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Keeping the universe connected. 



• Scintillation 

• Beam broadening

• Spatial coherence

• Angle of arrival

• Temporal pulse 
stretching
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Turbulence Effects on Optical Beams

Temporal and spatial intensity fluctuations at the receiving 
aperture results in power surges and fades

Gaussian 
intensity profile

Distorted 
intensity profile 
at receiver

Turbulent atmospheric channel



Turbulence Characterization
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• Temperature (or humidity) structure 
function

• Contains the spatial statistics of the 
temperature field

• Within a range of certain ∆ 𝑟, the 

well-known Kolmogorov “2/3” law 

holds

Temperature 
structure parameter

 𝑟  𝑟 + ∆ 𝑟

∆ 𝑟

Requires simultaneous 
measurements at  𝑟 and  𝑟 + ∆ 𝑟



Single Radiometer Turbulence 
Characterization
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∆ 𝑟 = 𝑈∆𝑡

 𝑟, 𝑡
 𝑟, ∆𝑡

𝑈
Wind velocity field

1st measurement 2nd measurement

• Temperature (or humidity) 
measurements are taken at a 
fixed location

• Wind velocity field shifts the 
turbulent air mass by a 

distance ∆ 𝑟 = 𝑈∆𝑡 between 
measurements

• For a particular altitude, the 
structure function is now

Due to the radiometer integration 
time ∆𝑡, Kolmogorov-Obukhov 
turbulence theory and the Taylor 
frozen flow hypothesis must be 
modified



Energy Transfer Spectra

• From the Boussinesq approximation (eddy viscosity model) of the Navier-
Stokes equations, it is possible to obtain equations involving the Fourier 
spectra of the turbulent energy, wind velocity and temperature 
fluctuations*
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*Tchen, C.M., “On the Spectrum of Energy in Turbulent Shear Flow,” J. Res. Natl. Bureau of Standards 50 (1), 51-62 (1953)

Energy transfer 
spectra due to 
wind velocity

Energy transfer spectra 
due to temperature 
fluctuations

Temperature 
fluctuations spectrumEnergy spectrum 

related to heat flux

Energy spectrum 
related to Reynolds 
stresses

Buoyancy
Kinematic 
viscosity

Turbulent energy 
fluctuations spectrum

Thermal 
diffusivity



Modified Turbulence Spectrum

• Case 1: Near the boundary 
surface
– Significant stratification and shear

• Case 2: Free atmosphere
– No stratification or shear

• General:
– Asymptotically reduces to 

either Case 1 or Case 2
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TKE 
dissipation

Thermal 
dissipationThermal diffusivity/

kinematic viscosity

Heisenberg
constant ≈ 1



Relating to the Structure Functions

The connection of the 
temporal statistics of the 
temperature 𝑇 𝑡 to the 
spatial spectrum 𝑉𝑇𝑇(𝑘)
is through the Fourier-
Stieltjes transform
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Evaluation of the 
integral is analytical in 
terms of Meijer G 
functions, however 
two useful series 
expansions can be 
obtained for the 
asymptotic cases

Kolmogorov 
“2/3” law

Average wind 
velocity Wind velocity 

fluctuations

Crossover frequency 
𝒌𝑪 =  𝑩 𝑨 𝟑/𝟐



• NASA TDRSS ground terminal site 
located at White Sands, NM

• Radiometrics MP-3000A

• 35 calibrated channels

– 300 MHz bandwidth/channel

– 21 K-band (22 to 30 GHz)

– 14 V-band (51 to 59 GHz)

• 1.1 second integration time per 
channel

• Total Δt ≈ 40 second sample 
period

• Temperature resolution ≈ 0.1 K
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Instrumentation



Temperature Data Analysis
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• Measurements taken 
in January, 2013

• Dataset comprised of 
about 2100 profiles 
taken over a 24-hour 
period

• Each temperature time 
series divided into 10-
minute moving average 
windows

Example fluctuations over a 2-hour time period

Average profiles for each 10 min window

Fluctuation 
standard deviation, 
σ ≈ 0.5 K – 3 K 

Average lapse rate 
of ≈ -5.474 K/km



Statistical Wind Model
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• Vertical profiles of horizontal 
wind  speed

• SPARC Data Center High-
resolution radiosonde 
measurements at Santa 
Theresa, NM

• Statistics derived from 2376 
wind profiles

• Principal component analysis 
(PCA) used for data reduction 
and retention of key features 
of the wind behavior 

Ground wind speeds 
typically between 5 
and 8 m/s 

Max tropopause 
wind speeds 
typically between 
30 and 40 m/s 



Results for Cn
2

• At optical wavelengths the 
refractive index structure 
parameter is a function of 𝐶𝑇

2 only
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Average prevailing 
pressure (hPa) 

Ground estimates 
of 𝑪𝒏

𝟐 ≈ 10-13 m-2/3

Free atmospheric 
estimates of 𝑪𝒏

𝟐 about 
10x – 100x larger than 
expected

General Hufnagel-Valley model

Specific atmospheric 
conditions during 
data compilation 
were not available, 
thus a nominal value 
of 𝑘𝑐 = 15 m−1 was 
assumed

Refractive index structure parameter profiles



Results – Coherence Diameter
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• Coherence diameter, also known 
as the Fried parameter

• Determines resolution limitations 
of telescopes 

• Also determines the spacing of 
actuators in adaptive optical 
systems

Coherence Diameter vs Time
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Night time 
variation between 
5.2 cm – 7.5 cm

Day time variation 
between 4.3 cm – 6 cm

𝐷 > 𝑟0 atmosphere limited

𝐷 < 𝑟0 diffraction limited

λ = 1550 nm



Results - Greenwood Frequency
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• The Greenwood frequency 
specifies the response 
characteristic required of an 
atmospheric adaptive optics 
system to mitigate the refractive 
index perturbations

Time (hrs) (GMT)

Night time 
variation between 
150 – 290 Hz

Day time variation 
between 200 – 350 Hz

These values are about a factor of 
3 larger than expected for the 
experimental site in January

λ = 1550 nm



Results – Five Days in October 2012
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• Diurnal variations are 
easily resolved

• Verification that the 
resolution requirements 
of the radiometer are 
sufficient for this method 

Local Date/Time

Coherence diameter varies 
between about 1 cm (day) 
and 10 – 18 cm (night)

Greenwood frequency varies 
between ≈ 2.5 kHz (day) and 
200 Hz (night)



Summary

• Atmospheric remote sensing method using a single microwave 
profiling radiometer to obtain temperature and humidity 
turbulence structure parameters

• Augmented Kolmogorov turbulence theory to account for boundary 
effects in a general stratified atmosphere

• Test case shows promising results; however Greenwood 
frequencies and coherence diameters are over/under estimated

• A more rigorous turbulence spectrum derivation is required

• Ground-based measurements of the gradient Richardson numbers 
are required for better estimation of the crossover frequency kc

• Concurrent radiosonde measurements of structure parameters 
along with the radiometer is needed for appropriate comparison
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