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Abstract 
Magnetic resonance is one of the key properties of magnetic 

materials for the application of microwave spintronics devices. 
The conventional method for tuning magnetic resonance is to 
use an electromagnet, which provides very limited tuning 
range. Hence, the quest for enhancing the magnetic resonance 
tuning range without using an electromagnet has attracted 
tremendous attention. In this paper, we exploit the huge 
exchange coupling field between magnetic interlayers, which is 
on the order of 4000 Oe and also the high frequency modes of 
coupled oscillators to enhance the tuning range. Furthermore, 
we demonstrate a new scheme to control the magnetic 
resonance frequency. Moreover, we report a shift in the 
magnetic resonance frequency as high as 20 GHz in CoFe-
based tunable microwave spintronics devices, which is 10X 
higher than conventional methods.  

1.0 Introduction 
Spintronics utilizes electron spins in addition to, and 

sometimes in place of, electron charges to achieve new electron 
device functions. The discovery of giant magnetoresistance 
(GMR) in 1988 revolutionized the data storage in hard drives 
(Ref. 1). More recently, the discovery of tunnel magnetore-
sistance (TMR) phenomena in magnetic tunnel junctions (MTJs) 
accelerated the development of hard drive technology. Besides 
reading out the static magnetic moment (stored information) of 
a nano-magnet in, for example, a computer hard disk, the 
development of spintronics also offers a new scheme to 
manipulate the magnetic moment by means of spin transfer 
torque (STT). The STT transfers angular momentum from spin-

polarized charge carriers to local magnetic moments without 
using an electromagnet. Owing to its fast speed, high density, 
and low energy consumption, STT has been utilized in 
developing the next generation of magnetic random access 
memories (MRAM). Another emerging subfield of spintronics 
involves coupling spin transport to spin dynamics. Since spin 
dynamics usually occurs in the gigahertz frequency range due 
to the intrinsic resonance of magnetic materials, spintronics 
devices have found applications at microwave frequencies, for 
example in microwave generators, detectors, and phase shifters 
(Refs. 2 to 4). 

The typical spintronic devices include spin valves (SVs) 
and MTJs, which are respectively, made of a nonmagnetic 
metal or insulating barrier sandwiched between two 
ferromagnetic (FM) layers as illustrated in Figure 1(a). One of 
the FM layers usually has its magnetic moment (Mfixed) fixed 
and aligned with the adjacent antiferromagnetic (AFM) layer 
through exchange bias. The other layer’s magnetic moment 
(Mfree) is free to rotate with the magnetic fields. The electric 
resistance of the structure is determined by the relative angle 
between Mfixed and Mfree. When a current is flowing through the 
stack, the electron spins are polarized along the direction of 
Mfixed (Fig. 1(a)). If Mfree is not collinear with Mfixed, the electrons 
with polarized spins passing through the free layer will align 
with Mfree due to exchange interaction. By the conservation of 
angular momentum, the change of the carrier spin momentum 
will transfer to Mfree, which is the spin transfer torque.  

To generate the spin current without passing a charge current 
through a magnetic layer, one can pass a spin current through a 
material with strong spin orbital coupling (SOC) such as heavy 
metals (HM) like Pt or topological insulators (Ref. 5). Due to 
SOC, the electrons with opposite spins will be separated in the  
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direction transverse to the electric current (Fig. 1(b)), which is 
known as the spin Hall effect (SHE). The transverse spin 
current diffuses into the adjacent FM layer and manipulates its 
magnetic configuration as illustrated in Figure 1(b). The STT 
(TST) is aligned with the damping torque (Tdamping). Depending 
on the sign of the injected spin, the STT will either enhance the 
damping or act as an anti-damping torque. STT is able to reduce 
the device noise by compensating the damping, exciting 
magnetic resonance and emitting microwaves by sustaining 
magnetization precession. Figure 1(c) illustrates the principle 
of a nano-STT-microwave oscillator. The spintronics devices 
can also work as nano-microwave detectors based on the spin 

rectification effect. As depicted in Figure 1(d), the 
magnetization precession is excited through the interaction of 
microwave magnetic or electric fields. In a SV or an MTJ, the 
rotation of free layer magnetization will cause a time variant 
resistance. The ac resistance rectifies the microwave field, 
resulting in a dc voltage output. Moreover, the microwave field 
can be used to excite a spin wave (the wave of angular 
momentum oscillation) in a spin-wave logic device with low 
operating energy (Fig. 1(e)), which has the potential to be more 
energy efficient than the conventional complementary metal 
oxide semiconductor (CMOS) technology.  
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In conventional tunable microwave spintronic devices, the 
magnetic resonance is controlled by an external applied 
magnetic field, which is generated by a bulky and energy 
inefficient electromagnet. To integrate these devices and to 
lower the power consumption, it is desirable to eliminate the 
use of an electromagnet. Researchers have demonstrated that 
the magnetic resonance in piezoelectric/ferromagnetic 
multiferroic heterostructures can be controlled by an external 
electric field. However, no material satisfies both tunable range 
and microwave performance simultaneously. This paper reports 
a new technique to control the magnetic resonance, which is 
demonstrated by exploiting the huge interlayer exchange 
coupling field present between the device magnetic layers and 
the high frequency modes of coupled oscillators. 

2.0 Magnetic Resonance Modes in 
Exchange Coupled Magnetic 
Bilayer 

Exchange interaction exists inside every magnetic material 
and also at the interface of two different magnetic materials. In 
a typical ferromagnetic material, the exchange field arising 
from the Pauli Exclusion Principle can be as high as 103 T, 
equivalent to a 28 THz frequency range. The idea of using two 
coupled layers FM1 and FM2 resembles two coupled 
oscillators, which exhibit low frequency acoustic and high 
frequency optical modes, and the sensitivity of the latter will 
depend on the coupling at the interface. We model the interface 
arising from the dominating exchange coupling between two 
nearest neighboring layers and neglect the much smaller dipolar 
interaction. The interlayer exchange energy per unit area is 
described as 
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equation as 
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where  is the gyromagnetic ratio of 28 GHz/T, ieffH _


 is the 

effective field due to other atomic layers on the i-th layer 
including the external field, anisotropy field and demagnetizing 

field, ieH _


 is the effective exchange field on the i-th layer, i 

is the damping of the i-th layer, and isM _  is the saturation 

magnetization of the i-th layer.  
We are able to simulate the permeability spectrum of the 

exchange coupled layer. Indeed, when the interface exchange 
coupling is finite but much weaker than the intralayer exchange 
coupling inside each ferromagnetic layer, the bilayer exhibits 
two microwave-resonance modes as illustrated in Figure 2. The 
two modes are the acoustic mode with the magnetizations in 
two layers precessing in-phase and the optical mode with the 
two magnetizations precessing out-of-phase. In a simplified 
example, where FM1 and FM2 are identical with negligible 
anisotropy, i.e., sss MMM  21  and ddd  21 , the two 

resonance modes can be calculated as 
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In the above equations Heff is the effective magnetic field. The 
optical mode has a higher resonance frequency than the acoustic 
mode from the contribution of an additional effective exchange 
field dMJ s02  . The resonance frequency of the optical mode 

can be shifted by the change of the interlayer exchange 
coupling. 
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3.0 Electric Field Tuned Magnetic 
Resonance in Multiferroic 
Heterostructures 

The application of an electric field induces strain in 
piezoelectric materials. The strain-induced magnetoelectric 
(ME) interaction was recently demonstrated to be a practical 
method to tune the magnetic resonance in layered multiferroic 
heterostructures (Refs. 8 to 14). A comparison of electric field 
induced resonant field shift in various multiferroic 
heterostructures is summarized in Table I. A typical 
experimental configuration is illustrated in Figure 3(a). FM 
layers were deposited on a piezoelectric substrate, such as 
Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN-PT) and Pb(Zn1/3Nb2/3)O3–
PbTiO3 (PZN-PT). The magnetic resonance was detected by 
microwave transmission. In the presence of an electric field, the 
piezoelectric substrate will strain the FM layers, which 
introduces an effective anisotropy field due to the 
magnetostrictive effect. The largest strain-induced effective 
 

magnetic field of 3500 Oe was achieved in terfenol-D/PZN-PT 
(Ref. 6) because of the high magnetostriction of terfenol-D. 
However, the ferromagnetic resonance (FMR) linewidth was 
also large indicating enormous loss. Besides the 
magnetrostrictive effect, the change of interlayer exchange 
coupling may also contribute to the shift of resonance frequency, 
because the exchange coupling will be affected by the strain. 
We deposited Co10Fe90 (40 nm)/Ni80Fe20 (40 nm) on PZN-
PT(011). We observed an effective magnetic field of 820 Oe 
when we applied a bias electric field as shown in Figure 3(b) 
and (c). The effective magnetic field is also known as the 
tunable magnetic field or the electric field induced magnetic 
anisotropy field (ΔH). The control sample with a single CoFe 
layer on PZN-PT shows a smaller effective magnetic field of 
600 Oe. The 220 Oe difference is due to the change of interlayer 
exchange coupling. Therefore, the interlayer exchange coupling 
is not efficiently tuned by strain. A much more effective 
controlling method is demonstrated in the next section.  
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4.0 Giant Resonance Frequency 
Tunability Using Exchange 
Coupling 

To efficiently tune the resonance frequency of the optical 
mode, one can adjust the interlayer exchange coupling J by 
engineering the interface. A tantalum (Ta) spacer layer was 
deposited in between two FM layers. The interlayer exchange 
coupling can be adjusted by the thickness of the Ta layer. 
Although the magnetization precessions of the two magnetic 
layers are out-of-phase at the optical mode, it is still suitable for 
the application of spintronics microwave devices, because the 
ferromagnetic layer near the nonmagnetic/insulator interface 
governs the performance of the devices (Ref. 9). We use a spin 
valve based microwave detector to demonstrate the effect of the 
optical mode on microwave detection. As shown in Figure 4(a), 
the detector is a strip of spin valve (SV), in which the free 
magnetic layer is composed of an exchange coupled 
ferromagnetic bilayer with a discontinuous nonmagnetic layer 
of varying thickness in between to tune the strength of exchange  
 

coupling, Cu (2 nm)/Co10Fe90 (4 nm)/Ta (0.4-2.0 nm)/Ni80Fe20 

(4 nm)/Cu (3 nm)/Co10Fe90 (4 nm)/IrMn (15 nm)/Ta (5 nm). 
The SV is patterned as a part of a coplanar waveguide (CPW), 
which guides microwave fields into the SV detector. The 
microwave magnetic field excites the acoustic mode as well as 
the optical mode in the bilayer. The precession of the 
magnetization in the bilayer results in an SV with ac resistance 
that rectifies the microwave field and generates a dc voltage 
analogous to the spin-torque diode microwave detectors 
(Ref. 7). In this case, only the NiFe layer that is adjacent to the 
3 nm Cu layer contributes to the resistance change in the SV. 
The dc voltage is proportional to the microwave power and 
attains a maximum value at the acoustic mode and the optical 
mode resonances. 

The measured voltage peaks corresponding to the acoustic 
mode and the optical mode with opposite phase are shown in 
Figure 4(b). In this figure the red arrows indicate the optical 
mode and the blue arrows indicate the acoustic mode. By 
varying the thickness of the discontinuous Ta spacer layer, the 
resonance frequency due to the optical mode can be shifted 
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TABLE I.—COMPARISON OF ELECTRIC FIELD INDUCED CHANGE OF THE 
MAGNETIC ANISOTROPY FIELD (ΔH) AND MAGNETOELECTRIC 

COUPLING COEFFICIENT (ΔH/ΔE) IN VARIOUS 
MULTIFERROIC HETEROSTRUCTURES  

Structure H 
(Oe) 

H/E 
(Oe cm kV–1) 

Linewidth Reference 

CoFe/NiFe/PZN-PT 820 126 170 Oe at 14.5 GHz This study 
CoFe/PZN-PT 600 96 90 Oe at 13 GHz This study 
Terfenol-D/PZN-PT 3500 580 1200 Oe at 9.3 GHz (6)  
NiFe/PMN-PT 375 60 50 Oe at 9.5 GHz (9)  
FeCoHf/PZN-PT 500 82 25 Oe at 11.85 GHz (10)  
FeGaB/PMN-PT 330 33 50 Oe at 9.5 GHz (11) 
FeGaB/PZN-PT 750 94 50 Oe at 9.6 GHz (12) 
FeO/PZN-PT 600 100 400 Oe at 9.3 GHz (13) 
YIG/PMN-PT 40 5.4 6 Oe at 9.3 GHz (14) 

 

from 5 to 25 GHz as shown in Figure 4(c). The corresponding 
effective field change is 4000 Oe, which is much larger than the 
strain-induced effective field listed in Table I. The magnitude 
of the resonance peaks scale inversely with the resonance 
frequency following the nature of magnetic resonance, as 
shown in the inset of Figure 4(c). For in-situ tuning of interlayer 
exchange coupling, one can replace the Ta spacer layer with a 
phase transition material, such as NiCu alloy, which is sensitive 
to temperature or mechanical strain (Ref. 8). 

5.0 Conclusion 
We have demonstrated a technique to significantly enhance the 

ferromagnetic resonance frequency by evoking the exchange 
mode in magnetic bilayers. The ferromagnetic exchange 
coupling in magnetic bilayers enables an extremely wide 
frequency tuning range.  We report a technique to shift the 
magnetic resonance frequency as high as 20 GHz in CoFe-based 
microwave spintronic devices, which is 10X higher than 
conventional techniques (Ref. 9). Such a wide tuning range is 
normally not achievable with applying an external magnetic field 
or by other known tuning methods. Although the demonstrations 
are done with thin film structures, which are already applicable 
to a plethora of spintronics devices, the concept can be extended 
to thick materials with multiple layers, creating new avenues for 
magnetic materials based microwave devices. 
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