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Abstract 14 

Satellite observations of carbon dioxide (CO2) offer novel and distinctive opportunities for 15 

improving our quantitative understanding of the carbon cycle.  Prospective observations include 16 

those from space-based lidar such as the Active Sensing of CO2 Emissions over Nights, Days, 17 

and Seasons (ASCENDS) mission.  Here we explore the ability of such a mission to detect 18 

regional changes in CO2 fluxes.  We investigate these using three prototypical case studies, 19 

namely the thawing of permafrost in the Northern High Latitudes, the shifting of fossil fuel 20 

emissions from Europe to China, and changes in the source/sink characteristics of the Southern 21 

Ocean.  These three scenarios were used to design signal detection studies to investigate the 22 

ability to detect the unfolding of these scenarios compared to a baseline scenario.  Results 23 

indicate that the ASCENDS mission could detect the types of signals investigated in this study, 24 

with the caveat that the study is based on some simplifying assumptions. The permafrost thawing 25 

flux perturbation is readily detectable at a high level of significance.  The fossil fuel emission 26 

detectability is directly related to the strength of the signal and the level of measurement noise.  27 

For a nominal (lower) fossil fuel emission signal, only the idealized noise-free instrument test 28 

case produces a clearly detectable signal, while experiments with more realistic noise levels 29 

capture the signal only in the higher (exaggerated) signal case.  For the Southern Ocean scenario, 30 

differences due to the natural variability in the ENSO climatic mode are primarily detectable as a 31 

zonal increase.    32 
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1 Introduction 33 

Satellite observations of carbon dioxide (CO2) offer novel and distinctive opportunities for 34 

improving our quantitative understanding of the carbon cycle, which is an important scientific 35 

and societal challenge with anthropogenic CO2 emissions still on the rise.  Prospective new 36 

observations include those from space-based lidar such as the Active Sensing of CO2 Emissions 37 

over Nights, Days, and Seasons (ASCENDS) mission, which is proposed in ''Earth Science and 38 

Applications from Space: National Imperatives for the Next Decade'' [National Research 39 

Council, 2007] (henceforth referred to as the decadal survey).  Notable features of this mission 40 

include its ability to sample at night and at high latitudes.  These conditions are prohibitive to 41 

passive missions, such as the Greenhouse gases Observing SATellite (GOSAT) [e.g. Kuze et al., 42 

2009; Yokota et al., 2009] and the Orbiting Carbon Observatory-2 (OCO-2) missions [e.g. Crisp 43 

et al. 2004], due to their reliance on reflected sunlight.  The lidar measurement technique 44 

proposed for the ASCENDS mission further enables observing through some clouds and aerosols 45 

[Ehret et al., 2008], which also represent impediments and potential sources of bias for passive 46 

missions [e.g., Mao and Kawa, 2004].  Extensive instrument design research and development is 47 

ongoing, and proof of concept and validation studies indicate that ASCENDS will be able to 48 

provide high-precision, unbiased observations with improved spatial coverage compared to 49 

passive missions [e.g. Spiers et al., 2011; Abshire et al., 2010; Kawa et al., 2010]. 50 

The primary goals of the ASCENDS mission are to address open questions in carbon cycle 51 

science that focus on the identification of changing source/sink characteristics that are difficult to 52 

observe using other current or anticipated observations.  These goals were first articulated in the 53 

decadal survey [National Research Council, 2007] and later refined in an ASCENDS mission 54 

NASA Science Definition and Planning Workshop [ASCENDS Workshop Steering Committee, 55 
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2008].  They include detecting changes in the northern high latitude sources and sinks, detecting 56 

changes in Southern Ocean source/sink characteristics, constraining anthropogenic CO2 57 

emissions, and increasing our understanding of biospheric carbon dynamics by differentiating 58 

photosynthetic and respiration fluxes [ASCENDS Workshop Steering Committee, 2008].  CO2 59 

fluxes in the northern high latitudes and in the Southern Ocean may change substantially as 60 

climate evolves, for example, and it is crucial to detect and attribute such changes quickly as they 61 

could lead to large increases in atmospheric CO2 concentrations and subsequent shifts in climate 62 

dynamics [e.g. Canadell et al., 2010].   63 

Guided by these stated goals, this study explores the extent to which a space-based lidar 64 

mission, using the ASCENDS mission concept as a guideline, can indeed contribute to these 65 

pertinent carbon cycle science questions.  We specifically focus on the ability of such a mission 66 

to detect regional changes in fossil fuel emissions, high latitude CO2 fluxes, and CO2 fluxes in 67 

the Southern Ocean.  We investigate these using three prototypical case studies, namely the 68 

thawing of permafrost in the Northern High Latitudes, the shifting of fossil fuel emissions from 69 

Europe to the Peoples Republic of China (China), and changes in the source/sink characteristics 70 

of the Southern Ocean related to the El Nino Southern Oscillation (ENSO).  Realistic flux 71 

scenarios are defined for each of these prototypical case studies, within the anticipated time 72 

frame of the ASCENDS mission (i.e., the early to mid-2020s).  These flux scenarios, combined 73 

with a common set of baseline fluxes, form the basis of the presented analysis. 74 

One can view the experimental setup as a hypothesis testing setup to answer the question if, 75 

and how, the CO2 concentration fields resulting from the baseline and perturbation fluxes, as 76 

observed by an ASCENDS-like mission, are distinguishable.  To that end, the three scenarios 77 

described above are used in Observing System Simulations Experiments (OSSEs) to investigate 78 



5 
 

whether an ASCENDS-like mission will have the ability to identify the changes in atmospheric 79 

CO2 distributions associated with the changes in fluxes represented in each scenario. We apply 80 

the geostatistical mapping approach developed in Hammerling et al. [2012a,b] to generate global 81 

CO2 maps based on ASCENDS-like sampling of the atmospheric CO2 distribution resulting from 82 

each flux scenario, and characterize the time required to observe statistically significant changes 83 

in the inferred global CO2 distribution, given varying assumptions about measurement 84 

uncertainty. 85 

2 Model-Simulated Data 86 

The study is based on simulated data described below.  The study period represents a full 87 

year of the expected ASCENDS mission data.  88 

2.1 Baseline CO2 Atmosphere 89 

We use the parameterized chemistry and transport model (PCTM) to produce a simulated 90 

distribution of atmospheric CO2 variability in space and time [Kawa et al., 2004], based on the 91 

baseline and perturbation scenarios.  Model transport is driven by real-time analyzed 92 

meteorology from the GEOS-5 Modern-Era Retrospective Analysis for Research and 93 

Applications (MERRA) [Rienecker et al., 2011] for 2007.  CO2 surface fluxes for the baseline 94 

run include terrestrial vegetation physiological processes and biomass burning from CASA-95 

GFED3 [Randerson et al., 1996; van der Werf et al., 2010], seasonally-varying climatological 96 

ocean fluxes from Takahashi et al. [2002], and fossil fuel burning from the CDIAC database 97 

[Andres et al., 2009].  CASA fluxes are driven by MERRA data, which results in 98 

meteorologically-driven correspondence in the synoptic variability in the surface fluxes and 99 

atmospheric transport.  The monthly CASA fluxes are downscaled to 3-hourly fluxes in the 100 
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method of Olsen and Randerson [2004] as described by e.g. Chatterjee et al. [2012] and Shiga et 101 

al. [2013].  The annual integral for the CASA fluxes is 1.53 Pg/yr representing a net source 102 

largely due to high respiration in 2007.  The average yearly CASA flux for the period 1997 to 103 

2012 is 0.133 Pg/yr.  The CASA fluxes used in this study are available at the North American 104 

Carbon Data archive (http://nacp-files.nacarbon.org/nacp-kawa-01/).  PCTM CO2 output has 105 

been extensively compared to in situ and remote sensing observations at a wide variety of sites, 106 

and in most cases the model simulates diurnal to synoptic to seasonal variability with a high 107 

degree of fidelity [e.g. Law et al., 2008a; Parazoo et al., 2008; Bian et al., 2006; Kawa et al., 108 

2004].  For the simulations here, the model is run on a 1° × 1.25° latitude/longitude grid with 56 109 

vertical levels and hourly output. We use 2007 meteorological, cloud and aerosol, and 110 

reflectivity data for all components employed in the derivation of the simulated ASCENDS CO2 111 

observations. 112 

2.2 Perturbation flux scenarios 113 

Three case studies are developed based on areas of interest within carbon cycle science that 114 

are directly relevant to the ASCENDS mission goals, namely the detection of regional changes in 115 

fossil fuel emissions, high latitude CO2 fluxes, and changes in CO2 fluxes in the Southern Ocean.  116 

They represent quantitatively plausible scenarios of changes in carbon fluxes, henceforth referred 117 

to as perturbation flux scenarios, that could occur by the early to mid-2020s, the planned launch 118 

timeframe for ASCENDS.  These scenarios are used as prototypical examples of flux patterns 119 

that give rise to the types of signals the ASCENDS mission endeavors to detect.  The 120 

perturbation fluxes are added to the baseline fluxes within the PCTM modeling framework 121 

described in section 2.1 to produce the perturbation CO2 atmospheres henceforth referred to as 122 

perturbation runs. 123 
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2.2.1 Permafrost carbon release 124 

The permafrost carbon feedback is an amplification of surface warming due to the release of 125 

CO2 and methane from thawing permafrost [Zimov et al. 2006].  Permafrost soils in the high 126 

northern latitudes contain approximately 1700 Gt of carbon in the form of frozen organic matter 127 

[Tarnocai et al. 2009].  Permafrost is perennially frozen ground remaining at or below 0°C for at 128 

least two consecutive years [Brown et al. 1998] occupying about 24% of the exposed land area in 129 

the Northern Hemisphere [Zhang et al. 1999].  As temperatures increase in the future and the 130 

permafrost thaws, the organic material will also thaw and begin to decay, releasing CO2 and 131 

methane into the atmosphere.  CO2 and methane emissions from thawing permafrost will amplify 132 

the warming due to anthropogenic greenhouse gas emissions [Zimov et al. 2006].   133 

The permafrost carbon emissions scenario applied here uses projections of CO2 fluxes from 134 

thawing permafrost from Schaefer et al. [2011].  Schaefer et al. [2011] use the Simple 135 

Biosphere/Carnegie-Ames-Stanford Approach (SiBCASA) land surface model [Schaefer et al., 136 

2008] driven by output from several General Circulation Models for the A1B scenario from the 137 

IPCC Fourth Assessment report [Lemke et al., 2007].  The fluxes are an ensemble mean of 18 138 

projections from 2002 through 2200. We ran the PCTM model with the extracted fluxes for 2020 139 

to 2022 and used the 2022 fluxes as perturbation fluxes.  The annual integrals for the permafrost 140 

perturbation fluxes are 0.613 PgC/yr, 0.641 PgC/yr and 0.752 PgC/yr for 2020 to 2022, 141 

respectively. 142 

The flux perturbations are concentrated in areas of discontinuous permafrost along the 143 

southern margins of permafrost regions (Figure 1).  In discontinuous permafrost regions, north-144 

facing slopes might form permafrost, while south-facing slopes may not.  Permafrost 145 

temperatures hover just below freezing, making these regions vulnerable to thaw for small 146 
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increases in atmospheric temperature.  Normally, the surface soils in the active layer thaw each 147 

summer and refreeze each winter.  However, as temperatures increase, the thaw depth becomes 148 

too deep to refreeze in the winter, forming a talik or layer of unfrozen ground above the 149 

permafrost.  The talik allows microbial decay to continue during winter when the surface soils 150 

are frozen, resulting in year-round fluxes that peak in summer when soil temperatures are highest 151 

(see Figure A1 in supplementary material). 152 

The CO2 concentrations of the baseline run were mean-adjusted to match the annual mean 153 

of the perturbation run by applying a multiplicative adjustment.  This adjustment preserves the 154 

spatial patterns of the baseline run, while the global difference in concentrations between the 155 

baseline and perturbation run is zero, so effectively a global flux-neutral scenario.  This has been 156 

done to focus this study on the detectability of changes in spatial patterns rather than detecting 157 

the mean interannual increase in CO2 concentrations that results from the strictly positive 158 

perturbation fluxes over the two years of model spin-up and the investigated year.   159 

2.2.2 Shift in fossil fuel emissions 160 

The fossil fuel flux perturbation scenario consists of a shift of fossil fuel emissions from 161 

Europe to China; a shift that is in directional agreement with recent trends in these regions.  162 

Fossil fuel emissions from China have increased rapidly over the last decades and China is now 163 

largest emitter of CO2 worldwide [Olivier et al., 2012; Peters et al., 2011].  By comparison, 164 

fossil fuel emissions from Europe decreased 3% in 2011 relative to 2010 with an overall decline 165 

over the last two decades [Olivier et al., 2012].  We used two magnitudes of emission shift, from 166 

here on referred to as the “lower” and “higher” signal, representing two points on a continuum of 167 

possible emission changes around the year 2022.   168 
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The lower signal represents a 20% decrease of European emissions, with a 12% increase in 169 

China (Figure 2) that exactly offsets the European decrease.  The higher signal includes a 50% 170 

decrease of emissions in Europe with a corresponding 30% increase in China (Figure 2), and is 171 

used for illustration purposes only, as a decrease of this size is not expected in Europe within a 172 

decade.  All the percentage changes are in reference to 2007 emission levels, based on the v2011 173 

2007 fossil fuel emissions from the CDIAC data base [Andres et al., 2011].  The annual flux 174 

integrals for the lower and higher signals are 0.228 PgC/yr and 0.571 PgC/yr, respectively.  We 175 

use these two shift settings as examples to draw broader conclusions on the detectability of these 176 

types of signals as characterized by their the spatial and temporal patterns and their magnitudes. 177 

The flux perturbations are globally flux neutral, in that European fossil fuel fluxes are 178 

reduced by a set percentage in each month and the total emissions from China are increased by 179 

the same mass amount.  The decrease and increase is conducted proportionally to the existing 180 

spatial pattern of the fluxes for each month, thereby preserving the spatial and temporal patterns 181 

within the European and Chinese fluxes (Figures A2 and A3 in supplementary material).  The 182 

fluxes vary relatively little from month to month, on average +/- 15%.  Overall, the signal to be 183 

detected is a difference in the spatial distribution of CO2 concentrations, with the global mean 184 

remaining unchanged. 185 

2.2.3 Changes in Southern Ocean fluxes 186 

The Southern Ocean is of special interest to carbon cycle science, because its CO2 fluxes are 187 

highly uncertain [Gruber et al., 2009], it is a region with apparent high sensitivity to climate 188 

change [Le Quéré et al., 2009], and this sensitivity has implications for the region’s future as a 189 

carbon sink because half of the ocean uptake of anthropogenic CO2 is estimated to occur there 190 

[e.g. Le Quéré et al., 2009; Meredith et al., 2012].  There is disagreement on the current and 191 
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future trend of the carbon flux in the Southern Ocean [Le Quéré et al., 2009; Law et al., 2008b].  192 

The Southern Ocean is also a very sparsely sampled region, where the ability of the ASCENDS 193 

mission to observe at high latitudes could provide valuable insights. 194 

Variations in climate modes are a key driver of interannual variability in ocean carbon 195 

exchange [e.g. Field et al., 2007].  Here we evaluate the extent to which interannual variability 196 

due to variations in climatic modes, such as the El Nino Southern Oscillation (ENSO), can be 197 

detected as a reference for addressing potential changes in the sink/source characteristics of the 198 

Southern Ocean using satellite observations.  In other words, we use ENSO-related variability as 199 

a prototypical example of the scale of variability to detect.  To that end, the years 1977 and 1979 200 

were chosen as examples of estimated flux patterns, as they represent large differences in ocean 201 

fluxes due to variations in climatic modes. 202 

The Southern ocean fluxes for this scenario are based on a hind cast simulation of the 203 

Community Climate System Model (CCSM) Ocean Biogeochemical Elemental Cycle model as 204 

described by Doney et al. [2009].  The fluxes were obtained at 1o × 1o spatial and monthly 205 

temporal resolution.  The monthly difference between the Southern ocean flux anomaly for 1977 206 

and 1979 is used as the perturbation flux for this scenario.  Figure 3a and 3c show the average 207 

flux perturbation for April through June and the full year, respectively.  A year-round time series 208 

of these monthly perturbation fluxes is shown in Figure A4 (supplementary material).  The 209 

magnitude of the perturbation fluxes (1977: 0.186 PgC/yr, 1979: -0.176 PgC/yr) is low relative 210 

to the other two case studies.  In contrast to the other two experiments, the sign of the 211 

perturbation flux also varies by month and spatially within the region.  212 
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2.3 Simulated ASCENDS CO2 observations 213 

Anticipated ASCENDS sampling and random measurement error characteristics are derived 214 

from model output and observations in a method similar to that of Kawa et al. [2010] and Kiemle 215 

at al. [2014]. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 216 

orbital track is used to simulate the expected ASCENDS sampling. Synthetic observations are 217 

sampled from model output at the nearest time to the satellite over-flight, and interpolated in 218 

space to the CALIPSO sample locations. A vertical weighting function, appropriate to an 219 

ASCENDS laser instrument operating at a wavelength near 1.57 um, is applied to the model 220 

pseudo-data profile to produce column average mixing ratio values [Ehret et al., 2008].  We 221 

consider only random errors due to photon counting.  Potential bias errors [e.g. Baker et al., 222 

2010], which could significantly complicate the analysis if correlated with geophysical variables 223 

of interest (e.g., land/ocean or vegetation cover), are not included.   224 

CALIPSO measurements of total cloud and aerosol optical depth (OD) are used to calculate 225 

the ASCENDS laser attenuation.  CALIPSO OD data are reported every 5 km (corresponding to 226 

every 0.7435 s) along track and this forms the basic ASCENDS sample set.  Surface lidar 227 

backscatter (β), also needed for error estimation, follows from MODIS measured spectral 228 

reflectance over land and the glint formulation of Hu et al. [2008] over water using daily 229 

MERRA 10-m wind speeds. Surface reflectivity over land is interpolated from MODIS (Terra + 230 

Aqua) 5-km 16-day composite nadir BRDF-adjusted reflectance data (α) at 1.64 μm (band 6), 231 

which are available every 8 days [Schaaf et al., 2002].  Land reflectance is scaled by a factor of 232 

1.23 to account for the land ‘hot spot’ backscatter effect [Disney et al., 2009], i.e., β (sr-1) = 1.23 233 

α/π.  Backscatter values of 0.08 sr-1 and 0.01 sr-1 are used to fill missing areas of MODIS data 234 
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over land and over snow/ice, respectively, where ice and snow cover is determined from 235 

MERRA data. 236 

In order to make our study method applicable for a range of possible CO2 laser sounder 237 

instrument implementations, we scale the errors globally to a nominal error value for clear-air 238 

conditions at Railroad Valley, NV (β = 0.176, T = 1) and a 10-s (67.2 km) sample integration.  239 

Thus, a given instrument model can be characterized by its random error at the Railroad Valley 240 

reference point and the global distribution of errors estimated from OD and β.  The individual 241 

sounding errors at the 5 km CALIPSO resolution are calculated using: 242 

  (1) 

where 𝜎  is the 10-s reference instrument random error (standard deviation) at Rail Road 243 

Valley, 𝑇 the transmittance, 𝑠𝑑𝑓 the surface detection frequency, and 0.176 is the Rail Road 244 

Valley backscatter reference value at 1.57 µm, which corresponds to one of the potential 245 

ASCENDS instrument designs [Abshire et al., 2010].  The transmittance is calculated from the 246 

CALIPSO (𝑂𝐷  using 𝑇 𝑒 𝑂𝐷.   247 

Soundings with an optical depth greater than 0.3 or where the surface detection frequency 248 

equals zero are filtered out and considered 'not retrieved'.  The surface detection frequency 249 

equals zero when none of the 1-km averaged CALIPSO samples in a 5-km average can see a 250 

ground return, i.e., the clouds/aerosol were too thick to get a return from the ground.  For this 251 

study we a 10-s along-track average as our pseudo-data measurement granule [Kawa et al., 252 

2010].  Using this setup, the maximum number of soundings constituting one observation is 14.  253 

The 10-s observation error variances are then calculated by averaging the 5-km error variances 254 
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within each 10-s time interval and dividing this average by the number of retrieved soundings.  255 

This setup implies the assumption that retrieval errors between individual soundings are spatially 256 

and temporally uncorrelated.  We include three measurement noise settings in the study.  A no-257 

measurement noise setting for reference purposes, and medium and high noise settings, which 258 

use Rail Road Valley 10-s reference instrument random errors (𝜎 ) of 0.5 and 1 ppm, 259 

respectively.  Once the measurement error variance has been determined for each location 260 

following the procedure described above, a random sample from a normal distribution with that 261 

variance is drawn and added to the PCTM model CO2 value to define a pseudo-data observation.  262 

The global mean errors (𝜎 ) are 2.1 and 4.2 ppm, respectively, for the medium and high noise 263 

settings. Figure 4b provides an example of four days of global observations.  Different random 264 

seed numbers are used for the errors in the baseline and the perturbation runs. 265 

3 Methods 266 

3.1 Mapping approach 267 

We use a geostatistical mapping approach [Hammerling et al., 2012a,b] to create contiguous 268 

interpolated maps, i.e. global mapped ("Level 3") products, for the comparison.  Satellite CO2 269 

observations contain large gaps and high measurement errors such that meaningful spatially-270 

comprehensive comparisons at synoptic timescales are often precluded using the observations 271 

directly.  Using gap-filled products makes it possible to conduct synoptic, global comparisons. 272 

The approach presented in Hammerling et al. [2012a,b] also yields spatially-explicit 273 

uncertainties (eq. 7 in Hammerling et al. [2012a]) of the mapped products. These may be lower 274 

than the uncertainties of the individual observations in areas where the correlation with nearby 275 

observations can be leveraged, which in turn can facilitate signal detection.   276 
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The applied mapping methodology yields global mapped CO2 concentrations with 277 

uncertainty measures without invoking assumptions about fluxes or atmospheric transport.  The 278 

method leverages the spatial correlation in the atmospheric CO2 concentration field, 279 

parameterized as an exponential covariance function with spatially-varying variance and 280 

correlation range parameters using a moving-window circular domain of 2000 km.  These 281 

parameters are estimated from the observations, and thus not imposed a priori.  Methodological 282 

details are given in Hammerling et al. [2012a,b]. 283 

Specific to this study, we filter the pseudo-data observations to those with a measurement 284 

error standard deviation below a certain threshold.  This is analogous to imposing a quality 285 

criterion when delivering remote sensing data instead of making all retrievals available.  For the 286 

medium (high) measurement error setup this threshold is 1.5 (3.0) ppm.  This choice represents a 287 

balance between spatial coverage and robustness of the covariance estimation procedure and was 288 

determined in a sensitivity analysis (results not shown).  For the "no error" setup, which is only 289 

used as a theoretical best case, we use observations at the same locations as for the medium and 290 

high measurement setups, but without any noise added.  We include this case to isolate any 291 

potential limitations of the methodology and the spatial coverage from those related to the 292 

instrument capabilities. 293 

Mapping CO2 satellite observations at synoptic time scales makes it possible to capture the 294 

dynamic behavior of CO2 in the atmosphere [Hammerling et al., 2012a, b].  Based on 295 

preliminary studies evaluating mapping performance for different time periods, 4-day periods 296 

were found to provide the best balance between ensuring good data coverage while also 297 

capturing synoptic behavior for ASCENDS-like observations.  Figure 4 shows an example of a 298 

4-day (August 1- 4 2007) period.  The average modeled CO2 distribution is shown for reference, 299 
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and only the observations are used in the subsequent mapping procedure.  Each 4-day period is 300 

mapped independently from other 4-day periods and for the baseline and perturbation runs.  For 301 

January, only six 4-day periods were mapped due to missing CALIPSO data; for all other 302 

months, seven 4-day periods were mapped for a total of 83 4-day maps for each of the baseline 303 

and perturbation cases.  These mapped fields were then used as input data in the subsequent 304 

comparison analysis described in Section 3.2 305 

3.2 Comparison approach 306 

The detectability of a signal is assessed point-wise for each model grid cell by comparing 307 

the mapped concentrations from the baseline run and the perturbation run, and determining 308 

whether the observed differences exceed their associated uncertainties.  The uncertainty of the 309 

difference between two mapped concentration fields, expressed as a variance, is the sum of the 310 

estimation variances of the baseline, 𝜎𝑦𝑏𝑎𝑠𝑒
 and the perturbation, 𝜎𝑦𝑝𝑒𝑟

 mapped products: 311 

𝜎𝑑𝑖𝑓𝑓 𝜎𝑦𝑏𝑎𝑠𝑒
𝜎𝑦𝑝𝑒𝑟

 

For ease of interpretation and visualization purposes, the comparison results are binned by their 312 

relative uncertainties, where the absolute value of the difference exceeds one, two or three 313 

standard deviations, respectively, of the uncertainty of the difference.   314 

Due to the measurement error added to the observations, together with the sparseness of the 315 

available observations, individual 4-day maps do not exhibit detectable differences in a statistical 316 

sense, and the question then becomes to identify a time period over which such 4-day maps must 317 

be averaged before a significant signal emerges. Under the assumption of temporal 318 

independence, the uncertainty (expressed as a variance) of the temporal mean is the mean 319 
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mapping variance of the individual periods divided by the number of periods.  The assumption of 320 

temporal independence was evaluated by conducting temporal variogram analyses for sets of 321 

mapping errors at randomly selected locations (results not shown), and no compelling indication 322 

to contradict this assumption was found. 323 

4 Results and Discussion 324 

On a high level, one can view the query of detecting atmospheric CO2 concentration signals 325 

resulting from flux perturbations as two distinct, if connected, questions.  The first question is 326 

how characteristics of the flux perturbations are translated to, and preserved in, the atmospheric 327 

CO2 concentrations, i.e. what is the signature (or signal) of a set of flux perturbations of interest 328 

in the atmospheric CO2 concentrations.  The second question is how well a given observing 329 

system, in our case the ASCENDS mission, can capture the presence of this signal.  Both of 330 

these aspects are discussed in the following sections, which are organized by the three 331 

investigated scenarios.  332 

4.1 Detectability of permafrost carbon release 333 

A significant signal can be detected in the case of the anticipated permafrost carbon 334 

emissions (Figures 5 and A5).  The challenge is in capturing longitudinal and latitudinal 335 

gradients, which can better attribute the increase to the permafrost region, as opposed to just 336 

detecting a zonal increase.  While signal detection is not directly targeted at quantifying carbon 337 

fluxes, insights on the detectability of spatial gradients are highly relevant for studies targeting 338 

flux detections, e.g. atmospheric inverse modeling studies.  With this in mind, a judicious choice 339 

of the temporal aggregation periods over which the comparisons are conducted is important.  340 
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Because of the seasonality of the fluxes in the permafrost carbon release scenario (Figure 341 

A1), the gradients in the atmospheric CO2 distribution are most evident in the months following 342 

the start of the spring thaw.  As a result, averaging over spring/summer months yields a clearer 343 

identification of the geographic origin of the signal relative to aggregating maps over the full 344 

year.  While the concentration signal is highest around September (Figure A1), or even later in 345 

the year, when the active layer is deepest, the concentration signals indicative of the spatial 346 

pattern of the tundra fluxes are most distinct in the late spring/early summer months before the 347 

effects of atmospheric mixing take over.  By August, atmospheric mixing, which occurs rapidly 348 

in the Arctic, causes the spatial signature of the tundra melting fluxes to be replaced by the 349 

dominant signal of a zonal increase.  Some further evidence of this phenomenon can be observed 350 

by comparing Figures 1b and 1d: the 3-month signal retains more of the spatial characteristics, 351 

whereas the yearly signal represents a zonal increase where the elevated concentrations have 352 

spread towards the pole.  This phenomenon is caused by the specific combination of the temporal 353 

pattern of the permafrost carbon release and rapid atmospheric mixing in the High Northern 354 

Latitudes. 355 

Figures 5 and A5 show a summary of the detection results for the permafrost carbon release 356 

scenario.  While the 3-months results feature comparatively more noise, the recognition of the 357 

spatial pattern in the significance plots is also improved.  Even for the high noise scenario, the 358 

land origin of the signal is better seen in the 3-month maps relative to the yearly plots.  The 359 

results for the different noise levels are as expected; lower noise provides a more accurate 360 

mapped concentration field (Figure A5).  Overall, the permafrost CO2 perturbation is detectable 361 

for both levels of measurement noise considered, and spatial gradients are best detected using 362 

two to three month aggregation periods in the late spring/early summer. 363 
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4.2 Detectability of shift in fossil fuel emissions 364 

The examined fossil fuel emissions perturbations lead to a pronounced spatial signature that 365 

is localized over Europe and China (Figures 2c, g; 2d, h; A2; A3).  This is in contrast to the other 366 

two experiments (see Figures 1d and 3d), where the detailed spatial signatures are largely lost 367 

and especially the yearly signals represent primarily zonal increases.  In addition, the magnitude 368 

of the lower fossil fuel perturbation signal is very low, which, combined with its small spatial 369 

extent, renders the weak fossil fuel signal the most difficult to detect among the investigated 370 

scenarios.  This exemplifies the challenge of detecting small and localized flux changes from 371 

satellite observations. 372 

The highly localized nature of the signal over Europe and China suggests that changes in 373 

fluxes would be detectable and attributable to a given region, even if these fluxes were not offset 374 

by a corresponding shift in emissions within a similar latitudinal range.  It is interesting to 375 

observe the different dispersion patterns of the European and Chinese emissions, especially when 376 

considering their latitudinal range.  The effect on the atmospheric concentrations of the European 377 

emissions can be observed from equatorial Africa to the Arctic, whereas the range of the Chinese 378 

emissions is more limited to their originating latitudinal band (see Figure 2h).  379 

Given the relative lack of seasonality in the fossil fuel perturbation scenarios, averaging 380 

over longer periods of time leads to better detectability (Figure 6).  Although atmospheric 381 

transport clearly plays a role, the atmospheric signal remains indicative of the source region of 382 

the perturbation flux throughout the seasons.  Figure 6h, for example, shows evidence that both 383 

the source and downwind regions of the emissions have a significant signature in the 384 

atmosphere. 385 
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The effect of varying measurement noise levels on the detectability is again as expected; 386 

increasing measurement noise leads to decreased significance in the results and requires in turn 387 

longer averaging periods.  For the higher signal, all three noise levels capture the signal in the 388 

yearly results, which is not the case for the lower signal, where only the no error case clearly 389 

captures the signal (Figure A6).  There is some evidence that a significant signal is detectable in 390 

the yearly medium and high error measurement noise cases (Figure 6), and given the nature of 391 

the signal discussed above, the signal is expected to appear more clearly when averaging over 392 

periods exceeding one year.  Overall, these findings imply that ASCENDS can in principle detect 393 

anthropogenic signal components, but depending on the strength of the signal, detection might 394 

require multiple years.  It is hence feasible that ASCENDS can serve to validate anthropogenic 395 

emission changes over the course of its mission, but is likely not ideal as the primary monitoring 396 

tool for such flux changes. 397 

4.3 Detectability of changes in Southern Ocean fluxes 398 

The detection of changes in the Southern Ocean source/sink characteristics is challenging as 399 

a result of a confluence of different factors.  The overall magnitude of the signal in the Southern 400 

Oceans is rather weak, with the absolute value of the signal never exceeding 0.4 ppm in the 401 

column.  In addition, this scenario involves sub-seasonal and sub-regional-scale flux variability 402 

that is superimposed on a seasonal pattern in the fluxes (Figure A4).  Atmospheric mixing also 403 

plays a role insofar as it obscures the Southern Ocean as the origin of the signal, as was also 404 

observed in the permafrost carbon release scenario.  However, applying the remedy of using a 405 

shorter averaging period before atmospheric mixing hides the origin of the signal is not as clear-406 

cut for the Southern Ocean scenario, because the overall signal is weaker.  Spatial gradients 407 

associated with the Southern Ocean flux perturbation are most evident in the spring and early 408 
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summer (Figure 3).  Later in the year, although the concentration signal is stronger, the 409 

concentration increase has spread pole-ward and is less attributable to the Southern Ocean. 410 

For all measurement noise setups, the yearly results clearly indicate a zonal increase in the 411 

High Southern Latitudes (Figures 7 and A8).  However, it is less clear whether the pattern is 412 

indicative of the Southern Ocean being the source region within the zonal band. The spatial 413 

pattern of the 3-month results (Figures 7b) is more indicative of the Southern Ocean as the 414 

source region, but the significance levels are not very high. The most beneficial approach for the 415 

Southern Ocean scenario appears to be conducting analyses over periods of multiple lengths, and 416 

drawing conclusions from the joint picture emerging from these analyses.  In summary, 417 

ASCENDS can detect a Southern Ocean signal representative of differences due to natural 418 

variability in the ENSO climatic mode.  ASCENDS may provide a unique measurement view of 419 

these regions because the pervasive cloudiness and low sun angles present difficult conditions 420 

for passive satellite CO2 sensors.  Due to the low magnitude and small-scale variability within 421 

the fluxes giving rise to the signal, however, attributing the signal to specific ocean regions or 422 

biogeophysical processes will likely require additional corroborative information. 423 

5 Conclusions 424 

This work assesses the degree to which ASCENDS, a planned lidar CO2 observing satellite 425 

mission, can contribute to the detection of three types of CO2 flux change scenarios relevant to 426 

global carbon cycle science: the release of carbon due to the thawing of permafrost in the 427 

Northern High Latitudes, the shifting of fossil fuel emissions from Europe to China, and ENSO-428 

related changes in the source/sink characteristics in the Southern Ocean. These three scenarios 429 

were used to design OSSEs for signal detection studies to investigate if the ASCENDS mission 430 
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has the ability to detect the unfolding of these scenarios compared to a baseline scenario.  Two 431 

different levels of measurement noise and a no measurement noise reference case were 432 

investigated.  433 

This study is based on a number of simplifications.  For each scenario, the only flux 434 

component that is varied is the flux component under investigation, while all other fluxes are 435 

fixed. In reality, many changes might occur simultaneously and the resulting CO2 concentration 436 

signal patterns might overlap, which makes signal detection more challenging.  We have 437 

introduced some additional variability by sampling and mapping the baseline concentration field 438 

rather than assuming a static baseline concentration field in the comparison procedure, however, 439 

that might not be equivalent to, for example, having misspecified biospheric fluxes. Such 440 

misspecifications could be aliased with the true signals and misleading signal patterns could 441 

occur. This could impact the conclusions of this study insofar that it would be more difficult to 442 

link detectable signals with the underlying change in fluxes. 443 

The results indicate that the ASCENDS mission can in principle detect the types of signals 444 

investigated in this study.  The permafrost thawing flux perturbation is readily detectable at a 445 

high level of significance.  Spatial gradients, which are of great interest for process attribution, 446 

were best detected using two or three month aggregation periods in the late spring/early summer.  447 

For the Southern Ocean scenario, differences due to the natural variability in the ENSO climatic 448 

mode were primarily detectable as a zonal increase.  The relative magnitude of the signal, 449 

however, is much smaller than the permafrost-thawing signal.  Spatial and temporal high-450 

frequency changes in the anomaly fluxes produce additional variability in the signal, making 451 

detection of more detailed gradients than a zonal increase challenging for the Southern Ocean 452 
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scenario.  Conducting analyses over periods of varying lengths and analyzing them jointly 453 

provides a possible diagnostic strategy. 454 

The fossil fuel emission detectability is directly related to the strength of the signal and the 455 

level of measurement noise.  As is true for all scenarios, the effect of varying measurement noise 456 

levels is as expected: increasing measurement noise levels lead to decreased significance in the 457 

results and require in turn longer averaging periods.  For the nominal (lower) fossil fuel emission 458 

signal, only the noise-free instrument test produces a clearly detectable signal, while all three 459 

noise levels capture the higher (exaggerated) signal case.  The emergence of a detectable signal 460 

suggests that averaging over periods longer than the one-year period considered in this study 461 

would also render signals of the magnitude of the lower fossil fuel emission signal detectable.  462 

All in all, the expected precision and sampling characteristics of ASCENDS promise to 463 

substantially enhance our ability to detect variations in CO2 fluxes and to inform the mechanisms 464 

that control them.  Future work includes comparing the signal detection performance of 465 

ASCENDS to passive sensors, which might be employed within the time frame of the 466 

ASCENDS mission.  Additional future work entails a comprehensive study of the effect of 467 

uncertainties in fluxes other than those defining the signal on the detectability of the signal, for 468 

example, by using an ensemble of biospheric fluxes to vary the baseline fluxes. 469 
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 617 

Figure 1: Flux and CO2 concentration for the permafrost carbon release experiment.  (a) 3-618 

month average CO2 flux (“3-month flux”), (b) 3-month average CO2 concentration (“3-month 619 

signal”), (c) yearly average CO2 flux (“Yearly flux”), and (d) yearly average CO2 concentration 620 

(“Yearly signal”).  The 3-month period is May through July.  The flux is modeled for 2022.  The 621 

negative concentration values in the Southern hemisphere are a result of the global mean 622 

adjustment. 623 
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 624 

Figure 2: Flux and CO2 concentration for the fossil fuel experiments.  First row: 3-month 625 

average CO2 flux (“3-month flux”).  Second row: 3-month average CO2 concentration (“3-month 626 

signal”).  Third row: Yearly average CO2 flux (“Yearly flux”).  Fourth row: Yearly average CO2 627 

concentration (“Yearly signal”).  The 3-month period is August through September. 628 
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 629 

Figure 3: Flux and CO2 concentration for the Southern Ocean experiment.  (a) 3-month 630

average CO2 flux (“3-month flux”), (b) 3-month average CO2 concentration (“3-month signal”), 631 

(c) yearly average CO2 flux (“Yearly flux”) and (d) yearly average CO2 concentration (“Yearly 632 

signal”).  The 3-month period is April through June. 633 
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 634 

Figure 4: Mapping results for August 1-4 2007.  (a) Modeled CO2 concentrations (“Model”), 635 

(b) simulated ASCENDS observations (“Observations”), (c) mapped CO2 concentrations 636 

(“Mapped”), and (d) mapping uncertainties (“Uncertainty”) expressed as a standard deviation.  637 
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 638 

Figure 5: Results for the permafrost carbon release experiment for medium measurement 639 

noise.  (a) 3-month mapped CO2 signal (“3-month mapped”), (b) Significance of the 3-month 640 

mapped CO2 signal (“3-month signific.”), (c) Yearly mapped CO2 signal (“Yearly mapped”), and 641 

(d) Significance of the yearly mapped CO2 signal (“Yearly signific.”).  The mapped signal is the 642 

difference between the mapped perturbation CO2 concentration and the mapped baseline CO2 643 

concentration.  The significance is the mapped signal divided by the uncertainty of the mapped 644 

signal.  The values are discretized for improved visualization.  Yellow, orange and dark red 645 

(light, medium and dark blue) represent areas where the mapped perturbation concentration is 646 

larger (smaller) than the mapped baseline concentration by more than one, two or three standard 647 

deviations, respectively, of the uncertainty of the mapped signal.  The 3-month period is May 648 

through July. 649 
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 650 

Figure 6: Results for the fossil fuel experiments for medium measurement noise.  First row: 651 

3-month mapped CO2 signal (“3-month mapped”).  Second row: Significance of the 3-month 652 

mapped CO2 signal (“3-month signific.”).  Third row: Yearly mapped CO2 signal (“Yearly 653 

mapped”).  Fourth row: Significance of the yearly mapped CO2 signal (“Yearly signific.”).  The 654 

mapped signal is the difference between the mapped perturbation CO2 concentration and the 655 

mapped baseline CO2 concentration.  The significance is the mapped signal divided by the 656 

uncertainty of the mapped signal.  The values are discretized for improved visualization.  657 

Yellow, orange and dark red (light, medium and dark blue) represent areas where the mapped 658 

perturbation concentration is larger (smaller) than the mapped baseline concentration by more 659 

than one, two or three standard deviations, respectively, of the uncertainty of the mapped signal.  660 

The 3-month period is August through September. 661 
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 662 

Figure 7: Results for the Southern Ocean experiment for medium measurement noise.  (a) 3-663 

month mapped CO2 signal (“3-month mapped”), (b) Significance of the 3-month mapped CO2 664 

signal (“3-month signific.”), (c) Yearly mapped CO2 signal (“Yearly mapped”), and (d) 665 

Significance of the yearly mapped CO2 signal (“Yearly signific.”).  The mapped signal is the 666 

difference between the mapped perturbation CO2 concentration and the mapped baseline CO2 667 

concentration.  The significance is the mapped signal divided by the uncertainty of the mapped 668 

signal.  The values are discretized for improved visualization.  Yellow, orange and dark red 669 

(light, medium and dark blue) represent areas where the mapped perturbation concentration is 670 

larger (smaller) than the mapped baseline concentration by more than one, two or three standard 671 

deviations, respectively, of the uncertainty of the mapped signal.  The 3-month period is April 672 

through June. 673 


