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ABSTRACT 

Shaw postulates that Earth’s early atmosphere was rich in reducing gases such as 
hydrogen, brought to Earth via impact events. This commentary seeks to place con-
straints on this idea through a very brief review of existing geological and geochemical 
upper limits on the reducing power of Earth’s atmosphere prior to the rise of oxygen. 
While these constraints place tight limits on this idea for rocks younger than 3.8 Ga, 
few constraints exist prior to that time, due to a paucity of rocks of that age. The time 
prior to these constraints is also a time frame for which the proposal is most plausible, 
and for which it carries the greatest potential to explain other mysteries. Given this 
potential, several tests are suggested for the H2-rich early Earth hypothesis.
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INTRODUCTION

Shaw (this volume) contends the pre-oxygen Earth was 
more reducing than previously thought. That suggestion can be 
considered in the context of past research on the redox state of the 
atmosphere using geochemical measurements and atmospheric 
models. The call for an H

2
-rich atmosphere is intriguing because 

it contains some explanatory power; however, we can limit this 
idea in scope, given knowledge obtained through past analyses 
of the Earth’s geological record. The “sweet spot” for this hypo-
thesis is for the earliest portion of the planet’s history. This is a 
time when the rock record cannot exclude this as a possibility, 
when the impact-driven mechanism for this phenomenon was 
most prevalent, and when this idea has the greatest potential to 
solve perplexing riddles.

This idea is intriguing because it probes the opposite end of 
the oxidizing–reducing scale on which much of the past debate 

and research have been focused. Past research, as evidenced by 
a later paper in this series by Ohmoto et al. (this volume), has 
debated the limits on the oxidizing extent of early Earth. How-
ever, signifi cantly less consideration has been given to limita-
tions on the reducing potential of early Earth’s atmosphere. This 
is where Shaw’s hypothesis comes into play.

DISCUSSION

To evaluate the possibility of a highly reducing atmosphere 
on early Earth, we consider geological constraints that place 
an upper limit on the reducing power of the atmosphere. These 
include data used to argue for a “whiff” of oxygen in the mid-
Archean (e.g., Anbar et al., 2007). These conclusions—based on 
the concentrations of elements for which mobility is sensitive to 
the redox state of the atmosphere-ocean system—place periodic, 
yet strict, limits on how reducing the atmosphere could have been 
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between ca. 2.8 and ca. 2.5 Ga. Unless some mechanism could 
have rapidly oxidized the atmosphere, and then rapidly returned 
it to a highly reducing state, we must therefore rule out an H

2
-rich 

atmosphere for this time period.
Further constraints come from the presence of mass- 

independent sulfur isotope fractionation (S-MIF). Highly reduc-
ing conditions can upset the exit channel balance between sulfates 
and sulfi des, a balance that is needed to transfer atmospherically 
derived isotopic features to the rock record. Under extremely 
reducing conditions, all S in the atmosphere will leave in the form 
of sulfi des, and this will eliminate any S-MIF created before it is 
deposited (Domagal-Goldman, et al., 2008). Extremely reduc-
ing conditions also would have caused the CH

4
/CO

2
 ratio in the 

atmosphere to approach unity. Had this occurred, a haze would 
have formed, blocking the ultraviolet (UV) wavelengths respon-
sible for S-MIF production (Zerkle et al., 2012). Given the pres-
ence of S-MIF from 3.8 Ga through the rise of oxygen (Farquhar 
and Wing, 2003), we can eliminate the possibility of an H

2
-rich 

atmosphere for any time after 3.8 Ga.
The potential for haze formation places another constraint 

on CH
4
 concentrations for a climatic reason: Hazes cause signifi -

cant antigreenhouse effects. These effects will be much greater 
than the greenhouse effects from CH

4
 and other organic gases 

(Pavlov et al., 2001). For CH
4
/CO

2
 ratios signifi cantly above 0.1, 

global glaciations would have been triggered. However, there is 
no evidence for global glaciations prior to 2.4 Ga, nor for any 
glaciations prior to ca. 2.8 Ga. This corroborates the limit stated 
above: CH

4
 concentrations must have been less than CO

2
 concen-

trations since at least 3.8 Ga. Such conditions are not consistent 
with an H

2
-rich atmosphere.

Prior to 3.8 Ga, there is not much of a rock record, so these 
geological constraints do not exist. However, there are minerals 
that have been dated to be as old as 4.4 Ga, and analyses of these 
suggest that the redox state of the mantle has been relatively con-
sistent throughout Earth’s history (Trail et al., 2011). In terms 
of Shaw’s hypothesis for an H

2
-rich atmosphere, this means that 

had such an atmosphere been in place prior to 3.8 Ga, it did not 
have a signifi cant effect on the redox state of the mantle. Thus, 
the (admittedly sparse) geological data prior to 3.8 Ga cannot 
exclude the possibility of an H

2
-rich atmosphere—they can only 

limit the degree to which the mantle would have been affected by 
such an atmosphere.

The time period prior to 3.8 Ga is also the time when Shaw’s 
hypothesis is most appropriately applied. The mechanism pro-
posed to drive the atmosphere to such a state is the delivery of 
highly reducing extraterrestrial materials. The rate of delivery of 
this material would have signifi cantly decreased with time, with 
perhaps a spike in delivery rates associated with the still contro-
versial “Late Heavy Bombardment” at 3.8 Ga. Regardless, prior 
to 3.8 Ga, signifi cantly more of this reducing material would 
have been delivered to Earth. Further, if the pre–3.8 Ga Earth 
had been more reduced, it would have allowed for greater abiotic 
production of compounds necessary for the origins of life, and 
for the buildup of extremely effi cient greenhouse gases that could 

solve the “faint young sun paradox” during the time frame for 
which the Sun was at its faintest.

If escape of H through the top of the atmosphere was limited 
by energy deposition to the atmosphere (as opposed to limited 
by diffusion of H into the upper atmosphere, as it is on modern-
day Earth), then escape of H would have been much slower. If 
this was case, then the “oxidant source” provided by escape of 
H would have been lower, and the atmosphere would have been 
much more reducing. Previous models of escape show that this 
could produce a dramatic effect (Tian et al., 2005). However, 
such models have been criticized for not being complete enough 
(Catling, 2006), and further study is warranted before this pro-
cess can be considered a potential mechanism for maintaining a 
reducing atmosphere on early Earth.

Future research could test this “H
2
-rich early Earth” 

hypothesis. First, one must determine if models of the impacts 
themselves that delivered the reducing material would have 
allowed this material to be partitioned into the atmosphere 
and crust without signifi cant effects on the redox state of the 
mantle. Then, it must be demonstrated that an atmosphere such 
as this would have been capable of evolving into the consider-
ably more H

2
-poor atmosphere that was in place since at least 

3.8 Ga. Finally, models that reproduce this evolution should 
also be able to predict the resulting changes to noble gas and 
isotopic reservoirs, ultimately leading to “ground-testing” of 
the hypothesis with geochemical measurements of rocks depos-
ited after this evolution was complete. Alternatively, should we 
be fortunate enough to uncover (meta-)sedimentary rocks older 
than 3.8 Ga, or develop the capability to fi nd them on the Moon, 
we will be able to analyze them for some of the same geochemi-
cal constraints, such as the presence of S-MIF, that limit H

2
 

concentrations after this time.
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