Background

Why Quantifying Change in Bone via Bone Remodeling is Objective of NASA Digital Astronaut Project (DAP)

- One of the main objectives is to provide a tool to help HHC address Bone Gap
- Exercise induced loading
- Hernández, C.
- One effort is underway to evaluate
- Develop/formulate a daily load formula for quantifying exercise
- A bone remodeling formulation that quantifies dynamic changes in bone has the potential of tracking changes in
- Compare
- Time
- Group
- \(\epsilon \)
- Develop model for predicting bone adaptation for trochanter, total
- LeBlanc, A.
- Integrate the computational model with Finite Element Method

Bone Remodeling Model Implementation Plan

- Simulation of Bone Mineral Changes
- Predict Bone Strength Changes
- Help reduce lifetime bone health risks to astronauts
- Insight into efficacy of exercise protocols to maintain bone

Modeling the Influence of Skeletal loading

Some likely intermediaries that enable sensor cells to trigger effector cells are NO and PGE2 [5].

Expression for Osteoprotegerin (OPG). RANKL and the ligand receptor complexes are derived via mass balance equations. The complete detailed set of cellular dynamics is a considerable modification of the work of

Lemarie et al. [2] and Pronskova et al. [3] with the addition of effectors related to skeletal loading.

Sensing strength or response level (SL) defined in relation to bone strain

\[SL = f(\epsilon) = \frac{-\epsilon^2}{2} + 1 \]

Complete Unloading \(\epsilon = 0 \)

Remodeling Balance \(\epsilon = \epsilon_0 \)

\[SL = 1 \]

NOTE: Osteocytes are generally understood to be the sensor cells

Production rate of NO and PGE2 per cell are defined to be proportional to SL

<table>
<thead>
<tr>
<th>State Variables and Definitions</th>
<th>Mathematical System and Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_{0}) Bone Volume Fraction</td>
<td>(\dot{B} = \dot{B}_{0}) Bone Volume Fraction</td>
</tr>
<tr>
<td>(a_{0}) Average Activity</td>
<td>(\dot{a} = a_{0}) Average Activity</td>
</tr>
<tr>
<td>(\alpha) Density of Mineralized Bone</td>
<td>(\dot{\alpha} = \alpha) Density of Mineralized Bone</td>
</tr>
<tr>
<td>(\beta) Density of Osteoid</td>
<td>(\dot{\beta} = \beta) Density of Osteoid</td>
</tr>
<tr>
<td>(\gamma) Density of Unmineralized Osteoid</td>
<td>(\dot{\gamma} = \gamma) Density of Unmineralized Osteoid</td>
</tr>
<tr>
<td>(\delta) Rate of Unmineralization</td>
<td>(\dot{\delta} = \delta) Rate of Unmineralization</td>
</tr>
<tr>
<td>(e) Rate of Formation</td>
<td>(\dot{e} = e) Rate of Formation</td>
</tr>
<tr>
<td>(\theta) Mass of Bone ash</td>
<td>(\dot{\theta} = \theta) Mass of Bone ash</td>
</tr>
<tr>
<td>(\psi) Mass of Bone Total</td>
<td>(\dot{\psi} = \psi) Mass of Bone Total</td>
</tr>
<tr>
<td>(\phi) Mass of Bone Mineral</td>
<td>(\dot{\phi} = \phi) Mass of Bone Mineral</td>
</tr>
<tr>
<td>(\chi) Mass of Bone Organic</td>
<td>(\dot{\chi} = \chi) Mass of Bone Organic</td>
</tr>
<tr>
<td>(\rho) Mass of Bone Water</td>
<td>(\dot{\rho} = \rho) Mass of Bone Water</td>
</tr>
</tbody>
</table>

Converting Experimental Data to Model Variables

- Ash density \(\rho_{\text{ash}} = \frac{m_{\text{ash}}}{V_{\text{total}}} \)
- Apparent (dry) density \(\rho_{\text{app}} = \frac{m_{\text{dry}}}{V_{\text{total}}} \)
- Ash fraction \(\alpha = \frac{\rho_{\text{app}}}{\rho_{\text{ash}}} \)
- Density of Mineralized Bone \(\alpha_{\text{m}} = \frac{\rho_{\text{ash}} - \rho_{\text{water}}}{\rho_{\text{ash}}} \)

Preliminary Validation Results for Bone Deconditioning Simulations

- Seven:
 - A Pre-Bed Rest QCT BMD value.
 - A Bed Rest Duration of N days.
 - A Post-Bed Rest QCT value.

 1. (a) Convert \(\rho_{\text{ash}} \) to \(\rho_{\text{app}} \) (e.g. Keyak regression)
 2. (b) Compute initial ash fraction \(\alpha_{0} = \frac{\rho_{\text{app}}}{\rho_{\text{ash}}} \)
 3. Initial value \(M_{\phi} = \rho_{\text{ash}} / (\phi + \rho_{\text{water}}) \)
 4. Solve for initial value \(O \) using \(\theta = \frac{\psi - \phi}{\phi + \rho_{\text{water}}} \)
 5. Run computational simulation subject to loading history (i.e. bed rest) for N days to track change in \(M_{\phi} \) at \(\rho_{\text{app}} = \rho_{\text{ash}} \) (BMD), and BFP
 6. Compare BMD to QCT BMD

References

Future Work

Near Term:
- Develop/deliver a daily load formula for quantifying exercise induced loading and test against exercise treated subjects (e.g. CF7W study)
- Long Term:
 - Develop method for transforming force data from biomechanics modeling of specific exercise devices into stress/strain input
 - Integrate the computational model with Finite Element Method
 - Validate model using QCT data from spaceflight research
 - Develop model for predicting bone adaptation for trochanter, total proximal femur and lower hamber
- Bone adaptation prediction for more than 180 days of spaceflight exposure with exercise countermeasure

Acknowledgements

This work is funded by the NASA Human Research Program, managed by the NASA Johnson Space Center. Specifically, this work is part of the Digital Astronaut Project (DAP), which directly supports the Human Health and Countermeasures Element. The DAP project is managed at NASA Glenn Research Center (GRC) by Devlin W. Griffin, Ph.D., and Ledem Mulgastr of USRA Houston serves as the DAP Project Scientist.