On the Minimum Induced Drag of Wings

Albion H. Bowers
NASA Armstrong Chief Scientist

NASA Neil A. Armstrong Flight Research Center
Imagination vs Knowledge

- Requirements and Assumptions
- Concepts and Solutions

Lift

Where does lift come from?
Personal Air Vehicles

Birds
The Four Ways Birds Differ from Aircraft

- Birds turn and maneuver without a vertical tail
- Birds have slender tips that carry little load
- Birds gracefully fly formation with overlapped wingtips
- Birds have narrow wingtips without tip stall

Wilbur & Orville Wright

- Flying experiments 1899 to 1905
Prandtl Lifting Line Theory

- Prandtl’s “vortex ribbons”

- Elliptical spanload for a given span (1920)

- “the downwash produced by the longitudinal vortices must be uniform at all points on the aerofoils in order that there may be a minimum of drag for a given total lift.” $y = c$

Minimum Induced Drag & Bending Moment

- Prandtl (1932)
 Constrain minimum induced drag
 Constrain integrated wing bending moment
 22% increase in span with 11% decrease in induced drag
Horten Applies the Bbell Spanload

- Horten Spanload (1934-1954)
 use twist to achieve spanload
 induced thrust at tips
 no structural implications

Horten Sailplanes (Germany & Argentina)
Prandtl & Horten

Jones Spanload

- Minimize induced drag (1950)
 - Constrain wing root bending moment
 - 30% increase in span with 17% decrease in induced drag

- "Hence, for a minimum induced drag with a given total lift and a given bending moment the downwash must show a linear variation along the span." \(y = bx + c \)
Klein and Viswanathan

- Minimize induced drag (1975)
 - Constrain bending moment
 - Constrain shear stress
 - 16% increase in span with 7% decrease in induced drag

- "Hence the required downwash-distribution is parabolic." \(y = ax^2 + bx + c \)

Winglets

- Richard Whitcomb’s Winglets
 - Induced thrust on wingtips
 - Induced drag decrease is about half of the span “extension”
 - Reduced wing root bending stress
Whitcomb’s Winglets

Prandtl (1920) vs Prandtl (1932)

Prandtl 1920
Elliptical Spanload

Prandtl 1932
Bell Spanload
Spanload, Downwash, Induced Drag

- All wings dictate 3 solutions
- Spanload
- Downwash
- Induced Drag

Horten H Xc Example

- Horten H Xc footlaunched ultralight sailplane 1950
- 24 degree leading edge sweep angle
- Chord:
 root - 63 inches
 tip - 15.75 inches
- Span: 49.2 feet
Prandtl Wing

- 24 degree leading edge sweep angle
- Chord:
 - root – 15.75 inches
 - tip – 3.875 inches
- Span: 147.6 inches

Calculation Method

- Taper
- Twist
- Control Surface Deflections
- Central Difference Angle

<table>
<thead>
<tr>
<th>R0</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
<th>R10</th>
<th>R11</th>
<th>R12</th>
<th>R13</th>
<th>R14</th>
<th>R15</th>
<th>R16</th>
<th>R17</th>
<th>R18</th>
<th>R19</th>
<th>R20</th>
</tr>
</thead>
</table>
Dr Edward Uden’s Results

- Spanload and Induced Drag
- Elevon Configurations
- Induced Yawing Moments

<table>
<thead>
<tr>
<th>Elevon Config</th>
<th>Cn\delta</th>
<th>Spanload</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-0.002070</td>
<td>bell</td>
</tr>
<tr>
<td>II</td>
<td>0.001556</td>
<td>bell</td>
</tr>
<tr>
<td>III</td>
<td>0.002788</td>
<td>bell</td>
</tr>
<tr>
<td>IV</td>
<td>-0.015060</td>
<td>elliptical</td>
</tr>
<tr>
<td>V</td>
<td>-0.015730</td>
<td>elliptical</td>
</tr>
<tr>
<td>VI</td>
<td>0.001942</td>
<td>bell</td>
</tr>
<tr>
<td>VII</td>
<td>0.002823</td>
<td>bell</td>
</tr>
<tr>
<td>VIII</td>
<td>0.004529</td>
<td>bell</td>
</tr>
<tr>
<td>IX</td>
<td>0.005408</td>
<td>bell</td>
</tr>
<tr>
<td>X</td>
<td>0.004132</td>
<td>bell</td>
</tr>
<tr>
<td>XI</td>
<td>0.005455</td>
<td>bell</td>
</tr>
</tbody>
</table>

Elliptical Half-Lemniscate

- Minimum induced drag for given control power (roll)
- Dr Richard Eppler: FS-24 Phoenix
"Mitteleffekt"

- Artifact of spanload approximations
- Effect on spanloads
 - Increased load at tips
 - Decreased load near centerline
- Upwash due to sweep unaccounted for

Symmetrical Spanloads

- Elevon Trim
- CG Location
Asymmetrical Spanloads

- $C_{l\alpha}$ (roll due to aileron)
- $C_{n\alpha}$ (yaw due to aileron)
- Induced component
- Profile component change with lift
- $C_{n\alpha}/C_{l\alpha}$
- C_L(Lift Coefficient)
 - Increased lift:
 - Increased C_{β}
 - Increased $C_{n\beta}$
 - Decreased lift:
 - Decreased C_{β}
 - Decreased $C_{n\beta}$

<table>
<thead>
<tr>
<th>C_L</th>
<th>$C_{l\alpha}$</th>
<th>$C_{n\alpha}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.966</td>
<td>.01384</td>
<td>.00035</td>
</tr>
<tr>
<td>.774</td>
<td>.01384</td>
<td>.00027</td>
</tr>
<tr>
<td>.582</td>
<td>.01345</td>
<td>.00021</td>
</tr>
<tr>
<td>.390</td>
<td>.01384</td>
<td>.00003</td>
</tr>
<tr>
<td>.198</td>
<td>.01345</td>
<td>.00015</td>
</tr>
</tbody>
</table>

Performance Comparison

- Max L/D: 31.9
- Min sink: 89.1 fpm
- Does not include pilot drag
- Predicted L/D: 30
- Predicted sink: 90 fpm
Prandtl’s Bell Spanload

Results of Prandtl’s Spanload

\[
\lim_{x: \to 0}^{b/2} L(x) = 0 \tag{1}
\]

\[
\lim_{x: \to 0}^{b/2} \frac{dL(x)}{dx} = 0 \tag{2}
\]

\[
\lim_{x: 0 \to b/2} \frac{dW(x)}{dx} = \lim_{x: \to \infty}^{b/2} \frac{dW(x)}{dx} \tag{3}
\]
Spanload

Spedding’s Gliding Falcon

- Spedding photographs a gliding falcon’s wake with He bubbles
- Vortex cores are 0.76 b apart
- Elliptical spanload is assumed, so the vortex cores are assumed to come from the wingtips
Portugal, et al 2014 (Nature)

Upwash and Wing Beats

Portugal 2014

Hainsworth 1988

Cutts & Speakman 1994

Speakman & Banks 1995
Upwash and Wing Beats

Wing Stall

Local Cl

Portugal

Unknown

Wing Stall

Local Cl
Nachtigall 1966 (J of Exp Bio)

Effect of Sideslip

- Wing twist
- Sideslip is imposed
- Distorts the bell spanload and the induced drag/thrust profile
PRANDTL-D Proverse Yaw?

What would Proverse Yaw look like?
Flight Data

- Measurement of proverse yaw would be the final hurdle to achieve
- Icing on the cake: measure Cnda (yawing moment due to aileron deflection)

- NOT ONE SECOND OF FLIGHT DATA EXISTS TO PROVE ANY OF THIS IS TRUE

Proverse Yaw

- ...until June 26th, 2013
- Roll and Yaw are the same sign
- From Uden: Cnda is +ve
- Uncertainty

Inertias; configuration changes, turbulence, and slope of Cnda
You Have Three Choices:

1/ drag a vertical tail around with you all the time to create a yawing moment

2/ manipulate drag at the wing tips to control yaw

-OR-

3/ manipulate THRUST at the wing tips to control yaw

Biological vs Mechanical Flight
Biological Flight

- Mechanical Flight (110 yrs)
- Vertabrate Flight (128 My)

Prandtl, Horten, Jones, and Birds
Efficiency

- Efficiency: 12.5% increase in wing efficiency
- 20-30% increase in efficiency by eliminating the tail
- 15.4% increase in propulsive efficiency
- TOTAL EFFICIENCY INCREASE: 69%

- CY2011: world jet fuel consumption $134B
- $55B in jet fuel saved

- CY2011 World GDP: $69.7T
- World power production: $12.0T
- $1.85T savings in world power production

Concluding Remarks

- Birds as as the first model for flight
- Applied approach gave immediate solutions, departure from bird flight
- Eventual meeting of theory and applications (applied theory)
- Spanload evolution (Prandtl/Horten/Jones/Klein/Viswanathan/Whitcomb/Bowers)
- Solve performance, structure and control with ONE spanload solution!
- 12.5% increase in L/D, -2% increase in prop efficiency, 20-30% decrease in drag eliminating the tail, -43-62% reduction in total aero efficiency

- Assumptions and Solutions

- The Wrights disintegrated the flight of birds, and Prandtl/Horten/Jones reintegrated the flight of birds...

- Thanks: Red Jensen, Brian Eslinger, Dr Christian Gelzer, Dr Oscar Murillo, Hayley Foster & Steve Craft, Dr Bob Liebeck, Nalin Ratnayake, Mike Allen, Walter Horten, Georgy Dez-Falvy, Rudi Optiz, Bruce Cermichael, R. T. Jones, Russ Lee, Bob Hoey, Phil Barnes, Dan & Jan Armstrong, Dr Phil Burgers, Ed Lockhart, Andy Kesckes, Dr Paul MacCready, Reinhold Stadler, Dr Edward Uden, & Dr Karl Nickel
NASA Aero Academies & Others

- 2014 NASA Aero Academy
 - Brian Plank, Joe Lorenzetti, Kathleen Glasheen, Bryce Doerr, Cynthia Farr, Nancy Pinon, Heather Laffoon, Jack Toth, Leo Banuelos
- 2013 NASA Aero Academy
 - Eric Gutierrez, Louis Edelman, Kristyn Kadala, Nancy Pinon, Cody Karcher, Andy Puch, Hovig Yaralian, Jacob Hall
- 2012 NASA Aero Academy
 - Steffi Volkov, Juliana Plumb (Ulrich), Luis Andrade, Stephanie Reynolds, Joey Wagster, Kimmy Callan, Javier Rocha, Sanel Horozovic, Ronalyyn Ramos, Nancy Pinon

References

- Prandtl, Ludwig; "Applications of Modern Hydrodynamics to Aeronautics"; NACA Report No. 116; 1921.
- Nickel, Karl; and Wohltart, Michael; with Brown, Eric M. (translator); "Tailless Aircraft in Theory and Practice"; AIAA Education Series, AIAA, 1994.
- Prandtl, Ludwig; "Uber Tragflugel Kleinfluten induzierten Widerstandes"; Zeitschrift fur Flugtechnik und Motorluftschiffahrt, 28 XII 1932; Munich, Deutschland.
- Horten, Reimar; and Seilinger, Peter; with Scott, Jan (translator); "Nurflugel: the Story of Horten Flying Wings 1933 - 1960"; Webschrift Verlag; Graz, Austria; 1985.
- Horten, Reimar; unpublished personnel notes.
- Uden, Edward; unpublished personal notes.
- Klein, Armin and Mavranathan, Sathy; "Approximate Solution for Minimum Induced Drag of Wings with a Given Structural Weight"; Journal of Aircraft, Feb 1978, Vol 15 No 2, AIAA.
- Kordel, Carl; "California Condor"; Audobon Special Report No. 4, 1950, Dover, NY.

29
PRANDTL-D

- Videos
 - TEDxNASA 2011
 http://www.youtube.com/watch?v=2230maQ9uLY
 - NASA Aero Academy 2013
 http://www.youtube.com/watch?v=Hr0I6wBFGpY

Red Jensen: pilot, engineer
If you want to build a ship, don't drum up people to collect wood and don't assign them tasks and work, but rather teach them to long for the endless immensity of the sea...

- Antoine de Saint-Exupery