On the Minimum Induced Drag of Wings

Albion H. Bowers
NASA Armstrong Chief Scientist

NASA Neil A. Armstrong Flight Research Center
Imagination vs Knowledge

• Requirements and Assumptions

• Concepts and Solutions

Lift

Where does lift come from?
Personal Air Vehicles

Birds
The Four Ways Birds Differ from Aircraft

- Birds turn and maneuver without a vertical tail
- Birds have slender tips that carry little load
- Birds gracefully fly formation with overlapped wingtips
- Birds have narrow wingtips without tip stall

Wilbur & Orville Wright

- Flying experiments 1899 to 1905
Prandtl Lifting Line Theory

- Prandtl's "vortex ribbons"

- Elliptical spanload for a given span (1920)

- "the downwash produced by the longitudinal vortices must be uniform at all points on the aerofoils in order that there may be a minimum of drag for a given total lift." \(y = c \)

Minimum Induced Drag & Bending Moment

- Prandtl (1932)
 Constrain minimum induced drag
 Constrain integrated wing bending moment
 22% increase in span with 11% decrease in induced drag
Horten Applies the Bbell Spanload

- Horten Spanload (1934-1954)
 use twist to achieve spanload
 induced thrust at tips
 no structural implications

Horten Sailplanes (Germany & Argentina)
Minimize induced drag (1950)
Constrain wing root bending moment
30% increase in span with 17% decrease in induced drag

“Hence, for a minimum induced drag with a given total lift and a given bending moment the downwash must show a linear variation along the span.” $y = bx + c$
Klein and Viswanathan

- Minimize induced drag (1975)
 - Constrain bending moment
 - Constrain shear stress
 - 16% increase in span with 7% decrease in induced drag

- "Hence the required downwash-distribution is parabolic." $y = ax^2 + bx + c$

Winglets

- Richard Whitcomb's Winglets
 - Induced thrust on wingtips
 - Induced drag decrease is about half of the span "extension"
 - Reduced wing root bending stress
Whitcomb's Winglets

Prandtl (1920) vs Prandtl (1932)

Elliptical Spanload

Bell Spanload
Spanload, Downwash, Induced Drag

- All wings dictate 3 solutions
- Spanload
- Downwash
- Induced Drag

Horten H Xc Example

- Horten H Xc
tootlaunched
ultralight sailplane
1950

- 24 degree leading edge
sweep angle

- Chord:
 root - 63 inches
tip - 15.75 inches

- Span: 49.2 feet
Prandtl Wing

- 24 degree leading edge sweep angle
- Chord:
 - root – 15.75 inches
 - tip – 3.875 inches
- Span: 147.6 inches

Calculation Method

- Taper
- Twist
- Control Surface Deflections
- Central Difference Angle

Twist

Span

R0	8.3274
R1	8.5624
R2	8.7259
R3	8.8441
R4	8.9030
R5	8.8984
R6	8.8257
R7	8.6801
R8	8.4065
R9	8.1492
R10	7.7522
R11	7.2592
R12	6.6854
R13	5.9579
R14	5.1362
R15	4.1227
R16	3.1253
R17	1.9394
R18	0.6986
R19	-0.6417
R20	-1.6726
Dr Edward Uden’s Results

- Spanload and Induced Drag
- Elevon Configurations
- Induced Yawing Moments

<table>
<thead>
<tr>
<th>Elevon Config</th>
<th>$C_{n_{\delta}}$</th>
<th>Spanload</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-0.002070</td>
<td>bell</td>
</tr>
<tr>
<td>II</td>
<td>0.001556</td>
<td>bell</td>
</tr>
<tr>
<td>III</td>
<td>0.002788</td>
<td>bell</td>
</tr>
<tr>
<td>IV</td>
<td>-0.015060</td>
<td>elliptical</td>
</tr>
<tr>
<td>V</td>
<td>-0.015730</td>
<td>elliptical</td>
</tr>
<tr>
<td>VI</td>
<td>0.001942</td>
<td>bell</td>
</tr>
<tr>
<td>VII</td>
<td>0.002823</td>
<td>bell</td>
</tr>
<tr>
<td>VIII</td>
<td>0.004529</td>
<td>bell</td>
</tr>
<tr>
<td>IX</td>
<td>0.005408</td>
<td>bell</td>
</tr>
<tr>
<td>X</td>
<td>0.004132</td>
<td>bell</td>
</tr>
<tr>
<td>XI</td>
<td>0.005455</td>
<td>bell</td>
</tr>
</tbody>
</table>

Elliptical Half-Lemniscate

- Minimum induced drag for given control power (roll)
- Dr Richard Eppler: FS-24 Phoenix
"Mitteleffekt"

- Artifact of spanload approximations
- Effect on spanloads
 - Increased load at tips
 - Decreased load near centerline
- Upwash due to sweep unaccounted for

Symmetrical Spanloads

- Elevon Trim
- CG Location
Asymmetrical Spanloads

- $C_l\delta_a$ (roll due to aileron)
- $C_n\delta_a$ (yaw due to aileron)
 induced component
 profile component
 change with lift
- $C_{n\delta_a}/C_l\delta_a$
- C_L (Lift Coefficient)
 Increased lift:
 increased $C_l\beta$
 increased $C_{n\beta}^*$
 Decreased lift:
 decreased $C_l\beta$
 decreased $C_{n\beta}^*$

<table>
<thead>
<tr>
<th>C_l</th>
<th>$C_l\delta_a$</th>
<th>$C_{n\delta_a}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.966</td>
<td>.01384</td>
<td>.00035</td>
</tr>
<tr>
<td>.774</td>
<td>.01384</td>
<td>.00057</td>
</tr>
<tr>
<td>.582</td>
<td>.01345</td>
<td>.00021</td>
</tr>
<tr>
<td>.390</td>
<td>.01384</td>
<td>.00003</td>
</tr>
<tr>
<td>.198</td>
<td>.01345</td>
<td>-.00015</td>
</tr>
</tbody>
</table>

Performance Comparison

- Max L/D: 31.9
- Min sink: 89.1 fpm
- Does not include pilot drag
- Predicted L/D: 30
- Predicted sink: 90 fpm
Prandtl’s Bell Spanload

Results of Prandtl’s Spanload

\[\lim_{x: 0 \to b/2} L(x) = 0 \] \hspace{1cm} (1)

\[\lim_{x: 0 \to b/2} \frac{dL(x)}{dx} = 0 \] \hspace{1cm} (2)

\[\lim_{x:0 \to b/2} \frac{dD(x)}{dx} = \lim_{x: \infty \to b/2} \frac{dD(x)}{dx} \] \hspace{1cm} (3)
Spanload

Spedding's Gliding Falcon

- Spedding photograph's a gliding falcon's wake with He bubbles
- Vortex cores are 0.76 b apart
- Elliptical spanload is assumed, so the vortex cores are assumed to come from the wingtips
Portugal, et al 2014 (Nature)

Upwash and Wing Beats

Portugal 2014

Hainsworth 1986

Cutts & Speakman 1994

Speakman & Banks 1995
Upwash and Wing Beats

Wing Stall

Local Cl

Portugal

Unknown

Wing & Thrust

Sculpture & Brakes

Prandtl 1932
— Extension of 1932 theorem
— Portugal
— Heatworth
— Cutts and Speakman
— Speakman and Binks
Nachtigall 1966 (J of Exp Bio)

Effect of Sideslip

- Wing twist
- Sideslip is imposed
- Distorts the bell spanload and the induced drag/thrust profile
What would Proverse Yaw look like?

PRANDTL-D Proverse Yaw?
Flight Data

- Measurement of proverse yaw would be the final hurdle to achieve
- Icing on the cake: measure Cnda (yawing moment due to aileron deflection)

- NOT ONE SECOND OF FLIGHT DATA EXISTS TO PROVE ANY OF THIS IS TRUE

Proverse Yaw

- ...until June 26th, 2013
- Roll and Yaw are the same sign
- From Uden: Cnda is +ve
- Uncertainty

Inset: inertias; configuration changes, turbulence, and slope of Cnda
Control of Yaw

- You Have Three Choices:
 - 1/ drag a vertical tail around with you all the time to create a yawing moment
 - 2/ manipulate drag at the wing tips to control yaw
 - 3/ manipulate THRUST at the wing tips to control yaw

Biological vs Mechanical Flight
Biological Flight

- Mechanical Flight (110 yrs)
- Vertebrate Flight (128 My)

Prandtl, Horten, Jones, and Birds
Efficiency

- Efficiency: 12.5% increase in wing efficiency
- 20-30% increase in efficiency by eliminating the tail
- 15.4% increase in propulsive efficiency
- TOTAL EFFICIENCY INCREASE: 69%

- CY2011: world jet fuel consumption $134B
 - $55B in jet fuel saved

- CY2011 World GDP: $69.7T
- World power production: $12.0T
- $1.85T savings in world power production

Concluding Remarks

- Birds as the first model for flight
- Applied approach gave immediate solutions, departure from bird flight
- Eventual meeting of theory and applications (applied theory)
- Spanload evolution (Prandtl/Horten/Jones/Klein/Viswanathan/Whitcomb/Bowers)
- Solve performance, structure and control with ONE spanload solution!
- 12.5% increase in L/D; ~2% increase in prop efficiency, 20-30% decrease in drag eliminating the tail, ~43-62% reduction in total aero efficiency
- Assumptions and Solutions
- The Wrights disintegrated the flight of birds, and Prandtl/Horten/Jones reintegrated the flight of birds...

- Thanks: Red Jensen, Brian Estinger, Dr Christian Gelzer, Dr Oscar Murillo, Hayley Foster & Steve Craft, Dr Bob Liebeck, Nalin Ratnayake, Mike Allen, Walter Horten, George Dez-Falvy, Rudi Optiz, Bruce Carmichael, R T. Jones, Russ Lee, Bob Hoey, Phil Barnes, Dan & Jan Armstrong, Dr Phil Burgers, Ed Lockhart, Andy Kesckes, Dr Paul MacCready, Reinhold Stadler, Dr Edward Uden, & Dr Karl Nickel
NASA Aero Academies & Others

- 2014 NASA Aero Academy
 - Brian Plank, Joe Lorenzetti, Kathleen Glasheen, Bryce Doerr, Cynthia Farr, Nancy Pinon, Heather Laflloon, Jack Toth, Leo Banuelos
- 2013 NASA Aero Academy
 - Eric Gutierrez, Louis Edelman, Kristyn Kadala, Nancy Pinon, Cody Karcher, Andy Putch, Hovig Yaralian, Jacob Hall
- 2012 NASA Aero Academy
 - Steffi Valkov, Juliana Plumb (Ulrich), Luis Andrade, Stephanie Reynolds, Joey Wagster, Kimmy Callan, Javier Rocha, Sanel Horozovic, Ronalynn Ramos, Nancy Pinon

References

- Prandtl, Ludwig; "Applications of Modern Hydrodynamics to Aeronautics"; NACA Report No. 116; 1921.
- Prandtl, Ludwig; "Uber Trafigule Kleinsten Induzierter Widerstandes"; Zeitschrift für Flugtechnik und Motorenflugtechnik, 38 XII 1932; Munich, Deutschland.
- Horten, Reimar; and Selinger, Peter; with Scott, Jan (translator): "Nurflugel: the Story of Horten Flying Wings 1933 - 1960"; Verlag fur Wissenschaft und Technik, Graz, Austria; 1985.
- Horten, Reimar; unpublished personal notes.
- Uden, Edward; unpublished personal notes.
- Klien, Armin and Mavranan, Sathy; "Approximate Solution for Minimum Induced Drag of Wings with a Given Structural Weight"; Journal of Aircraft, Feb 1979, Vol 16 No 2, AIAA.
- Korol, Carl; "California Condor"; Audubon Special Report No. 4, 1950, Dover, NY.
PRANDTL-D

- Videos
 - TEDxNASA 2011
 http://www.youtube.com/watch?v=223OmaQ9uLY
 - NASA Aero Academy 2013
 http://www.youtube.com/watch?v=Hr0l6wBFgBY

Red Jensen: pilot, engineer
If you want to build a ship, don't drum up people to collect wood and don't assign them tasks and work, but rather teach them to long for the endless immensity of the sea...

- Antoine de Saint-Exupery

Questions?