Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotube Sheets and Yarns

Tiffany Williams1, Sandi Miller1, James Baker2, Linda McCorkle3, Michael Meador1

1NASA Glenn Research Center
 Cleveland, OH

2NASA Postdoctoral Program
 Cleveland, OH

3Ohio Aerospace Institute (OAI)
 Cleveland, OH
Presentation outline

• Background and Motivation
• Experimental
• Results and Discussion
• Conclusions
Background and Motivation

• Lightweight materials and structures
 – Reduced vehicle mass
 – Incorporation of nanostructured reinforcement could decrease aircraft and spacecraft weight by one-third

• Strength of carbon nanotubes (CNTs)
 – 1 TPa E’ and 100 GPa tensile strength (SWNTs via arc discharge)

• Properties much lower in commonly used nanomanufacturing methods

• Weakness attributed to entanglements, slippage of CNTs, van der Waals forces

Goal is to investigate various routes to introduce covalent crosslinks in CNTs via e-beam irradiation for increased tensile strength
Crosslinking of CNTs

- **Common irradiation methods**¹⁻⁴
 - Microwave irradiation
 - Electron beam energy
- Electron beam irradiation usually carried out using TEM
- Covalent crosslinking in CNTs is believed to take place at sites where vacancy defect edges face each other
- E-beam irradiation introduced defects (loose or dangling bonds) that can lead to crosslinking

Electron beam irradiation setup

• **Materials**
 - CNT sheets (Nanocomp)
 • As received
 • Functionalized
 • Stretched
 - CNT yarns (General Nano and Nanocomp)
 - Northeast Ohio (NEO) Beam Facility (Middlefield, OH)

• **Energy of electrons**: 2 MeV

• **Beam current**: 36 mA

• **Irradiation time**: 20-90 min. (fluence $4.8 \times 10^{16} - 2.2 \times 10^{17}$ e/cm²)

• **Irradiated in air**
Effect of irradiation on the structure of CNT sheets

D/G ratio increased in functionalized CNT sheets as the irradiation time/dosage increased.
Functionalization and irradiation effects on tensile properties of CNT sheets

- As-received sheets showed minimal change in tensile strength with increasing e-beam irradiation dosage.
- Higher tensile strength observed in -OH and -NH$_2$ functionalized irradiated sheets.
- Irradiation increased tensile strength by approx. 57%.
- Over 200% increase in tensile strength in functionalized, irradiated sheets compared to unfunctionalized, irradiated CNT sheets.
Structure-to-property relationship comparison of irradiated CNT sheets

D/G ratio and tensile strength increase with increasing irradiation dosage/time
C/O ratio generally decreased with increasing irradiation dosage/time
Surface of irradiated CNT sheets (before and after tensile failure)

As-received (not tested) As-received tensile tested

- Random orientation prior to tensile testing
- Sheets could be strained up to 25% in as-received sheets. Lower strain in irradiated sheets
- No visible changes in failure or orientation when irradiating up to 90 min
Effect of functionalization on tensile properties of resin infused composites (DMA)

Sample max. exceeded 18N test limit (DMA)

At least 160% improvement in tensile stress

Lot B CNT sheets
Effect of irradiation on the tensile properties of CNT yarns (General Nano)

- Mounted on paper brackets
- Tested using Tytron Microtester
- 25 N load cell
- 7-10 specimens/ sample
- Strain rate: 7.5 mm/min
Effect of irradiation on the tensile properties of CNT yarns (Nanocomp)

- Tensile stress increased with longer irradiation times
- Strain % decreased as irradiation time increased
- Tighter CNT packing in wires was believed to help with crosslinking in unfunctionalized CNT wires
Tensile properties of irradiated CNT yarns

<table>
<thead>
<tr>
<th>General Nano</th>
<th>Time (min.)</th>
<th>Tensile stress (MPa)</th>
<th>Stress (N/tex)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>54.4 ± 20.1</td>
<td>0.21 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>67.9 ± 24.6</td>
<td>0.28 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>56.1 ± 33.9</td>
<td>0.20 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90.9 ± 53.0</td>
<td>0.16 ± 0.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nanocomp</th>
<th>Time (min.)</th>
<th>Tensile stress (MPa)</th>
<th>Stress (N/tex)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>202.0 ± 28.2</td>
<td>0.39 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>394.5 ± 56.5</td>
<td>0.69 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>319.9 ± 148.1</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>587.7 ± 300.1</td>
<td>0.97 ± 0.1</td>
</tr>
</tbody>
</table>

Loose CNT bundles

Large variation in diameter measurements
Irradiation effects on CNT yarns (Nanocomp)

Tighter CNT packing as irradiation time increases

Voids
Irradiation effects on CNT yarns (General Nano)

0 min.

20 min.

40 min.

90 min.

Voids
Conclusions

• Irradiating for 90 minutes led to at least a 47% increase in tensile strength for untreated CNT sheets
• Significant increase in tensile strength observed in resin infused composites containing functionalized CNT sheets compared to unfunctionalized CNT sheets
• FIB microscopy revealed CNTs in wires became denser with increasing irradiation dosage
Acknowledgements

- NASA Game Changing Development Program/Nanotechnology Project
- Oak Ridge Associated University (ORAU) NASA Postdoctoral Fellow Program
- Bradley Lerch and Nathan Wilmoth
- Dr. Francisco Sola-Lopez
- Dr. Marisabel Lebron-Colón