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Issue being addressed 

•  Aircraft design make use of large numbers of design variables and surrogate 
models for critical performance objectives: cost/pax-mi, TOGW, etc. 

•  Analysis from multiple disciplines feed evaluation of thousands of design 
variables to find ‘optimal’ system. 

•  Noise is rarely one of the standard performance objectives and even more 
rarely an integral discipline in the process. 

•  How can we make noise an equal partner in the design process? 
•  NASA has been working noise prediction tools for exhaust system noise for 

decades, with some success. 
•  Time to capitalize on the success, refocus tool development. 
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Multi-Disciplinary Analysis and Optimization Processes 
•  Consists of  

–  Variable database 
–  Multiple objectives 
–  Analysis modules 
–  Framework to connect 

modules 
–  Optimizer 

•  Analysis modules  
–  Input from variable database 
–  Output objectives to optimizer 

•  MDAO operations handle ~O(100) 
of variables, ~O(10) objectives 

•  When analysis modules are too 
time-consuming, take offline and 
create surrogate models in their 
place. 

 

NASA Supersonics Project, Lori Ozoroski 2008 
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Examples of experimentally obtained surrogate models  

–  Chevron designs for overexpanded military nozzles 
•  Penetration 
•  Width 
•  Length 

–  Rectangular nozzles with aft deck extensions 
•  Aspect ratio 
•  Bevel length 

 
–  Fan-Vane deflected fan flow for low bypass ratio jets 

•  Vane angles of attack 
•  Vane azimuthal locations 
•  Vane chords 
•  Vane distances from end 

–  Common Form (ANOPP2 MDOE module): 

h 
L 

φ1 

φ2 x
te 

α1 

c 
α2 

Penetration 

W
id

th
 

€ 

SPL( f ,θ ,φ;αi ) =α0C0 ( f ,θ ,φ) +α1C1( f ,θ ,φ) +α2C2 ( f ,θ ,φ) +α1α2C12 ( f ,θ ,φ) + ...



National Aeronautics and Space Administration!

www.nasa.gov 

Design of Experiments-based Optimization Strategy 
Using CFD Instead of Experiments 

•  Populate variable space with CFD 
runs. 

•  Evaluate objective (noise metric) 
from CFD runs. 

•  Create surrogate model of 
objective over design space 
variables. 

•  Optimize system using surrogate 
models from many disciplines. 
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Even if offline surrogate model 
approach used, how to provide ~O(5^N) 
evaluations for N-variable design space 
in timely manner? 
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Optimization for Noise & Performance 
Wroblewski’s Pilot System 

Geo Grid 
Generator RANS CFD 

Thrust 
Surrogate 

Noise 
Surrogate 

Multi-Objective 
Optimization 

(NGAS-2) 

SolidWorks+FlowSolver 

Thrust: (ρV+p)dA 

Noise:  

Matlab 
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Adam Wroblewski, NASA GRC 
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Initial Design Space 

•  Geometry variables: chevron length and penetration angle on 8:1 rectangular 
nozzle. 
–  Positive angle is penetrating inward. 
–  Create parametric study to find smallest sample space using low-order 

model. (Here, a uniform sampling was used.) 
–  Populate space with simple CFD runs. 

Length 

angle 
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Surrogate Model 

•  Automated geometry/adaptive grid/RANS process using SolidWorks FlowSolver 
(COSMOS) with k-ε turbulence model. 
•  55 initial runs accomplished on single workstation over weekend. 100 runs in 
surrogates. 
•  Post process for thrust coefficient and integral noise estimate. 
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•  The MATLAB multi-objective optimization routine (NSGA-II) applied to 2000 
surrogate candidates with 500 generations to determine the Pareto front. Top 
25% candidates shown. 

•  Note breaks in variable space as thrust is traded for lower noise along Pareto 
Front. 
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Issues to be addressed in optimization for exhaust noise 

•  Validate CFD accuracy for aeroacoustics predictions 
•  Create and validate low-cost approximations to objectives (noise, thrust, etc) 
•  Use more flexible geometry scheme for design space (flexible body 

descriptors) 
•  Work out programming details integrating into MDAO framework (ANOPP/

ANOPP2) 
•  Demonstrate machinery by exercising on sample problem (High Speed 

Project Milestone) 
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Flow Solver Validation 

•  Flow solver requirements 
–  U, density, temperature, TKE, epsilon 
–  Robust, quick turnaround from design variables to flow solution 

•  Codes currently being evaluated 
–  WindUS (GRC/Inlet&Nozzle Branch) 
–  FUN3D (Steve Miller) 
–  SolidWorks (Adam Wroblewski/James Bridges) 
–  OpenFOAM(?) 

•  Quantities to be validated 
–  U, TKE on centerline, lipline (PC length, peak TKE level & location) 

•  Datasets for validation 
–  Single-stream subsonic, hot jets (GRC PIV consensus dataset) 
–  Rectangular subsonic jets (ERN12) 
–  Supersonic (GRC PIV) 

•   Measure of robustness? Speed? Support? Licensing? 
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Validate Flow Solver Accuracy for Aeroacoustics 

•  Compare SolidWorks plume results with WindUS for round jet 
•  Results similar (uses same turbulence model, auto gridding good) 
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SolidWorks Flow Solver applied to Rectangular Jets 

Examples: 
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Validate Flow Solver Accuracy for Aeroacoustics 

Good enough for acoustics? 
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Computing Noise from RANS 

•  Spectrum of acoustic source/coupling models for noise estimation:  

•  Range of noise metrics 

•  Match cost, accuracy of acoustic calculation and flow sol’n 
•  Aim for accurate trends at fidelity matching other disciplines. 

 

OAPWL EPNL OASPL 

0-D  3-D, freq 3-D Fidelity: 

Ad hoc Acoustic Analogies (AA) 

Sources: 
Coupling: 

Cost: 

Int (TKEn) 
General Geometry Axisymmetric 

Reynolds Stress +Enthalpy          

O(10-1) O(102) O(103)          
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Baseline rectangular nozzles: iTKE vs OAPWL 

•  Note that OAPWL integrates over all azimuth and polar angles, and 
frequencies. 
–  ERN11 experimental data integrated over 0.1 < St < 1.0 
–  iTKE=TKE^3.5 integrated over plume volume. 

•  iTKE approximation overpredicts impact of aspect ratio on OAPWL. 
•  Error in CFD or in acoustic approximation? 
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Baseline rectangular nozzles: High-End AA  

•  Leib’s AA code applied to WindUS and SolidWorks RANS solutions 
–  Non-axisymmetry addressed by Conformal Mapping 
–  Cold, Ma = 0.9 flow only 

•  Same trends predicted with both CFD solutions 
•  High-end AA code works on cheap CFD. 
•  Fault lies with oversimple acoustic  

approximation. 

•  Bigger Picture: 
–  ‘Cheap’ CFD good enough! 
–  Still need cheap acoustic calculation.. 
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2016 High Speed Project Level 1 Milestone 

“Validate predicted sensitivities of boom, thrust, and 
noise of propulsion system to design variables for an 

N+2 aircraft design which meets FAP goals.” 

p1 
p2 p3 

Concept Sensitivities Validated 
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Questions, Comments, Criticisms? 


