homogeneous case. Values for alternate
eccentricities or host masses may be scaled using Equation (1).

Figure 5 shows the distribution of tidal heat for a multilayer
Earth, both in depth and across the surface in latitude and
longitude, with a focus on variations in asthenosphere viscosity.
Moderately low viscosity silicate asthenospheres generally
attain the highest tidal response. Upper mantle viscosities are
selected here to show the transition between two common
surface patterns. Densities for this model are 12,000, 10,000,
5000, 3900, 2600 kg m−3 for the inner core, outer core, lower
mantle, upper mantle, and lithosphere. Shear moduli are: 1.5 ×
1011, 0, 2.5 × 1011, 7 × 1010, 5 × 1010 Pa. The inner core
viscosity for this model is 1 × 1016 Pa s and the lithosphere
viscosity 1 × 1021 Pa s. The top left panel of Figure 5 is
remarkable as it is the inverse of the asthenosphere dominated
six-lobed pattern found for Io (Segatz et al. 1988). We find that
the mid-valued viscosity contrast pattern (middle panels) is most
common for an Earth analog exoworld.

Variation of the orbital period has minimal impact on the
pattern of the surface distribution when outside of the transition
range where upper and lower mantle heat rates begin to
converge, but can dramatically change the pattern when this
range is encountered. For most models, a period of 3 days leads
to an upper mantle dominated pattern, while a 300 day period is
less well tuned, causing a decrease in heat from lower viscosity

zones, switching behavior to a lower mantle dominated pattern.
Patterns of surface heat flux are often transitional for periods
from 10 to 50 days.

4.2. Ice–Silicate Hybrid Planets

We may roughly divide ice–silicate hybrid exoplanets into
those which may contain internal liquid water oceans, and those
which do not. Water oceans are expected to be a shallow or
surface phenomenon (Fu et al. 2010), while in contrast, ice
mantles may plausibly exist with very large thicknesses, up
to the limit of the ∼2 RE (∼12,700 km) ice mantle thickness
expected for 3.8 RE Neptune. In practice we test the impact
of internal water oceans within ice mantles of up to 3000 km
thickness, and assume that above this ice thickness, basal or
internal oceans become unlikely and interest lies mainly in the
physics of the solid ice layers fully coupled to solid silicates
below. We first consider ice-only mantles, and then consider ice
mantles in the presence of water oceans. In order to focus on
bulk structural questions first, in this section we report upon ice
mantles with constant viscosities and shear moduli, however, in
Section 5 we consider gradations in material properties.

Figure 6 shows the distribution of tidal heating with depth for
a range of ice–silicate hybrid planet models. Two key results are
found: first, that ice–silicate tidal systems are highly insensitive
to the choice of silicate/iron core model, and second, that the
primary controls on the magnitude of total tidal heating (and
thus effective Q values) are the viscosity of ice used, and the
presence or absence of any decoupling water ocean.

Iron-core mass fraction changes are found to have only a
very minor impact on overall results due to the dominance of
ice material properties on the tidal response. High iron core
fractions are similar in impact to higher silicate densities in the
sense that the entire iron-silicate component of the planet acts
as an aggregate core. Switching from a liquid iron outer core,
to an all-solid or all-liquid iron core has limited impact beyond
planets with very thin ice mantles for the same reason.

Surface maps of ice-hybrid super-Earth tidal heat flux in-
tegrated over one orbit and summed over depth are shown in
Figure 7. Ice mantles in general often produce response patterns
in latitude and longitude similar to the asthenosphere-dominated
response described in Segatz et al. (1988) for Io. In general, cases
involving any low viscosity material of modest depth overlying
a large depth of high viscosity material generate six-lobed global
maps of dissipation with maxima at or near the equator. In con-
trast, when dissipation is optimal in a material which spans
the majority of the body, as in the mantle-dominated cases of
Segatz et al. (1988) for Io, or any homogeneous planet model,
then tidal heating is maximum at the poles with two broad min-
ima at the equator. Such polar maxima for tidal heat production
may roughly be understood to arise from the dominance of shear
stress terms in the overall system response.

A new situation occurs in Figure 7, panel 5, where the
thickness of the low viscosity material with the more optimal
tidal tuning is no longer a thin top veneer, but instead approaches
one-third of the body radius. In these situations the pattern of
dissipation evolves beyond the six lobed case of a thin active
upper layer, and heat becomes further concentrated to a belt
around equator. When this layer approaches half of the body
radius, as in Figure 7, panel 6, or the top panel of Figure 5,
the pattern transforms to one of six minima, or the inverse of
Figure 7 panel 3. Note that previous work has described the
range in outcomes from Figure 7 panels 1 to 3 as endmembers
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Figure 6. Tidal dissipation vs. depth for ice–silicate hybrid super-Earth models. For plausible ice surface conditions, the orbital environment is changed from Figure 1,
to a 60 day orbit around an analog of 55 Cnc with Mpri = 0.9 MSol, Lpri = 0.54 LSol, with e = 0.1, an albedo of 0.87, and blackbody surface temperature ∼270 K.
Note logarithmic vertical axis. Case 6A: 1000 km ice atop a homogeneous 1 ME silicate core. Case 6B: Solid iron core, silicate mantle, 1000 km ice. Case 6C: Solid
and liquid iron core, lower and upper mantle, lithosphere, and ice. Case 6D: Same as Case 6C with but with a 100 km water ocean decoupling a 900 km ice shell
above. Case 6E: Same as 6C with a 900 km water ocean and 100 km ice shell. Case 6F: PREM model with ice mantle above. Total dissipation and effective Q values
shown in legend. Variations in silicate/iron structure follow Figure 4, but have negligible impact on total dissipation due to the very strong viscoelastic response of
ice. The primary controls on overall dissipation are the viscosity of ice and the existence and thickness of a decoupling water ocean (see the upper right corner). Note
how total dissipation is comparable to Figure 4 despite a significantly more distant orbit and smaller host star.

of the solution space, however Figure 7 demonstrates that these
patterns are in fact part of a much larger system of solutions.

The transition in surface patterns shown in Figures 5 and 7
is partly explained via Figure 8, which demonstrates how tidal
heating as a function of depth systematically changes in an low-
viscosity upper layer of increasing thickness. Homogeneous
ice mantles of viscosity 1 × 1015 Pa s, density 1000 kg m−3,
and shear modulus of 4 × 109 Pa are shown from 400 km
to 10,000 km thickness. In all cases the silicate/iron core is
a homogenous solid with constant density set to match 1 ME,
because of the demonstration in Figure 6 that ice mantle tidal
results are insensitive to silicate/iron core structure, especially
for ice mantles above a few hundred kilometers thickness.
Again, an orbit of e = 0.1, P = 60 days at an analog of 55
Cnc is used, thought the phenomenon highlighted here is not
sensitive to these choices, only the total heat magnitudes are.

As an ice mantle grows in thickness, it transitions from a
profile where tidal heating is maximum at the base of the layer,
to a form where a mid-layer maxima rises to dominate. Note
that the mid-layer feature need not actually exceed the basal
maxima in order to dominate the result, because the feature’s
widths also matter when total power is integrated with depth
(Note that in units of W m−1, the higher importance of upper
layers due to their greater volume has already been taken into
account). Results in Figure 7 may thus be reinterpreted as
follows: at tice = 100 km, silicate-core features remain the
dominant surface expression. At tice = 400 km, ice heating
features dominate, with a basal maxima in layer heating leading
to a six-lobed surface pattern. At tice = 3000 km, the six-lobed
basal heating feature begins to be replaced by the mid-layer
maxima, with the net result of an equatorial focusing of heat.
At tice = 6000 km, the mid-layer maxima in heating fully
dominates surface expression. Above this thickness the top layer

is sufficiently thick that the surface expression begins to return
to the form of a homogeneous body, with the effect of any
small poorly coupled core eventually vanishing in importance.
We find this pattern cycle is common for any high tidal
susceptibility material placed atop a low tidal susceptibility
core, and considered in terms of increasing thickness (e.g., it
also applies to a growing silicate asthenosphere).

The origin of the multiple tidal heating surface patterns
which may occur has no simple origin, and arises from the
summation of dissipation maps which can be decomposed by
tensor product component as in Figure 9. Such component maps
may also be considered for the instantaneous work in time at
each orbital position, as well as for the stress and strain tensor
terms themselves. Individual maps vary with depth and forcing
frequency, such that their collective sum weighed by varying
magnitude in depth becomes more difficult to visualize. For
two-layer worlds, Beuthe (2013) discusses the origin and range
of tidal heating patterns in detail. In general, shear terms in
stress lead to greater polar heating, and are dominant for the
typical mid-layer maxima of homogeneous planets or extremely
deep asthenosphere-like layers. The basal maxima typical of the
CMB or any ice–silicate transition contain a more even mix of
shear and normal stress terms, leading to more equatorial final
expressions of surface heat.

There is sufficient systematic variation in tidal surface pat-
terns based on internal structures, that they may help to constrain
the interiors of observed exoplanets in the future. Observations
are already able to map large-scale hemispheric temperature di-
chotomies and offsets in temperature maxima from the substel-
lar point for Hot Jupiters (Knutson et al. 2007; Cowan & Agol
2008). Studies suggest that mapping Earth analog solid surfaces
due to rotation in inclined orbits may be plausible with upcom-
ing technology, including both 1D maps (Fujii et al. 2011), and
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Figure 7. Demonstration of how ice mantle thickness is the primary control on the pattern of tidal surface heat flux. Ice mantle above a 1 ME silicate/iron core, with
ice thickness varying from 100 to 6000 km. Ice viscosity = 1 × 1015 Pa s. At ∼200 km ice thickness and above, tidal dissipation in the ice overwhelms the background
pattern of silicate/iron core heating. Cases of ∼3000 km ice shell thickness generate patterns of 6 maxima lobes akin to the asthenosphere-dominated pattern of Io
first described by Segatz et al. (1988). Even further concentration of heating into the upper half of the planet transitions further into a pattern of 6 minima, as in the
top row of Figure 5 (an ice free Earth). Both thick and thin cases with water oceans (Cases 6D and 6E) generate patterns nearly identical to the 6000 km ice case here
without an ocean, but with different total heat magnitudes. Orbital environment the same as in Figure 6.

(A color version of this figure is available in the online journal.)
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Figure 8. Depth profiles of tidal heating for super-Earth planets with high ice mantle thicknesses, approaching ∼2.5 RE and the mini-Neptune transition range. As ice
mantle thickness increases, the heating maxima transitions from a basal focus to a mid-layer location. While not shown due to not representing any realistic planet
structure, if the ice (or any tidally susceptible material) mantle thickness were increased further to consume the full planet radius, the tidal heating profile would
transition all the way back to the form for a homogeneous world from Figure 4 Case A. Included here is one example of how gradations in layer properties alter
results: with a 6000 km ice mantle and five steps in viscosity from 1 × 1015 Pa s (surface) to 1 × 1017 Pa s (base), in density from 1000 kg m−3 to 1200 kg m−3, and
constant shear modulus of 4 × 109 Pa. Note how tidal heating is dominated by the size and properties of only the lowest viscosity component of any such gradational
layer. Orbital environment the same as in Figure 6.
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Figure 9. Dissipation for an ice hybrid world decomposed into directional components of internal work, in W m−3. It is the weighted combination of these patterns
varying over depth that gives rise to the total surface pattern observed, after integration with depth. Note that in units of power per unit volume, heat rates that lead to
polar maxima of surface flux are distorted by rectangular projection, however, the general trend that normal stress driven components lead to more equatorial heating
and shear components lead to more polar heating remains evident.

(A color version of this figure is available in the online journal.)

2D maps (Kawahara & Fujii 2010, 2011; Fujii & Kawahara
2012). To observe the heat pattern of a super-Earth due to its
internal tidal activity would require a planet orbiting close a very
low luminosity host, ideally in a transiting configuration which
allowed a tight constraint on orientation of the equator. Large
moons far from host stars may be advantageous targets, and
Peters & Turner (2013) have discussed the possibility of directly
imaging the tidal signature of such hot exomoons. A rare ideal
case would include periodic eclipse of one pole only, allowing
for a polar vs. equatorial relative measurement. If the lightcurve
of a tidal planet could be shown to have four brightness max-
ima in longitude, this would indicate a thin tidally active upper
layer, but only two maxima would point toward a tidally active
layer spanning the majority of the radius. Liquid oceans and
atmospheres however will redistribute heat and may blur such
effects. Yet even with the complexity evident in observing Io,
or the lack of global distribution of heat on Enceladus, patterns
of tidal enhancement have helped to constrain interior models
(Kirchoff et al. 2011; Hamilton et al. 2013), and any opportunity
to constrain the interior of a world (Ragozzine & Wolf 2009) in
another starsystem will be significant.

Figure 8 also includes the total heat output and effective Q
values for worlds with deep ice mantles. Such total heat values
present a mixed picture. On one hand, values are mostly small
compared to the ∼44 TW heat output of the modern Earth

(and therefore the likely order of magnitude for non-tidal heat
output from such world’s silicate/iron cores even prior to tidal
heating). On the other hand, eccentricity values well above e =
0.1 are observed in exosystems, and tidal heat (even for complex
multilayer worlds) will scale as e2. Similarly, many hosts smaller
and less luminous than 55 Cnc exist, providing opportunities for
ice mantles at shorter periods, and tidal heating strongly scales
as the fifth power of mean motion, n5. Therefore, only a small
increase in albedo, a small decrease in host luminosity, or simply
the allowance of a thin liquid water surface ocean followed by
clathrates and solid ices after only a few 100 km’s depth can all
lead to far greater heating. Lastly, Figure 8 uses a conservative
ice viscosity of 1 × 1015, but lower values remain plausible due
to issues discussed in Section 3.3.

The first two cases shown in Figure 8 illustrate an important
point regarding Q values. For the same orbit, the first case with
a 10,000 km ice mantle and Qeff ∼ 9 produces nearly ten times
the total heat in Watts compared to the second case with a
6000 km ice mantle and Qeff ∼ 8. This occurs due to changes in
the planetary Love numbers, and highlights the reason why the
value −Im(k2) for a given planet is a significantly better scalar
measure of the world’s tidal susceptibility than a Q value alone.
Recall that −Im(k2) replaces the ratio k2/Q in the viscoelastic
form of the classical tidal equation. For this reason, later figures
here report −Im(k2) values, which may be converted to effective
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Figure 10. Surface Love and Shida numbers for ice–silicate hybrid planets with ice mantles up to 10,000 km at multiple orbital periods. Cases 10A and 10B: silicate
mantle with constant properties extended to high thickness, for comparison to ice results, at forcing periods of 3 days and 300 days. Cases 10C–10G: Ice mantles
with constant properties for orbital periods of 3, 15, 30, 150 and 300 days. At longer periods tidal resonance (mainly expressed via Im(k2)) occurs primarily for ice
mantles below 2000 km thickness. At high thickness, all cases monotonically move toward but do not yet approach the strength free hydrostatic limits in Re(k2) and
Re(h2). Models with graded ice density at high pressures will shift toward silicate-only curves in real components. Models with gradations of higher viscosity at high
pressure shift toward silicate-only curves in imaginary components. In all cases mantles rest atop a 1 ME iron-silicate core and are insensitive to eccentricity and host
mass. The strongest potential for high tidal activity lies with high thickness ice mantles with forcing below 15 days.

Q values via: Qeff = Re(k2)/−Im(k2). In later use, we generally
omit the subscript eff , as all forms of Q values are already only
a proxy for susceptibility to tidal heating, and only W(n, T) for
a given planetary case is the final measure.

The Love and Shida numbers for simple ice–silicate worlds
with ice mantle thicknesses up to 10,000 km are shown in
Figure 10. Near and above this thickness, large gas envelopes
are expected to alter results, unless unusual envelope stripping
has occurred. Results are separated between the real and imagi-
nary components of each Love number. In the Fourier model of
viscoelastic tides, real components generally characterize elas-
tic behavior, while imaginary components characterize energy
dissipation. k2, representing the gravitational response, is di-
rectly applied to tidal heat predictions. In a homogeneous case,
−Im(k2) may characterize the entire tidal heat response, and
in these cases where the ice mantle dominates dissipation, it
becomes a reasonable proxy for total tidal heating. The dis-
placement Love number h2 and Love–Shida number l2 may
be interpreted to signify the magnitude of radial and tangential
surface displacements respectively. While l2 is most properly re-
ferred to as the Shida number or Love–Shida number, for clarity
below we do refer to the three related values k, h, and l by the
common aggregate term Love numbers.

Figure 10 demonstrates a material tidal resonance with
ice layer depth, which typically occurs between tice =
1000–2000 km. Above these thicknesses, Love numbers grow

or contract monotonically with increasing depth, with little
change in magnitude for imaginary terms. Re(k2) and Re(h2)
shift steadily upward for deep mantles but remain far from their
hydrostatic limits of 3/2 and 5/2, respectively. Such limits are
more typical of gravity dominated gas giants. Re(k2) and Re(h2)
decrease relative to a 1 ME core for ice depths below 2000 km,
as the low density of ice allows the aggregate objects to briefly
appear more strength dominated. Orbital period has a strong im-
pact on the depth and especially the depth range that causes tidal
resonance. Peak magnitudes in imaginary components remain
similar across the whole period range shown. In particular, note
how the full high resonant −Im(k2) response may occur across
the enormous ice thickness range from about 3000–10,000 km
at short periods, while at long periods an ice mantle must be
perfectly tuned by chance to around 1000 ± 100 km in order to
experience a similarly high response.

While silicate-only mantles of this thickness are unrealistic,
they are shown for comparison with ice results and represent a
high-density, high-viscosity limit, which high pressure ice may
approach. We plot constant density curves to help bound the
behavior of the physical system. Full models of the interior from
an equation of state and thermal flux model will, in addition to
adding numerous new poorly constrained degrees of freedom to
the system, be fully temperature dependent, and require iterative
solutions with tidal heat flux as discussed in Section 3.3. As
tidal heating depends far more strongly on viscosity than on
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density, the benefit of a full equation of state approach is also
lessened when our goal is determining heat outcomes. Parameter
gradations are discussed in more detail in Section 5.2, with
results showing that low pressure upper ice levels are the primary
control on dissipation.

While this paper does focus on questions of heating, very
high surface displacement predictions are typical in strong tidal
forcing cases, and displacement is significantly greater in low
rigidity (4 × 109 Pa) ice than in any underlying (5 × 1010−11 Pa)
silicate. For example, lateral surface movements of ∼4 km, and
radial displacements of ∼1 km may occur for a 4000 km thick ice
mantle in a three-day period. This corresponds to surface strains
of εθθ ∼ 0.005, εrr ∼ 0.003, εφφ ∼ 0.002, and εθφ ∼ 0.001. In
general, the high strains experienced for such worlds suggest the
possibly of extreme faulting, perhaps analogous to tidal features
on Europa (Hurford et al. 2005, 2007b). The opening of faults by
the tidal cycle may also induce periodic eruptions of volatiles
as on Enceladus (Hurford et al. 2007a) and perhaps Europa
(Roth et al. 2014), the timing of which may in the future be
detectable through careful primary or secondary eclipse transit
spectroscopy (Kaltenegger et al. 2010).

5. DISCUSSION

5.1. Effect of Water Ocean Position and Size

Fu et al. (2010) model the thermal structure of large ice
mantles in detail. For the near surface of 2, 5, and 10 ME
super-Earths, they find a complex range of outcomes may arise
from the interaction of the geotherm with the ice Ih, III, V,
and VI portion of the phase diagram in the upper ∼60 km of
planets. Both the presence or absence of a liquid ocean below
a largely ice Ih crust is plausible, due to the unique notch in
the liquid-solid phase boundary in the water phase diagram in
this pressure regime at temperatures near 250–280 K, and is
largely controlled by internal heat flux. Naturally, the surface
temperature, itself a strong function of atmospheric state and
solar flux, is the primary control on whether or not such an
ocean extends up to the atmospheric interface as well. Since our
current model assumes a solid surface, we focus on worlds where
all water oceans exist below some amount of solid ice. These
models are expected to also be close approximations of the total
tidal dissipation and internal deformation of worlds with thin or
modest liquid water oceans at the surface. In such an extended
application, surface Love numbers here for the solid top case
clearly do not represent the shape of a thin-to-modest liquid
ocean’s top surface that might be observed, but do approximate
the shape of the base of such a layer.

For surface temperatures above 273 K, it is somewhat difficult
to achieve a solid ice surface due to pressure alone. At 274 K,
∼6 kbar or 630 MPa is required, which would require an
unrealistically large gas envelope for a 1.4 ME world. Therefore,
our analysis is limited to cases where a surface ocean, if present
in cases of Tsurf � 273 K, will be thin enough that Love numbers
for the layer system beginning at the first solid interface are a
close approximation of the body as a whole. 630 MPa is for
example achieved under almost exactly 100 km of water for a
1.4 ME world.

Beyond this, the criteria for a solid top layer is best achieved
in cold environments. This is somewhat incompatible with
strong tidal forcing of planets near to their host stars. Therefore,
the analysis here is most useful for ice–silicate hybrid worlds
encircling dim host stars, such as L and M-dwarfs, white dwarfs,
neutron stars, or pulsars. Similarly, such a combination of strong

tidal forcing and cold surface temperatures is achieved for larger
moons of Jupiter and super-Jupiter class worlds, as well as the
tidal evolution of binary terrestrial planet systems.

Water oceans may also exist at significant depths due to rising
temperatures. The basal pressure of an ice mantle of ∼3000 km
thickness, atop an Earth-mass core, is around 19 GPa, which for
temperatures between ∼250 K to 750 K places ice in the ice VII
phase. Above 750 K, supercritical liquid water is still possible
at this depth (where all liquid above 647 K is in the supercritical
state). The majority of a 3000 km ice mantle should participate in
convection, except for worlds with unrealistically small silicate
cores or worlds vastly older than the solar system timescales of
interest here. The adiabatic geotherm in a convecting ice layer is
typically shallow, making temperatures much beyond this range,
even at depth, less likely. Eutectic melting point depression in
ammonia-water systems has also been suggested as a common
planetary mechanism for liquid ocean maintenance, and may
allow for a complex diversity of liquid layers, including perched
oceans with solid ices above and below.

The density of Ice VII in this deep and warm regime is
still marginally well represented by ∼1000 kg m−3. Below
∼400 K the density climbs above 1100 kg m−3, but only reaches
1200 kg m−3 when as cold as around 200 K. Therefore, our focus
may remain on viscosity variations and not density variations.

Figure 11 shows tidal surface Love numbers for ice–silicate
hybrid super-Earth planets, showing variations as an ice mantle
up to 3000 km thickness is added above a baseline Earth
model of 1 RE, 1 ME, with a solid iron inner core, liquid
outer core, and uniform silicate mantle. The maximum planet
mass in these plots is 1.39 ME, with a total radius of 1.47 RE.
A forcing period of P = 30 days is used. Note the log
scales for imaginary components. In Case 11B a solid ice
layer of density 1000 kg m−3, shear modulus 4 × 109 Pa,
and viscosity 1 × 1014 Pa s, is applied. This solid-only case
leads to significant variations in h2 and l2 as a function of ice
mantle thickness, and the highest dissipative response through
−Im(k2). In Case 11C this same ice mantle is separated from
the silicate below by a 10 km thick water ocean. This greatly
reduces the dissipative (imaginary) response, while h2 and l2
switch to monotonic behavior because they no longer reflect
a transition from dominance by the silicate to dominance by
the ice. Re(k2), which depends largely on the density structure
of layers, is minimally changed. In Case 11D this decoupling
ocean is enlarged to 500 km. This has negligible impact on the
dissipative response of the planet, and has only a minor impact
on real valued components through the additional mass. Case
11E tests the concept of a perched water ocean, by placing a
10 km water layer at the midpoint of the given ice thickness.
This significantly reduces the dissipative response, but has a
real response nearly identical to Case 11C. Case 11F places
a 10 km water ocean below a 20 km surface ice shell, with
the bulk of the ice below both, directly attached to the silicate
mantle. The result is similar to Case 11E but with less reduction
in dissipation. For comparison, in Case 11A the silicate mantle
is extended to match the overall radius of the ice-hybrid world,
leading to a very low dissipative response, and a gradually more
hydrostatic real-valued response. Overall this indicates that
ocean presence is critical, ocean thickness negligible, and ocean
position important mainly for the magnitude of dissipation.

Figure 12 shows the effect of varying the orbital forcing
period on the surface Love numbers of ice–silicate hybrid super-
Earths. Baseline Earth model as in Figure 11. Solid curves:
Ice mantles with no water ocean, varied from a 2 to 50 day
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Figure 11. Tidal surface Love numbers for silicate and ice–silicate hybrid worlds, testing variations in structure and ocean position at P = 30 days. Solid ice mantles
with no ocean have the greatest potential for tidal heating, while adding oceans of any size can greatly reduce the tidal heat response (via −Im(k2)), even while often
increasing surface deformation (via Re(h2) and Re(l2)). The all-silicate Case 11A is included only for comparison with ice mantles as a high-density high-viscosity
limit. Note log scale for imaginary components. −Im(h2) and −Im(l2) included in this figure only, to show their general similarity to the behavior of −Im(k2). All
cases contain a 1 ME core. See the text for model details.

orbital forcing period. At longer periods, the peak (Re(l2),
−Im(k2)), or minimum (Re(k2), Re(h2)) response of non-
monotonic functions occurs at smaller ice mantle thicknesses.
Dashed Curves: Ice mantles are separated from the silicate
mantle below by a 10 km water ocean. Changes in real-valued
components are negligible with forcing frequency, while the
dissipative response (−Im(k2)) is highest at short periods. This
is the opposite of the dissipative trend for the solid cases
for thinner ice mantles (prior to any peak), which achieve
maximum dissipation at longer periods. Note that for decoupled
ice mantles, the shape of the imaginary component curves is
entirely insensitive to the forcing period, and thus dissipation is
always greater with greater thickness, while for solid-only ice

mantles, there is generally a thickness for peak dissipation at
any given forcing frequency.

Continuous variation of ocean position was tested and found
to have minor impact beyond that already reflected by base
and near surface ocean position endmembers. There is some
dependence of Re(k2) and Re(h2) on position, but it is weak
and mainly expressed at short periods, such as P = 2 days
(Note that Love numbers are a function of the planet only,
and therefore apply to all host masses and eccentricities). At
P = 2 days, all ocean positions lead to increasing −Im(k2)
with increasing ice thickness. At longer periods, near surface
oceans lead to decreasing −Im(k2) with ice thickness. At long
periods, e.g., P = 300 days, even the dependence of −Im(k2) on
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Figure 12. Tidal surface Love numbers for ice–silicate hybrid worlds testing variations in forcing period in ice mantle thicknesses up to 3000 km. Solid lines: ice
mantles with no water ocean. Dashed lines: 10 km thick water ocean at ice base. Note log scale for −Im(k2). Models with and without oceans converge at high tice
or long periods. While oceans almost always decrease total heating (via −Im(k2)), solid worlds switch ordering of strong vs. weak dissipation in both period and
thickness, but for worlds with oceans, short period cases and high thickness cases always have greater heating. In a few thin-shell cases, worlds with oceans experience
more heating than all-solid worlds. See the text for model details. Note that period variations are sensitive to rheology choice, and the Maxwell rheology used may
have more frequency dependence than materials with compositional inhomogeneity.

ocean position begins to be lost, but the dependence of Re(l2)
is enhanced. Near surface oceans lead to the highest ocean
bearing branch for Re(l2), consistent with the idea that freedom
of an outer ice shell to deform laterally without connection to
the lower solid increases the overall lateral crustal deformation
response.

5.2. Gradations of Ice Layer Properties

When a uniform growing ice mantle is applied to a silicate-
iron core with gradations in the silicate properties using the
PREM baseline, results almost exactly overlie those for a single
or double layer silicate mantle model as shown in Figure 11, with
the exception of slight constant offsets due to any imperfectly
matched ice-free values. We find this to be true both at short
and long forcing periods. Thus, the importance of such iron/
silicate interior gradations is negligible in terms of surface Love
numbers for ice hybrid worlds, except when ice layers are less
than a few hundred km in thickness.

Of greater importance is any gradation of ice viscosities. Cold
brittle ice with a viscosity up to 1 × 1021 Pa s has been suggested
for the non-convective top layer of Europa’s ice shell, yet near
surface warm convective ice may have viscosities from 1 × 1013

to 1 × 1015 Pa s depending on composition and conditions. As
with silicates, there are competing effects upon the viscosity
of ice with depth: as high pressure may act to increase or
decrease viscosities, while increasing temperature with depth

acts to lower them. Thus, it is not immediately clear for a given
composition and global heat flux which behavior may dominate,
as discussed in Section 3.3.

Compared to the range of variation possible for ice viscosities,
the range available for ice densities and ice shear moduli, even
under high pressures in a deep ice mantle, are comparatively
small. Ice density may increase by a few percent, but it will not
vary over up to two orders of magnitude. Therefore Figure 13
shows models where only the viscosity is varied in the ice layer,
so as to deconvolve this strong primary effect from any other
more modest parameter variations.

In general, ice property gradations have a major impact on
outcomes, however, it is usually the uppermost layer properties
which continue to dominate the response. Because the overall
viscosity has changed, imaginary components experience signif-
icant changes in magnitude. A brittle top suppresses dissipation
(e.g., lowers −Im(k2) values) both with and without an ocean
(13D and 13H). Unlike for solid-only cases, for models with a
thin ocean, both forms of a viscosity gradation (13F increasing
with depth from 1 × 1013 to 1 × 1015, or 13G decreasing with
depth from 1 × 1015 to 1 × 1013), will increase dissipation.
Here amplification due to the lowermost layer is also activated
partly due to the higher stress concentration typical at inter-
faces between a solid top layer and underlying ocean, as seen
in Figure 4. Gradations also alter system natural frequencies,
such that the ice thickness for peak dissipation or maximal or
minimal deformation shifts from a pure case.
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Figure 13. Impact of gradations in ice properties. 100 day forcing period. Case 13A: Uniform solid ice, Case 13B: ice viscosity increasing with depth from 1 × 1013

to 1 × 1015 Pa s. Case 13C: ice viscosity decreasing with depth. Case 13D: brittle η = 1 × 1021 Pa s ice top. Cases 13E–13H: Same as 13A–13D but with a decoupling
basal ocean. Note log scale of −Im(k2).

The trend for ice gradations to have high importance continues
at other forcing periods. Results for a short period of three days
are shown in Figure 14, and are distinctly different from
patterns in Figure 13. At this short period a much greater
fraction of structure cases lead to dissipation which increases
monotonically with ice thickness, and overall lowers the chances
that any response peak of a property lies within the 0–3000 km
ice mantle range.

The most interesting gradation case occurs at long periods,
where a double peak in the dissipative response appears in the
case of a solid ice mantle with a brittle top. In this scenario the
natural frequency of the convective ice layer and brittle ice layer
are sufficiently unique to produce two visibly separate peaks,
and the forcing period of 100 days in Figure 13 happens to
excite both within the ice thickness range applied. This example
is illustrative of a general phenomenon that may occur for high
viscosity contrast layers. A similar tendency to multiple peaks
does not occur for both the silicate and ice layers due to the
challenge of exciting a thick deep 1 × 1021 Pa s layer versus the
easier task of exciting such a brittle layer as a thin surface shell.

5.3. Variations with Orbital Period

Figure 15 concludes by showing the tidal behavior for selected
models as functions of orbital period. Total heat, effective Q
values, and circularization times following Equation (2) are
shown. Again a host star mass and luminosity following 55 Cnc
is used to allow colder surfaces so that direct comparisons may
be made between ice and silicate worlds, however, curves in
Figure 15 are nearly identical to those for a host star with a

mass of 1 Msol. Silicate-iron worlds are shown in the top row,
while ice–silicate worlds are shown in the bottom row. Cases
are selected to highlight the role of low viscosities, magma
oceans, and water oceans. Even with a conservative assumption
on eccentricity, geologically relevant tidal heating is shown
to extend out to ∼50–100 days in a variety of cases, with a
horizontal threshold of 5 TW used to denote this approximate
activity level. Geologically relevant tidal activity extends to
longer periods more often in ice–silicate hybrid cases (bottom
left panel), with deep-ice mantle cases (e.g., 6000 km of ice or
more) constituting the longest period active worlds.

For Earth-mass silicate-iron worlds, all structure variations
tested in Figure 4 cluster close to the second curve in Figure 15
labeled 1 ME Multilayer, including both PREM variants. The
most important result of Figure 15 is the change that occurs
between worlds we label as Cool Dry Earths, Warm Earths,
and Very Hot Earths. By Cool Dry Earths we refer to worlds
without dissipation in a surface water ocean, with mantle
structures and mantle viscosities similar to the modern Earth.
The high viscosity of such mantles leads to very low dissipation,
very large Q values, and very long circularization times. Such
worlds may retain initial eccentricities for much longer than
solar system lifetimes, even at short periods, given that their
eccentricities are not so large as to heat them into the next Warm
Earth category. This finding may help to explain some high
eccentricities observed in the exoplanet population for terrestrial
class planets.

A significant change occurs for Warm Earth cases, when
we assume the mantle and asthenosphere viscosities of silicate
material are far lower than for the modern Earth, and close
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Figure 14. Impact of gradations in ice properties at short periods, at P = 3 days. Cases same as in Figure 13. Note the extent to which patterns shift from those of
Figure 13, demonstrating the complexity of results across multiple forcing periods. For this reason, and the sensitivity of temperature structures to forcing histories,
we caution that the tidal behavior of ice worlds with similar sizes and ice fractions but different orbits can yield very different tidal outcomes.

to viscosities at or just above typical solidus temperatures for
mantle materials. For a mantle viscosity of 1 × 1017 Pa s (e.g.,
high pressure, just sub-solidus) and asthenosphere viscosity of
1 × 1014 Pa s (e.g., just above solidus), tidal heating of ∼5 TW
may occur out to 80 day periods at e = 0.1, to 320 days for e =
0.2, and 2000 days for e = 0.5. Solutions of ∼10,000 TW are
plausible for partially melted silicate worlds out to periods of
20, 80 and 500 days for the same eccentricities. While higher
order terms in eccentricity become important above this level,
such moderate Warm Earth silicate worlds have the potential
to maintain the heat required for a high partial melt fraction
mantle across a very large range of orbital periods relevant for
terrestrial planet formation. Following Figure 1, the definition of
Warm Earth above corresponds to bulk layer temperatures that
are only ∼300–400 K higher than the present Earth. Effective
Q values plummet for Warm Earths, falling 4–5 orders of
magnitude relative to a Cool Dry Earth, and well below the
common assumption of Q = 100. Typical Warm Earth Q values
are in the range 1–10, with values of Q = 1–2 very common
for short periods. Circularization times for such worlds are far
faster than their cool counterparts, a result that can help warm
Earth-analog worlds to rapidly recover from high eccentricity
scattering events, and reduce the number of terrestrial planets
vulnerable to being lost from early active solar systems due to
orbit crossings or three body encounters.

Only for the most extreme Very Hot Earths, does the opposite
behavior occur, with Q values again rising back above 100, and
into the Q = 1000 range. We emphasize that this is a highly
unexpected result. Conventional wisdom suggests that melting

in general reduces dissipation, thus extending circularization
times, and making Earths vulnerable to orbital crossings and
system loss for longer times. Instead, we find that the path of
multilayer global heating first produces an extreme increase in
dissipation, thus shorter circularization times, and only once a
magma ocean consumes a very large fraction of a mantle, does
traditional tidal shutdown begin. This is a uniquely multilayer
effect, caused by the low viscosity warm mantle underneath a
magma ocean. Here, even the imperfect viscoelastic tuning of
warm lower mantle material more than compensates for the loss
of active volume from magma layers. Note how even the most
extreme magma ocean cases shown have lower Q values (greater
dissipation) than Cool Dry Earths, again counter to the notion
of tidal shutdown. Overall, all dry planet results with Q near the
20–100 level are rare, and thus the assumption of Q ∼ 20–100
is most useful for Cool Wet Earths: e.g., planets expected to
strongly resemble the modern Earth in age, orbital forcing, and
expected surface water ocean state.

The viscosity at which behavioral transitions occur is period
dependent. A Maxwell time of 100 days is achieved for silicate
material with a viscosity of around 1 × 1017 Pa s (or 1 × 1016 Pa s
for 10 days). At this period, below this viscosity, the tidal
response is again attenuated. For the cases containing magma
oceans in Figure 15 we have tested values for the remnant solid
lower mantle of 1 × 1012–1 × 1014 Pa s, to try to bring about
the least dissipation plausible for such layers while remaining
a solid. Lower mantle viscosities any closer to 1 × 1016–1 ×
1017 Pa s in Very Hot Earth cases will show even less of an
increase in Q. The fact that creating Very Hot Earth class results
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Figure 15. Tidal behavior as functions of orbital period, showing total heat, effective Q values, and circularization times. (Top row: silicate worlds. Bottom row:
ice-silicate hybrid worlds.) As interiors are warmed, Earth-analog planets switch from low to high dissipation, then back again to low in very hot cases. The majority
of circularization timescales are longer than our solar system age. At the same time extreme tidal heat rates �106 TW do remain possible even with large magma
oceans at short periods. For ice–silicate hybrid worlds, the only reliable trends are that high thickness cases are the best pathway to high tidal heating, and high melting
cases are the best pathway to low dissipation. Adding near-surface oceans has minimal impact on outcomes. Adding a basal water ocean may increase dissipation at
some periods but not all, depending heavily on structure and viscosity details. Altering ice viscosities or introducing ice viscosity gradations remain close to the basic
cluster of results displayed. e = 0.1, and all host stars have a mass following 55 Cnc to make ice surfaces more plausible at shorter periods.

requires stretching the parameter range to this extent hints at how
common Warm Earth class results will be. The relative position
of Q values for each category can be viewed as an aggregate
reflection of the distance from the ideal Maxwell tuning of each
worlds’ dominant layers: e.g., at ∼1 × 1017 Pa s, Warm Earths
are ideally tuned, while Very Hot Earths at ∼1 × 1014 Pa s are
still typically closer to their ideal tuning than Cool Dry Earths at
∼1 × 1021 Pa s. For improved rheologies beyond the Maxwell
model, specific ideal tuning frequencies will vary, often with
more gradual transitions between categories, but regardless of
rheology the overall pattern will remain robust that dissipation
is lowest for cool and hot cases, and highest for intermediate
cases.

Previous analysis (Henning et al. 2009) has shown that
feedback with mantle convection by the mechanism described
in Moore (2003b) will cause the majority of strong tidal
forcing cases to rapidly evolve into very stable tidal-convective
equilibrium states at low-to-modest melt fractions. While this
previous work was performed for a homogeneous mantle, the
general tidal-convective equilibrium mechanism makes it very
difficult for planets to reach the Very Hot Earth states with deep
magma oceans demonstrated here. We conclude such states are
only possible when external orbital forcing is extremely strong,
such as for P � 10 days, or at longer periods e � 0.5. This
means that the vast majority of terrestrial planets warmed any
significant amount more than the modern Earth, are expected
to fall within the Warm Earth category, and therefore will have

circularization times 10–100 times faster than Q = 100 models
would predict.

Transitions between our categories of Cool Dry Earth, Warm
Earth, and Very Hot Earth are gradual and difficult to define,
based on the large number of parameters involved, and sensitiv-
ity to forcing frequency in multiple layers. We have highlighted
approximate bounding cases, to collapse parametric variants
into a single behavioral spectrum, roughly analogous to bulk
planetary temperature. The temperature of a given exoplanet
will be influenced by its age, orbital state, orbital history, inter-
nal structure, composition, and internal structure history. Eccen-
tricity and semi-major axis however do provide useful guides,
as low eccentricity and longer period objects are far more likely
to remain cool, while the forcing to create Very Hot cases will
arise primarily in high eccentricity and short-period objects.
Note that the control due to semi-major axis arises from the n5

component of Equation (1), and not necessarily from a rise in
isolation driven surface temperatures for short period worlds,
as mantle temperatures are more controlled by total heat flux
through convection than by the surface temperature boundary
condition.

For ice–silicate hybrid worlds, Q � 100 for the majority of
models, and is often �10. Because of its low viscosity, the
Maxwell time for ice is often crossed in the period range shown,
leading to Q(P ) curves with distinct minima that shift based
on model details. Overall however, there is no major difference
in behaviors when small water oceans are added to previously
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Table 2
Tidal Categories of Terrestrial Exoplanets

Category Example Conditions Typical Q Range

Wet Cool Earth-analogs Older systems, Low e, P � 50 days 10–1000
Dry Cool Earth-analogs Older systems, Low e, P � 50 days 1000–1,000,000
Warm Earth-analogs Young planets, High e, P � 50 days 1–100
Very Hot Earth-analogs High e, P � 10 days 100–10,000
Cool Ice-Hybrid super-Earths e � 0.1 or P � 100 days 1–10
Warm Ice-Hybrid super-Earths e � 0.1 or P � 100 days 10–100

all-solid models. The main way to achieve high dissipation of
ice systems is to increase ice mantle depth. The primary pathway
to decrease dissipation is to remove ice volume by converting
it to liquid. Other variants, such in viscosity or ocean location,
continue to cluster near the baseline model shown here with no
simple relationship. The importance of ice for tidal modeling is
therefore the basic extension of tidal relevance to long periods
(100 days) for colder worlds, compared to the very short period
range of tidal relevance for cold silicate worlds (10 days). The
inclusion of water oceans does not alter this result.

We find that modest global-scale partial melting in ef-
fect causes silicate and ice worlds to switch tidal behav-
iors. Normally low-dissipative silicate worlds become high-
dissipative, and normally high-dissipative ice worlds become
low-dissipative. Full role reversal, however, is more common
at long periods, and extreme melting (e.g., magma or water
oceans spanning ∼1/2 or more of a mantle layer’s volume, per-
haps driven by extreme orbits or concurrent spin-tides) in all
worlds causes low-dissipative behavior.

The low-Q high-dissipation behavior of super-Earths with
large ice mantles implies that a major transformation must
occur when worlds grow to the size of Neptune where Q =
12,000–330,000 (Banfield & Murray 1992). This transition may
be dominated by very high pressure ice phases such as superi-
onic ice and plasma ice (Ryzhkin 1985; Goldman et al. 2005;
French et al. 2009; Goncharov et al. 2009) expected to exist in
Neptune’s mantle (D. Sasselov 2011, private communication).
Recent research (Cavazzoni et al. 1999; Redmer et al. 2011)
suggests that Neptune’s geotherm may pass very close to the
transition between the cooler superionic phase and the warmer
plasma phase, possibly dividing the planet’s mantle into both
materials. The viscosity of these phases is unknown, but the
characteristic that superionic ice has oxygen nuclei retained
in a lattice, while hydrogen nuclei are mobile, yet in plasma
ice both species become mobilized, suggests that the warmer
plasma phase may have viscosities more like a fluid. Therefore
as Neptune-class worlds cool in time, their mantles may switch
from a warmer fluid-like tidal behavior with high Q values, to a
possible evolved era at lower Q when more superionic ice forms,
potentially akin to the 10,000 km thick ice mantle models in this
work, yet depending on future determinations of high pressure
viscosities.

6. CONCLUSIONS

This paper applies a multilayer approach to determining the
outcome of tidal heating for Earth analog exoplanets, as well
as for terrestrial exoplanets with significant ice mantles above
an Earth-sized silicate-iron core. In Table 2 we summarize the
basic categories of terrestrial planet tidal behaviors studied,
largely based on categories of temperature, and therefore on the
presence or absence of interior melting. An overall result is the

high uncertainty in Q due to uncertainty in interior temperatures,
and thus the importance of testing orbital models using a broad
range of Q values. A one-size-fits-all approach for terrestrial-
class Q values is clearly not supported by Figure 15 or Table 2.

Multilayer modeling of Earth-analog worlds shows that
dissipation is often 1.25–3 times stronger than predicted by
homogeneous models. The additional flexure allowed by a liquid
outer core provides the first contribution to this enhancement.
The largest contribution to added heating comes from the ability
to include the tidal response of any low viscosity solid or
partial-melt layers such as an upper mantle or asthenosphere
that are otherwise not resolved. These enhancements most often
dominate beyond reductions caused by removing the volume of
a liquid outer core from heat production. Global tidal damping
rates are strongly controlled by the viscosity and thickness of
any upper layers with material Maxwell timescales η/μ close to
their forcing period. Including gradations of material properties,
or detailed layer structures such as the PREM model, alters
heating mainly by resolving or creating internal layers that may
come closer to viscoelastically matching their forcing period
than without such compositional detail. Low-viscosity zones
such as Earth’s D′′ layer may also alter the global response,
in particular because stress concentrations at the discontinuity
of the CMB are generally a point of peak dissipation even
without this layer. Higher heating from multilayer Earth models
remains true across a broad range of stellar masses and orbital
periods. While tidal heating rates for such multilayer worlds are
higher compared to homogeneous viscoelastic models without
surface water oceans, such cooler analogs to a dry modern Earth
are dramatically less dissipative than Q = 100 models, with
effective Q values remaining in the 104–105 range across most
forcing periods. While we do not model Mars-sized worlds in
this study, the low Q reported for Mars suggests a possible
warm sub-lid asthenosphere. Similarly, it is possible that low
fixed-Q estimates for Venus and Mercury based on despin times
result from past warm interior episodes perhaps influenced by
spin-tides themselves. Overall, circularization timescales for
low eccentricity planets that do not experience tidal heating
comparable to radionuclides, are 100–1000× longer than Q =
100 estimates predict. This means that scattered dry terrestrial
exoplanets with modest eccentricities (e � 0.1) or modest
periods (P � 30 days) may retain nonzero eccentricities for
extremely long timeperiods. If Hot Jupiter and Hot Neptune
worlds are eventually shown to occur because of tidal evolution
following scattering, yet observations continue to show no
equivalent excess close-in population for super-Earths, then
higher than expected Q values for cool solid worlds could be
helpful in explaining such results.

The addition of an ice mantle dramatically enhances the
tidal susceptibility of a terrestrial world, and leads to the
possibly of geologically important tidal heat outputs even
at large distances from a host star. For ice–silicate hybrid
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worlds typically Q � 10, however, care should be taken to
also consider the full viscoelastic value −Im(k2) that controls
tidal behavior. Gradations in ice properties with depth yield
complex results, but upper layers with Maxwell times near
the forcing period mainly control bulk outcomes. Large ice
mantles, transitional to mini-Neptune class worlds, have the
highest potential for significant dissipation, however, further
research into the viscosity of ice for such layers is greatly
needed. For ice mantles between 200 and 2000 km thickness, an
effective aggregate resonance with the material layer thickness
is common. Numerous layer structures are possible with regards
to the size and location of water oceans relative to ice layers,
including near-surface, basal, and perched oceans. Whether such
oceans increase or decrease tidal dissipation depends strongly
on both material parameters and the orbital forcing period.
Sensitivity in all cases to water (or magma) ocean thickness
is negligible, unless such thickness is a very high fraction of the
total material volume. Detailed analysis of the likely positions
of liquid water, water-ammonia, or brine oceans within such
tidally active ice mantles, coupled with further orbital analysis
as to eccentricity maintenance, is therefore desired in order to
assess in more detail the increase in total habitable volume
of exosystems that the high tidal susceptibility of ice layers
suggests.

The melting of silicate systems has a complex relationship
with the final observed level of tidal energy loss. Moderately
warm Earth-analog planets experience a extremely large in-
crease in tidal damping, due to the fact that mantle material at
viscosities moderately reduced (η ∼ 1 × 1017–1 × 1018 Pa s)
from observed values for the Earth (1 × 1019–1 × 1024 Pa s), is
well tuned to typical orbital forcing timescales of interest. Ter-
restrial planets with periods below ∼50 days and eccentricities
�0.1, or higher e at longer periods, are primary candidates for
such interiors. High circularization rates improve the survival
rate of planets by reducing the time during which orbit cross-
ings and subsequent further scatterings are likely. This result for
moderately warm Earth analogs is expected to strongly benefit
the survival rate of scattered Earth-sized planets, by allowing
tidal circularization rates much higher than predicted by simple
models with tidal damping rates fixed near Q = 100.

For cases of extreme silicate melting, the opposite result
occurs. For planets with large magma oceans or magma slush

layers (η � 1 × 1011 Pa s) and near-solidus or partial melt
lower mantles (η ∼ 1 × 1011–1 × 1014 Pa s), tidal damping
rates return to values similar to those for cool high-viscosity
worlds. Circularization rates for such highly melted worlds are
intermediate between those of Q = 100 models and cool dry
Earth models. The requirement of having very strong tides to
achieve this pathway to circularization extension is expected to
limit this effect to very short period cases below ∼10 days or to
moderately higher periods at very high eccentricities. Ongoing
spin or obliquity tides for close-in orbits will also shift planets
toward very hot interior models.

Together, these two results for silicate systems: improved
circularization rates for modest heating, and reduced circular-
ization rates for cool planets or extreme heating, may even-
tually help to address two features of the exoplanet popula-
tion: the survival rate of terrestrial planets during scattering, as
well as the high eccentricity distribution of short period worlds.
In particular, warm Earths in scattered orbits may circularize
10–100 times faster than current predictions, helping to save
more Earths from orbital chaos. While in this work we have be-
gun with static multilayer models, in future work we will address
the degree to which feedback in time with orbital forcing and
tidal-convective equilibrium shifts models between cool, warm,
and hot categories. For planets with large ice mantles, the high
efficiency of tidal dissipation in ice implies that the heat needed
to maintain subsurface ocean layers will be far more common
than from radionuclide sources alone, and will therefore help
to increase the expected volume of potentially habitable liquid
water within the galaxy.
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APPENDIX

THE PROPAGATOR MATRIX METHOD

Tidal dissipation in a layered self-gravitating body may be found based on a technique referred to as the propagator matrix method
(Love 1927; Alterman et al. 1959; Takeuchi et al. 1962; Peltier 1974; Sabadini & Vermeersen 2004). The solution of this process is
generally reported as a vector y containing coefficients for the radial and tangential displacements u′

r and u′
θ , radial and tangential

stresses τr and τθ , gravitational potential at a given layer interface ϕ, and a term traditionally referred to as the potential stress ψ ,
which is used for continuity. The prime notation highlights that values here are coefficients only, later to be scaled by the gravitational
potential strength as a function of an orbit.

y =

⎛
⎜⎜⎜⎜⎜⎝

u′
r

u′
θ

τr

τθ

ϕ
ψ

⎞
⎟⎟⎟⎟⎟⎠ (A1)

These coefficients within y are functions in radius r that are applied to a spherical harmonic representation of the tidal deformation,
for example, as:

Ur (r, θT , φT ) =
∞∑

�=0

u′
r,�(r)P�(cos(θT )), (A2)
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where � is the spherical harmonic degree, θT is the colatitude angle from the symmetry axis of the tidal bulge, and φT is the azimuth
angle around this tidal axis. Here the tidal axis connects the mean sub-primary point to the mean anti-primary point and assumes
zero obliquity. To first approximation, tidal deformation may be modeled as an prolate phenomenon as a function of the Legendre
polynomial P2(cos(θT )), while higher order terms in � decay rapidly in magnitude.

The heart of the propagator matrix technique is the definition of a propagator matrix Y for each layer in terms of its material
properties and the harmonic degree, which transmits these six properties of y from the bottom to the top of a given layer based on
fundamental continuity equations. For solid-solid only interfaces, the propagator matrix Y takes the form:

Y� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�r�+1
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When � = 2, this simplifies to:

Y2 =
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Unless otherwise noted, the harmonic degree index will be dropped from further terms below.
The process for solution of the system begins at the core, to build a full aggregate propagator for the entire layer system. Note that

μ here may be either the elastic rigidity, or in the viscoelastic solution a complex valued μ which is a function of shear modulus as
well as viscosity and forcing frequency. At each layer i, an aggregate propagator Bi is found:

Bi = Yi(μ, g, ρ, r)Yi−1(μ, g, ρ, r)−1Bi−1. (A5)

At the core, a special seed matrix Bcore is created with only three columns, equal to the first, second, and third columns of Y for
the properties at the base layer. We assume the innermost layer is not a liquid. The process is therefore ultimately solving for three
unknowns: ur, uθ , and τr at the top of the innermost layer.

For a tidal problem, there are three boundary conditions at the surface: zero radial and tangential tractions, and a constant
gravitational potential stress, represented by the boundary vector b,

b =
(

0
0

−5/Rsec

)
. (A6)

The radial and tangential displacements at the surface are assumed to take on unknown finite values, which define the final tidal
response, and are thus the goal of the solution. Note that the requirements for all internal displacements to be continuous across layer
interfaces is encoded in the propagator matrix Y itself. For solid-solid interfaces tangential slip is not allowed, but for fluid-fluid and
fluid-solid interfaces, advanced forms of Y exist (see e.g., Wolf 1994; Moore & Schubert 2000; Jara-Orué & Vermeersen 2011), that
encode the fact that nether stresses nor displacements are transmitted from any solid interface at an ocean base to a solid interface at
an ocean top. In practice substituting weak (low η and μ) solid layers for true liquid layers achieves a similar decoupling effect and
similar numerical results, but is not preferred given the availability of the true-liquid interface methods by the above authors which
we have additionally utilized. Note that the propagator methods used here are inherently Lagrangian, with particles assumed not to
cross layer interfaces, and instead the deformation of each layer surface is tracked (see discussion by Wang 1997).

To apply the boundary condition vector b, the third, fourth, and sixth columns of the topmost aggregate matrix Bn are extracted in
a matrix M, which is used to solve for a vector c which then contains the information of the solution.

c = M−1b (A7)

The product of c and the Bi of any layer yields the solution vector yi at that layer.

yi = Bic (A8)

The Love and Shida numbers at the top of any layer are given by:

k2,i = −y2,i,5 + 1 (A9)
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h2,i = gy2,i,1 (A10)

l2,i = gy2,i,2, (A11)

where g is the gravitational acceleration at that position, the first subscript represents harmonic degree, second subscript the layer,
and third subscript the vector component.

Dissipation is calculated from the product of the stress tensor and the phase lagged strain rate tensor.

Ė = 1

P

∫
P

∑
ij

τij (nt) · ε̇ij (nt − ξ )dt. (A12)

Where Ė is the rate of work performed per unit volume, P is the orbital period, i and j are tensor indices, n the mean motion, t is
time, τ the stress tensor, ε the strain tensor, and ξ is the material phase lag, equal to the ratio of the imaginary and real components
of the complex material compliance μ(s),

ξ = Im(μ(s))

Re(μ(s))
. (A13)

The sum over the tensor indices i and j in Equation (A12) in practice means summing terms in spherical coordinates for rr,
θθ , φφ, rθ , rφ, and θφ, due to symmetry of the spherical harmonic P2 term around the tidal axis (Sabadini & Vermeersen 2004).
The instantaneous rate of work Ė, on any material within the body varies over one orbit as the tidal bulge librates and changes in
magnitude. This equation is numerically integrated over the orbital period to calculate the net energy dissipation. The time-varying
gravitational potential at the surface for a spin-synchronous body with zero obliquity in an eccentric orbit, in terms of colatitude θ ,
longitude φ and time t is:

Φ = (1 + k2)(Rn)2e

(
−3

2
P20(θ )Cos(nt) +

1

4
P22(θ )(3Cos(nt)Cos(2φ) + 4Sin(nt)Sin(2φ))

)
. (A14)

In this form, Φ is the time varying part of the gravitational potential seen by the surface only, as the time independent terms do not
lead to changes in deformation and thus do not contribute to stress or dissipation. This definition of Φ, through the term (1 + k2) is
additionally the potential of the deformed body, scaled using the definition of the second order load Love number. The deformed time
dependent potential is what ultimately causes heating in the body. Alternate definitions of Φ which include terms for non-synchronous
rotation and obliquity also exist (e.g., Wahr et al. 2009; Jara-Orué & Vermeersen 2011). Here we focus on eccentricity tides, but
reported Love numbers (and y vectors) show how layering will alter the magnitude of the response for all other possible external
potentials, while the mapping of the response remains primarily determined by the potential shape in θ and φ.

Displacements of the material in spherical coordinates, in terms of the potential and the solution vector from propagation are:

ur = y1Φ (A15)

uθ = y3
∂Φ
∂θ

(A16)

uφ = y3
∂Φ
∂φ

1

Sin(θ )
, (A17)

where the subscripts to y indicate the vector component. An important detail here is that until this stage the terms in y are not scaled
in final units, but the scaling in the definition of Φ has been chosen such that terms derived from y and Φ are in meters, or for stress
in Pascals. A key element is that for an eccentric orbit, e, only contained in Φ, is a major scale factor for the final magnitude of the
tidal bulge. The components of the strain tensor εij are similarly defined in terms of the potential and its spatial derivatives. Note that
multiple forms of these strain equations exist in the literature (Kaula 1964; Sabadini & Vermeersen 2004; Tobie et al. 2005; Jara-Orué
& Vermeersen 2011) and care must be taken in comparing nomenclatures.

εrr = dy1

dr
Φ (A18)

εθθ = 1

r
y3

d2Φ
dθ2

+ y1Φ (A19)

εφφ = 1

r
(y1 − 6y3Φ) − y3

d2Φ
dθ2

(A20)

εθφ = 1

rSin(θ )
y3

(
d2Φ
dθdφ

− Cot(θ )
dΦ
dφ

)
(A21)
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εrφ = 1

2μ

1

Sin(θ )
y4

dΦ
dφ

(A22)

εrθ = 1

2μ
y4

dΦ
dφ

. (A23)

The components of the stress tensor may be computed from those of the strain tensor as follows:

σij = 2μεij (A24)

σii = Π + 2μεii (A25)

Π = −r2μc1 − μc4r
−3 + gρ(r3c1/7 + rc2 + c4r

−2/2 + c5r
−4) − ρ(c3r

2 + c6r
−3). (A26)

Here Π is derived by substituting Sabadini & Vermeersen (2004) Equations (1.60), (1.61), and (1.68) into their Equation (1.59),
at harmonic degree 2, with the coefficients c1−6 being the components of the solution vector c. This value is defined as Π = λΔ,
where λ is Lame’s second parameter and Δ is the divergence of the displacement. Solving for Π via the method in Sabadini &
Vermeersen (2004) allows for the determination of stress assuming incompressibility, due to the issue that λ for an incompressible
material approaches infinity, but the product λΔ remains finite.

The final computation of energy may now be performed, utilizing the complex-valued viscoelastic solution (Roberts & Nimmo
2008):

Ėij = n

2

∫ ∫ ∫ ∫
[Im(σij )Re(εij ) − Re(σij )Im(εij )]dθdφdrdt, (A27)

such that Wtotal = ∑
Ėij is the total tidal dissipation rate of the planet, being careful that cross terms are counted twice due to the

diagonal symmetry of the tensor.
This approach results in a three-dimensional map of tidal dissipation as a function latitude, longitude, depth, and time throughout

an orbit. It also allows the relative importance of specific tensor terms to be evaluated. In general, cross terms are found to lead to
greater dissipation than directional normal terms.

REFERENCES

Alterman, Z., Jarosch, H., & Pekeris, C. L. 1959, RSPSA, 252, 80
Auclair-Desrotour, P., Poncin-Lafitte, C. L., & Mathis, S. 2014, A&A, 561, L7
Bakos, G. A., Noyes, R. W., et al. 2007, ApJ, 656, 552
Banfield, D., & Murray, N. 1992, Icar, 99, 390
Barnes, J., & O’Brien, D. P. 2002, ApJ, 575, 1087
Barnes, R., Jackson, B., Raymond, S., West, A., & Greenberg, R. 2009, ApJ,

695, 1006
Barnes, R., Mullins, K., Goldblatt, C., et al. 2013, AsBio, 13, 225
Barnes, R., Raymond, S., Greenberg, R., Jackson, B., & Kaib, N. 2010, ApJL,

709, L95
Barnes, R., Raymond, S., Jackson, B., & Greenberg, R. 2008, AsBio, 8, 557
Batalha, N. M., et al. 2011, ApJ, 729, 27
Bean, J. L., & Seifahrt, A. 2009, A&A, 496, 249
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Léger, A., et al. 2011, Icar, 213, 1
Lidov, M. L. 1962, P&SS, 9, 719
Lissauer, J. J., et al. 2011, Natur, 470, 53
Love, A. E. H. 1927, A Treatise on the Mathematical Theory of Elasticity

(Cambridge: Cambridge Univ. Press)
Makarov, V. V., & Berghea, C. 2014, ApJ, 780, 124
Makarov, V. V., Berghea, C., & Efroimsky, M. 2012, ApJ, 761, 83
Mandell, A. M., Raymond, S. N., & Sigurdsson, S. 2007, ApJ, 660, 823
Marcy, G. W., Butler, R. P., Fischer, D., et al. 2001, ApJ, 556, 296
Marcy, G. W., Butler, R. P., Fischer, D. A., et al. 2002, ApJ, 581, 1375
Marcy, G. W., Butler, R. P., Vogt, S. S., Fischer, D., & Lissauer, J. J. 1998, ApJL,

505, L147
Mathews, P. M., Buffett, B. A., & Shapiro, I. I. 1995, GRL, 22, 579
Matsumura, S., Ida, S., & Nagasawa, M. 2013, ApJ, 767, 129
Matsumura, S., Peale, S., & Rasio, F. A. 2010a, ApJ, 725, 1995
Matsumura, S., Takeda, G., & Rasio, F. A. 2008, ApJL, 686, L29
Matsumura, S., Thommes, E. W., Chatterjee, S., & Rasio, F. A. 2010b, ApJ,

714, 194
McArthur, B. E., Endl, M., Cochran, W. D., et al. 2004, ApJL, 614, L81
Meyer, J., & Wisdom, J. 2007, Icar, 188, 535
Mitrovica, J. X., & Forte, A. M. 2004, E&PSL, 225, 177
Monnereau, M., & Dubuffet, F. 2002, Icar, 158, 450
Moore, W., & Schubert, G. 2000, Icar, 147, 317
Moore, W. B. 2001, Icar, 154, 548
Moore, W. B. 2003a, Icar, 180, 141
Moore, W. B. 2003b, JGR, 108, 5096
Moore, W. B. 2006, Icar, 180, 141
Munk, W. H., & MacDonald, G. J. F. 1960, The Rotation of the Earth

(Cambridge: Cambridge Univ. Press)
Murray, C. D., & Dermott, S. F. 2005, Solar System Dynamics (New York:

Cambridge Univ. Press)
Nagasawa, M., Ida, S., & Bessho, T. 2008, ApJ, 678, 498
Namouni, F. 2005, AJ, 130, 280
Nowick, A. S., & Berry, B. S. 1972, Anelastic Relaxation in Crystalline Solids

(New York: Academic)
O’Connell, R. J., & Budiansky, B. 1977, JGR, 82, 5719
Ohta, Y., Taruya, A., & Suto, Y. 2005, ApJ, 622, 1118
Ojakangas, G. W., & Stevenson, D. J. 1989, Icar, 81, 220

O’Reilly, T. C., & Davies, G. F. 1981, GeoRL, 8, 313
Peale, S. J., & Cassen, P. M. 1978, Icar, 36, 245
Peale, S. J., Cassen, P. M., & Reynolds, R. T. 1979, Sci, 203, 892
Peltier, W. R. 1974, RvGSP, 12, 649
Peters, M. A., & Turner, E. L. 2013, ApJ, 769, 98
Platzman, G. W. 1984, RvGeo, 22, 73
Poirier, J. P. 2000, Introduction to the Physics of the Earth’s Interior (New York:

Cambridge Univ. Press)
Poirier, J. P., Sotin, C., & Peyronneau, J. 1981, Natur, 292, 225
Pont, F., Husnoo, N., Tsevi, M., & Fabrycky, D. 2011, MNRAS, 414, 1278
Queloz, D., Bouchy, F., Moutou, C., et al. 2009, A&A, 506, 303
Ragozzine, D., & Wolf, A. 2009, ApJ, 698, 1778
Raymond, S. N., Armitage, P. J., & Gorelick, N. 2009, ApJL, 699, L88
Raymond, S. N., Mandell, A. M., & Sigurdsson, S. 2006, Sci, 313, 1413
Raymond, S. N., Quinn, T., & Lunine, J. I. 2004, Icar, 168, 1
Redmer, R., Mattsson, T. R., Nettelmann, N., & French, M. 2011, Icar, 211, 798
Remus, F., Mathis, S., & Zahn, J.-P. 2012a, A&A, 544, A132
Remus, F., Mathis, S., Zahn, J.-P., & Lainey, V. 2012b, A&A, 541, A165
Reynolds, R. T., Peale, S. J., & Cassen, P. 1980, Icar, 44, 234
Ribe, N. M. 1987, JVGR, 33, 241
Rivera, E. J., Butler, R. P., Vogt, S. S., et al. 2010a, ApJ, 708, 1492
Rivera, E. J., Laughlin, G., Butler, R. P., et al. 2010b, ApJ, 719, 890
Rivera, E. J., Lissauer, J. J., et al. 2005, ApJ, 634, 625
Roberts, J., & Nimmo, F. 2008, Icar, 194, 675
Roth, L., Saur, J., Retherford, K. D., et al. 2014, Sci, 343, 171
Ryzhkin, I. 1985, SSCom, 56, 57
Sabadini, R., & Vermeersen, B. 2004, Global Dynamics of the Earth (Dordrecht:

Kluwer)
Sabadini, R. B., Smith, B. K., & Yuen, D. A. 1987, GeoRL, 14, 816
Scharf, C. 2006, ApJ, 648, 1196
Schneider, J. 2014, The Exoplanet.eu Database, http://exoplanet.eu/index.php
Segatz, M., Spohn, T., et al. 1988, Icar, 75, 187
Shen, Y., & Turner, E. L. 2008, ApJ, 685, 533
Shoji, D., Hussmann, H., Kurita, K., & Sohl, F. 2013, Icar, 226, 10
Showman, A. P. 2003, LPSC, 109, E1
Showman, A. P., & Malhotra, R. 1997, Icar, 127, 93
Spada, G. 2009, arXiv:0911.0834v1
Spiegelman, M. 1993, RSPTA, 342, 23
Squyres, S. W., Reynolds, R. T., Cassen, P. M., & Peale, S. J. 1983, Natur,

301, 225
Stevenson, D. J. 1999, Natur, 400, 32
Storch, N. I., & Lai, D. 2014, MNRAS, 438, 1526
Tackley, P. J., Schubert, G., et al. 2001, Icar, 149, 79
Takeda, G., & Rasio, F. 2005, ApJ, 627, 1001
Takeuchi, H., Saito, M., & Kobayashi, N. 1962, JGR, 67, 1141
Tobie, G., Mocquet, A., & Sotin, C. 2005, Icar, 177, 234
Tonks, W. B., & Melosh, H. J. 1993, JGR, 98, 5319
Tremaine, S., & Zakamska, N. L. 2004, in AIP Conf. Proc. 713 The Search For

Other Worlds,Vol. 243, ed. S. S. Holt & D. Deming (Melville, NY: AIP), 243
Triaud, A. H. M. J., et al. 2010, A&A, 524, A25
Tyler, R. 2008, Natur, 456, 770
Udry, S., & Santos, N. C. 2007, ARAA, 45, 397
Valencia, D., O’Connell, R. J., & Sasselov, D. D. 2006, Icar, 181, 545
Valencia, D., O’Connell, R. J., & Sasselov, D. D. 2007a, ApJ, 665, 1413
Valencia, D., Sasselov, D. D., & O’Connell, R. J. 2007b, ApJ, 656, 545
Verhoogen, J. 1974, Natur, 249, 334
Wahr, J., Selvans, Z., Mullen, M., et al. 2009, Icar, 200, 188
Wahr, J. M. 1981, GeoJI, 64, 677
Wang, R. 1997, Tidal Phenomena (Berlin: Springer), 27
Winn, J. N., Fabrycky, D., Albrecht, S., & Johnson, J. A. 2010, ApJL,

718, L145
Wolf, D. 1994, GeoJI, 116, 321
Won, I. J., & Kuo, J. T. 1973, JGR, 78, 905
Wu, Y., & Lithwick, Y. 2011, ApJ, 735, 109
Wu, Y., Murray, N. W., & Ramsahai, J. M. 2007, ApJ, 670, 820
Yoder, C. F. 1995, in Global Earth Physics. A Handbook of Physical Constants,

ed. T. Ahrens (Washington, DC: Am. Geophys. Union), 1
Yoder, C. F., & Peale, S. J. 1981, Icar, 47, 1
Yu, Q., & Tremaine, S. 2001, AJ, 121, 1736
Zakamska, N., Pan, M., & Ford, E. B. 2011, MNRAS, 410, 1895
Zener, C. 1941, PhRv, 60, 906
Zschau, J. 1978, in Tidal Friction and the Earth’s Rotation, ed. P. Brosche & J.

Sündermann (Berlin: Springer), 62

27

http://dx.doi.org/10.1086/378119
http://adsabs.harvard.edu/abs/2003ApJ...596.1332H
http://adsabs.harvard.edu/abs/2003ApJ...596.1332H
http://dx.doi.org/10.1016/j.epsl.2012.10.032
http://adsabs.harvard.edu/abs/2013E&PSL.361..272H
http://adsabs.harvard.edu/abs/2013E&PSL.361..272H
http://dx.doi.org/10.1089/ast.2012.0859
http://adsabs.harvard.edu/abs/2013AsBio..13...18H
http://adsabs.harvard.edu/abs/2013AsBio..13...18H
http://dx.doi.org/10.1051/0004-6361/201015809
http://adsabs.harvard.edu/abs/2011A&A...528A..27H
http://adsabs.harvard.edu/abs/2011A&A...528A..27H
http://dx.doi.org/10.1088/0004-637X/707/2/1000
http://adsabs.harvard.edu/abs/2009ApJ...707.1000H
http://adsabs.harvard.edu/abs/2009ApJ...707.1000H
http://dx.doi.org/10.1016/0012-821X(96)00154-9
http://adsabs.harvard.edu/abs/1996E&PSL.144...93H
http://adsabs.harvard.edu/abs/1996E&PSL.144...93H
http://dx.doi.org/10.1088/0067-0049/201/2/15
http://adsabs.harvard.edu/abs/2012ApJS..201...15H
http://adsabs.harvard.edu/abs/2012ApJS..201...15H
http://dx.doi.org/10.1016/j.icarus.2005.06.019
http://adsabs.harvard.edu/abs/2005Icar..177..380H
http://adsabs.harvard.edu/abs/2005Icar..177..380H
http://dx.doi.org/10.1038/nature05821
http://adsabs.harvard.edu/abs/2007Natur.447..292H
http://adsabs.harvard.edu/abs/2007Natur.447..292H
http://dx.doi.org/10.1016/j.icarus.2006.08.026
http://adsabs.harvard.edu/abs/2007Icar..186..218H
http://adsabs.harvard.edu/abs/2007Icar..186..218H
http://dx.doi.org/10.1016/j.icarus.2004.05.020
http://adsabs.harvard.edu/abs/2004Icar..171..391H
http://adsabs.harvard.edu/abs/2004Icar..171..391H
http://dx.doi.org/10.1088/0004-637X/713/2/751
http://adsabs.harvard.edu/abs/2010ApJ...713..751I
http://adsabs.harvard.edu/abs/2010ApJ...713..751I
http://dx.doi.org/10.1111/j.1365-2966.2008.13868.x
http://adsabs.harvard.edu/abs/2008MNRAS.391..237J
http://adsabs.harvard.edu/abs/2008MNRAS.391..237J
http://dx.doi.org/10.1086/529187
http://adsabs.harvard.edu/abs/2008ApJ...678.1396J
http://adsabs.harvard.edu/abs/2008ApJ...678.1396J
http://dx.doi.org/10.1086/587641
http://adsabs.harvard.edu/abs/2008ApJ...681.1631J
http://adsabs.harvard.edu/abs/2008ApJ...681.1631J
http://dx.doi.org/10.1016/j.icarus.2011.05.034
http://adsabs.harvard.edu/abs/2011Icar..215..417J
http://adsabs.harvard.edu/abs/2011Icar..215..417J
http://dx.doi.org/10.1088/0004-6256/140/5/1370
http://adsabs.harvard.edu/abs/2010AJ....140.1370K
http://adsabs.harvard.edu/abs/2010AJ....140.1370K
http://adsabs.harvard.edu/abs/1990RvGeo..28..399K
http://adsabs.harvard.edu/abs/1990RvGeo..28..399K
http://adsabs.harvard.edu/abs/1964RvGeo...2..661K
http://adsabs.harvard.edu/abs/1964RvGeo...2..661K
http://dx.doi.org/10.1088/0004-637X/720/2/1333
http://adsabs.harvard.edu/abs/2010ApJ...720.1333K
http://adsabs.harvard.edu/abs/2010ApJ...720.1333K
http://dx.doi.org/10.1088/2041-8205/739/2/L62
http://adsabs.harvard.edu/abs/2011ApJ...739L..62K
http://adsabs.harvard.edu/abs/2011ApJ...739L..62K
http://dx.doi.org/10.1111/j.1365-2966.2009.15472.x
http://adsabs.harvard.edu/abs/2009MNRAS.400..398K
http://adsabs.harvard.edu/abs/2009MNRAS.400..398K
http://dx.doi.org/10.1016/j.epsl.2010.11.018
http://adsabs.harvard.edu/abs/2011E&PSL.301...22K
http://adsabs.harvard.edu/abs/2011E&PSL.301...22K
http://dx.doi.org/10.1038/nature05782
http://adsabs.harvard.edu/abs/2007Natur.447..183K
http://adsabs.harvard.edu/abs/2007Natur.447..183K
http://dx.doi.org/10.1086/108876
http://adsabs.harvard.edu/abs/1962AJ.....67R.579K
http://adsabs.harvard.edu/abs/1962AJ.....67R.579K
http://dx.doi.org/10.1051/0004-6361:20065466
http://adsabs.harvard.edu/abs/2007A&A...465.1075L
http://adsabs.harvard.edu/abs/2007A&A...465.1075L
http://dx.doi.org/10.1086/427689
http://adsabs.harvard.edu/abs/2005ApJ...621.1072L
http://adsabs.harvard.edu/abs/2005ApJ...621.1072L
http://dx.doi.org/10.1088/0004-637X/692/1/659
http://adsabs.harvard.edu/abs/2009ApJ...692..659L
http://adsabs.harvard.edu/abs/2009ApJ...692..659L
http://dx.doi.org/10.1086/422166
http://adsabs.harvard.edu/abs/2004ApJ...611..517L
http://adsabs.harvard.edu/abs/2004ApJ...611..517L
http://dx.doi.org/10.1086/338504
http://adsabs.harvard.edu/abs/2002ApJ...567..596L
http://adsabs.harvard.edu/abs/2002ApJ...567..596L
http://dx.doi.org/10.1051/0004-6361/200911933
http://adsabs.harvard.edu/abs/2009A&A...506..287L
http://adsabs.harvard.edu/abs/2009A&A...506..287L
http://dx.doi.org/10.1016/j.icarus.2011.02.004
http://adsabs.harvard.edu/abs/1962P&SS....9..719L
http://adsabs.harvard.edu/abs/1962P&SS....9..719L
http://dx.doi.org/10.1038/nature09760
http://adsabs.harvard.edu/abs/2011Natur.470...53L
http://adsabs.harvard.edu/abs/2011Natur.470...53L
http://dx.doi.org/10.1088/0004-637X/780/2/124
http://adsabs.harvard.edu/abs/2014ApJ...780..124M
http://adsabs.harvard.edu/abs/2014ApJ...780..124M
http://dx.doi.org/10.1088/0004-637X/761/2/83
http://adsabs.harvard.edu/abs/2012ApJ...761...83M
http://adsabs.harvard.edu/abs/2012ApJ...761...83M
http://dx.doi.org/10.1086/512759
http://adsabs.harvard.edu/abs/2007ApJ...660..823M
http://adsabs.harvard.edu/abs/2007ApJ...660..823M
http://dx.doi.org/10.1086/321552
http://adsabs.harvard.edu/abs/2001ApJ...556..296M
http://adsabs.harvard.edu/abs/2001ApJ...556..296M
http://dx.doi.org/10.1086/344298
http://adsabs.harvard.edu/abs/2002ApJ...581.1375M
http://adsabs.harvard.edu/abs/2002ApJ...581.1375M
http://dx.doi.org/10.1086/311623
http://adsabs.harvard.edu/abs/1998ApJ...505L.147M
http://adsabs.harvard.edu/abs/1998ApJ...505L.147M
http://dx.doi.org/10.1029/95GL00161
http://adsabs.harvard.edu/abs/1995GeoRL..22..579M
http://adsabs.harvard.edu/abs/1995GeoRL..22..579M
http://dx.doi.org/10.1088/0004-637X/767/2/129
http://adsabs.harvard.edu/abs/2013ApJ...767..129M
http://adsabs.harvard.edu/abs/2013ApJ...767..129M
http://dx.doi.org/10.1088/0004-637X/725/2/1995
http://adsabs.harvard.edu/abs/2010ApJ...725.1995M
http://adsabs.harvard.edu/abs/2010ApJ...725.1995M
http://dx.doi.org/10.1086/592818
http://adsabs.harvard.edu/abs/2008ApJ...686L..29M
http://adsabs.harvard.edu/abs/2008ApJ...686L..29M
http://dx.doi.org/10.1088/0004-637X/714/1/194
http://adsabs.harvard.edu/abs/2010ApJ...714..194M
http://adsabs.harvard.edu/abs/2010ApJ...714..194M
http://dx.doi.org/10.1086/425561
http://adsabs.harvard.edu/abs/2004ApJ...614L..81M
http://adsabs.harvard.edu/abs/2004ApJ...614L..81M
http://dx.doi.org/10.1016/j.icarus.2007.03.001
http://adsabs.harvard.edu/abs/2007Icar..188..535M
http://adsabs.harvard.edu/abs/2007Icar..188..535M
http://adsabs.harvard.edu/abs/2004E&PSL.225..177M
http://adsabs.harvard.edu/abs/2004E&PSL.225..177M
http://dx.doi.org/10.1006/icar.2002.6868
http://adsabs.harvard.edu/abs/2002Icar..158..450M
http://adsabs.harvard.edu/abs/2002Icar..158..450M
http://dx.doi.org/10.1006/icar.2000.6460
http://adsabs.harvard.edu/abs/2000Icar..147..317M
http://adsabs.harvard.edu/abs/2000Icar..147..317M
http://dx.doi.org/10.1006/icar.2001.6739
http://adsabs.harvard.edu/abs/2001Icar..154..548M
http://adsabs.harvard.edu/abs/2001Icar..154..548M
http://dx.doi.org/10.1016/j.icarus.2005.09.005
http://adsabs.harvard.edu/abs/2006Icar..180..141M
http://adsabs.harvard.edu/abs/2006Icar..180..141M
http://dx.doi.org/10.1029/2002JE001943
http://adsabs.harvard.edu/abs/2003JGRE..108.5096M
http://adsabs.harvard.edu/abs/2003JGRE..108.5096M
http://dx.doi.org/10.1016/j.icarus.2005.09.005
http://adsabs.harvard.edu/abs/2006Icar..180..141M
http://adsabs.harvard.edu/abs/2006Icar..180..141M
http://dx.doi.org/10.1086/529369
http://adsabs.harvard.edu/abs/2008ApJ...678..498N
http://adsabs.harvard.edu/abs/2008ApJ...678..498N
http://dx.doi.org/10.1086/430747
http://adsabs.harvard.edu/abs/2005AJ....130..280N
http://adsabs.harvard.edu/abs/2005AJ....130..280N
http://dx.doi.org/10.1029/JB082i036p05719
http://adsabs.harvard.edu/abs/1977JGR....82.5719O
http://adsabs.harvard.edu/abs/1977JGR....82.5719O
http://dx.doi.org/10.1086/428344
http://adsabs.harvard.edu/abs/2005ApJ...622.1118O
http://adsabs.harvard.edu/abs/2005ApJ...622.1118O
http://dx.doi.org/10.1016/0019-1035(89)90052-3
http://adsabs.harvard.edu/abs/1989Icar...81..220O
http://adsabs.harvard.edu/abs/1989Icar...81..220O
http://adsabs.harvard.edu/abs/1981GeoRL...8..313O
http://adsabs.harvard.edu/abs/1981GeoRL...8..313O
http://dx.doi.org/10.1016/0019-1035(78)90109-4
http://adsabs.harvard.edu/abs/1978Icar...36..245P
http://adsabs.harvard.edu/abs/1978Icar...36..245P
http://dx.doi.org/10.1126/science.203.4383.892
http://adsabs.harvard.edu/abs/1979Sci...203..892P
http://adsabs.harvard.edu/abs/1979Sci...203..892P
http://adsabs.harvard.edu/abs/1974RvGSP..12..649P
http://adsabs.harvard.edu/abs/1974RvGSP..12..649P
http://dx.doi.org/10.1088/0004-637X/769/2/98
http://adsabs.harvard.edu/abs/2013ApJ...769...98P
http://adsabs.harvard.edu/abs/2013ApJ...769...98P
http://adsabs.harvard.edu/abs/1984RvGeo..22...73P
http://adsabs.harvard.edu/abs/1984RvGeo..22...73P
http://dx.doi.org/10.1038/292225a0
http://adsabs.harvard.edu/abs/1981Natur.292..225P
http://adsabs.harvard.edu/abs/1981Natur.292..225P
http://dx.doi.org/10.1111/j.1365-2966.2011.18462.x
http://adsabs.harvard.edu/abs/2011MNRAS.414.1278P
http://adsabs.harvard.edu/abs/2011MNRAS.414.1278P
http://dx.doi.org/10.1051/0004-6361/200913096
http://adsabs.harvard.edu/abs/2009A&A...506..303Q
http://adsabs.harvard.edu/abs/2009A&A...506..303Q
http://dx.doi.org/10.1088/0004-637X/698/2/1778
http://adsabs.harvard.edu/abs/2009ApJ...698.1778R
http://adsabs.harvard.edu/abs/2009ApJ...698.1778R
http://dx.doi.org/10.1088/0004-637X/699/2/L88
http://adsabs.harvard.edu/abs/2009ApJ...699L..88R
http://adsabs.harvard.edu/abs/2009ApJ...699L..88R
http://dx.doi.org/10.1126/science.1130461
http://adsabs.harvard.edu/abs/2006Sci...313.1413R
http://adsabs.harvard.edu/abs/2006Sci...313.1413R
http://dx.doi.org/10.1016/j.icarus.2003.11.019
http://adsabs.harvard.edu/abs/2004Icar..168....1R
http://adsabs.harvard.edu/abs/2004Icar..168....1R
http://dx.doi.org/10.1016/j.icarus.2010.08.008
http://adsabs.harvard.edu/abs/2011Icar..211..798R
http://adsabs.harvard.edu/abs/2011Icar..211..798R
http://dx.doi.org/10.1051/0004-6361/201118160
http://adsabs.harvard.edu/abs/2012A&A...544A.132R
http://adsabs.harvard.edu/abs/2012A&A...544A.132R
http://dx.doi.org/10.1051/0004-6361/201118595
http://adsabs.harvard.edu/abs/2012A&A...541A.165R
http://adsabs.harvard.edu/abs/2012A&A...541A.165R
http://dx.doi.org/10.1016/0019-1035(80)90019-6
http://adsabs.harvard.edu/abs/1980Icar...44..234R
http://adsabs.harvard.edu/abs/1980Icar...44..234R
http://adsabs.harvard.edu/abs/1987JVGR...33..241R
http://adsabs.harvard.edu/abs/1987JVGR...33..241R
http://dx.doi.org/10.1088/0004-637X/708/2/1492
http://adsabs.harvard.edu/abs/2010ApJ...708.1492R
http://adsabs.harvard.edu/abs/2010ApJ...708.1492R
http://dx.doi.org/10.1088/0004-637X/719/1/890
http://adsabs.harvard.edu/abs/2010ApJ...719..890R
http://adsabs.harvard.edu/abs/2010ApJ...719..890R
http://dx.doi.org/10.1086/491669
http://adsabs.harvard.edu/abs/2005ApJ...634..625R
http://adsabs.harvard.edu/abs/2005ApJ...634..625R
http://dx.doi.org/10.1016/j.icarus.2007.11.010
http://adsabs.harvard.edu/abs/2008Icar..194..675R
http://adsabs.harvard.edu/abs/2008Icar..194..675R
http://dx.doi.org/10.1126/science.1247051
http://adsabs.harvard.edu/abs/2014Sci...343..171R
http://adsabs.harvard.edu/abs/2014Sci...343..171R
http://adsabs.harvard.edu/abs/1985SSCom..56...57R
http://adsabs.harvard.edu/abs/1985SSCom..56...57R
http://adsabs.harvard.edu/abs/1987GeoRL..14..816S
http://adsabs.harvard.edu/abs/1987GeoRL..14..816S
http://dx.doi.org/10.1086/505256
http://adsabs.harvard.edu/abs/2006ApJ...648.1196S
http://adsabs.harvard.edu/abs/2006ApJ...648.1196S
http://exoplanet.eu/index.php
http://dx.doi.org/10.1016/0019-1035(88)90001-2
http://adsabs.harvard.edu/abs/1988Icar...75..187S
http://adsabs.harvard.edu/abs/1988Icar...75..187S
http://dx.doi.org/10.1086/590548
http://adsabs.harvard.edu/abs/2008ApJ...685..553S
http://adsabs.harvard.edu/abs/2008ApJ...685..553S
http://dx.doi.org/10.1016/j.icarus.2013.05.004
http://adsabs.harvard.edu/abs/2013Icar..226...10S
http://adsabs.harvard.edu/abs/2013Icar..226...10S
http://dx.doi.org/10.1006/icar.1996.5669
http://adsabs.harvard.edu/abs/1997Icar..127...93S
http://adsabs.harvard.edu/abs/1997Icar..127...93S
http://www.arxiv.org/abs/0911.0834v1
http://dx.doi.org/10.1098/rsta.1993.0002
http://adsabs.harvard.edu/abs/1993RSPTA.342...23S
http://adsabs.harvard.edu/abs/1993RSPTA.342...23S
http://dx.doi.org/10.1038/301225a0
http://adsabs.harvard.edu/abs/1983Natur.301..225S
http://adsabs.harvard.edu/abs/1983Natur.301..225S
http://dx.doi.org/10.1038/21811
http://adsabs.harvard.edu/abs/1999Natur.400...32S
http://adsabs.harvard.edu/abs/1999Natur.400...32S
http://dx.doi.org/10.1093/mnras/stt2292
http://adsabs.harvard.edu/abs/2014MNRAS.438.1526S
http://adsabs.harvard.edu/abs/2014MNRAS.438.1526S
http://dx.doi.org/10.1006/icar.2000.6536
http://adsabs.harvard.edu/abs/2001Icar..149...79T
http://adsabs.harvard.edu/abs/2001Icar..149...79T
http://dx.doi.org/10.1086/430467
http://adsabs.harvard.edu/abs/2005ApJ...627.1001T
http://adsabs.harvard.edu/abs/2005ApJ...627.1001T
http://dx.doi.org/10.1029/JZ067i003p01141
http://adsabs.harvard.edu/abs/1962JGR....67.1141T
http://adsabs.harvard.edu/abs/1962JGR....67.1141T
http://dx.doi.org/10.1016/j.icarus.2005.04.006
http://adsabs.harvard.edu/abs/2005Icar..177..534T
http://adsabs.harvard.edu/abs/2005Icar..177..534T
http://dx.doi.org/10.1029/92JE02726
http://adsabs.harvard.edu/abs/1993JGR....98.5319T
http://adsabs.harvard.edu/abs/1993JGR....98.5319T
http://adsabs.harvard.edu/abs/2004AIPC..713..243T
http://dx.doi.org/10.1051/0004-6361/201014525
http://adsabs.harvard.edu/abs/2010A&A...524A..25T
http://adsabs.harvard.edu/abs/2010A&A...524A..25T
http://dx.doi.org/10.1038/nature07571
http://adsabs.harvard.edu/abs/2008Natur.456..770T
http://adsabs.harvard.edu/abs/2008Natur.456..770T
http://dx.doi.org/10.1146/annurev.astro.45.051806.110529
http://adsabs.harvard.edu/abs/2007ARA&A..45..397U
http://adsabs.harvard.edu/abs/2007ARA&A..45..397U
http://dx.doi.org/10.1016/j.icarus.2005.11.021
http://adsabs.harvard.edu/abs/2006Icar..181..545V
http://adsabs.harvard.edu/abs/2006Icar..181..545V
http://dx.doi.org/10.1086/519554
http://adsabs.harvard.edu/abs/2007ApJ...665.1413V
http://adsabs.harvard.edu/abs/2007ApJ...665.1413V
http://dx.doi.org/10.1086/509800
http://adsabs.harvard.edu/abs/2007ApJ...656..545V
http://adsabs.harvard.edu/abs/2007ApJ...656..545V
http://dx.doi.org/10.1038/249334a0
http://adsabs.harvard.edu/abs/1974Natur.249..334V
http://adsabs.harvard.edu/abs/1974Natur.249..334V
http://dx.doi.org/10.1016/j.icarus.2008.11.002
http://adsabs.harvard.edu/abs/2009Icar..200..188W
http://adsabs.harvard.edu/abs/2009Icar..200..188W
http://dx.doi.org/10.1111/j.1365-246X.1981.tb02690.x
http://adsabs.harvard.edu/abs/1981GeoJI..64..677W
http://adsabs.harvard.edu/abs/1981GeoJI..64..677W
http://dx.doi.org/10.1007/BFb0011453
http://adsabs.harvard.edu/abs/1997tiph.conf...27W
http://dx.doi.org/10.1088/2041-8205/718/2/L145
http://adsabs.harvard.edu/abs/2010ApJ...718L.145W
http://adsabs.harvard.edu/abs/2010ApJ...718L.145W
http://adsabs.harvard.edu/abs/1994GeoJI.116..321W
http://adsabs.harvard.edu/abs/1994GeoJI.116..321W
http://dx.doi.org/10.1029/JB078i005p00905
http://adsabs.harvard.edu/abs/1973JGR....78..905W
http://adsabs.harvard.edu/abs/1973JGR....78..905W
http://dx.doi.org/10.1088/0004-637X/735/2/109
http://adsabs.harvard.edu/abs/2011ApJ...735..109W
http://adsabs.harvard.edu/abs/2011ApJ...735..109W
http://dx.doi.org/10.1086/521996
http://adsabs.harvard.edu/abs/2007ApJ...670..820W
http://adsabs.harvard.edu/abs/2007ApJ...670..820W
http://adsabs.harvard.edu/abs/1995geph.conf....1Y
http://dx.doi.org/10.1016/0019-1035(81)90088-9
http://adsabs.harvard.edu/abs/1981Icar...47....1Y
http://adsabs.harvard.edu/abs/1981Icar...47....1Y
http://dx.doi.org/2001AJ....121.1736Y
http://adsabs.harvard.edu/abs/2001AJ....121.1736Y
http://adsabs.harvard.edu/abs/2001AJ....121.1736Y
http://dx.doi.org/10.1111/j.1365-2966.2010.17570.x
http://adsabs.harvard.edu/abs/2011MNRAS.410.1895Z
http://adsabs.harvard.edu/abs/2011MNRAS.410.1895Z
http://adsabs.harvard.edu/abs/1941PhRv...60..906Z
http://adsabs.harvard.edu/abs/1941PhRv...60..906Z

	1. INTRODUCTION
	2. BACKGROUND
	3. METHODS
	3.1. Classical Tidal Equations
	3.2. Quality Factors
	3.3. Material Models

	4. RESULTS
	4.1. Earth Analog Planets
	4.2. Ice–Silicate Hybrid Planets

	5. DISCUSSION
	5.1. Effect of Water Ocean Position and Size
	5.2. Gradations of Ice Layer Properties
	5.3. Variations with Orbital Period

	6. CONCLUSIONS
	APPENDIX. THE PROPAGATOR MATRIX METHOD
	REFERENCES

