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Abstract   

  

The Mercury Atmospheric and Surface Composition Spectrometer 

(MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, 

Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft 

now orbiting Mercury provides the first close-up look at the planet’s sodium 

exosphere. UVVS has observed the exosphere from orbit almost daily for over 

10 Mercury years. In this paper we describe and analyze a subset of these 

data: altitude profiles taken above the low-latitude dayside and south pole. 

The observations show spatial and temporal variations, but there are no 

obvious year-to-year variations in most of the observations. We do not see the 

episodic variability reported by some ground-based observers. We used these 

altitude profiles to make estimates of sodium density and temperature. The 

bulk of the exosphere, at about 1200 K, is much warmer than Mercury’s 

surface. This value is consistent with some ground-based measurements and 

suggests that photon-stimulated desorption is the primary ejection process. 

We also observe a tenuous energetic component but do not see evidence of 

the predicted thermalized (or partially thermalized) sodium near Mercury’s 

surface temperature. Overall we do not see the variable mixture of 

temperatures predicted by most Monte Carlo models of the exosphere.  

Keywords: Mercury, Atmosphere; Atmospheres, Structure; Atmospheres, 

Dynamics; Spectroscopy 
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Highlights 

 

* We describe the first orbital observations of Mercury’s sodium exosphere. 

* The sodium exosphere varies spatially and temporally, but most of this variation 

is seasonally repeatable for the portions of the exosphere that we describe. 

* The low-latitude dayside exosphere has a two-temperature structure. The bulk of 

the exosphere is at about 1200 K throughout the Mercury year. 

* There is no evidence of a thermalized or partially thermalized component near 

Mercury’s surface temperature. 

* Radiation acceleration (i.e., photon pressure) compresses the exosphere on the 

dayside. 
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1. Introduction 

 

The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) 

Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space 

ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has 

provided almost daily observations of the exosphere since entering orbit about 

Mercury on 18 March 2011. UVVS uses a variety of observation geometries 

during each orbital pass, but this paper focuses on altitude profiles, or “limb 

scans,” of sodium emission taken above Mercury’s sunlit hemisphere 

(McClintock and Lankton, 2007). UVVS measures the D1 and D2 emission lines 

near 589 nm wavelength, which are caused by resonant scattering of sunlight. 

The scattering is so efficient that even the emission visible from Mercury’s 

nightside (on the order of hundreds of kilorayleighs; Baumgardner et al., 2008) 

is comparable to Earth’s brightest visible aurorae (e.g., Hunten et al., 1956). 

This paper describes the first orbital observations of Mercury’s sodium 

exosphere. Since its discovery almost three decades ago (Potter and Morgan, 

1985), the sodium exosphere has been observed regularly from the ground (see 

reviews by Domingue et al., 2007, and Killen et al., 2007). The orbital 

observations described here are quite different from ground-based 

observations, which can image Mercury’s entire disk and surrounding space. 

The UVVS observations described here, by contrast, are altitude profiles tangent 

to the surface (Fig. 2) with limited spatial coverage (Fig. 3). UVVS, however, 
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provides unprecedented spatial resolution and observation cadence. This paper 

presents 10 Mercury years of near-daily observations that allow us to resolve 

variations in both local time and true anomaly.  

Ground-based observers and modelers have proposed a number of 

hypotheses to explain their observations. One of the early ideas was that sputter 

ejection of sodium from Mercury’s poles is responsible for variable polar bright 

spots (Potter and Morgan, 1990; Sarantos et al., 2001). Another is that thermal 

desorption of sodium at dawn is responsible for the dawn/dusk asymmetry 

reported by some observers (e.g., Sprague et al., 1997). These observations led 

to many modeling efforts. The early models began with a few simple 

assumptions and explored the dynamics of sodium atoms pushed anti-sunward 

by radiation pressure (Ip, 1986; Smyth and Marconi, 1995). These were 

superseded by simulations with an increasing number of interdependent source 

processes (Leblanc and Johnson, 2003; Mura et al., 2009; Leblanc and Johnson, 

2010; Burger et al., 2010).  

A principal focus of exosphere literature has been temporal variability. 

Observers have reported episodic and seasonal (yearly repeatable) variability in 

the exosphere. Episodic variability is attributed to processes such as short-term 

changes in solar wind conditions (e.g., Killen et al., 2001; Leblanc et al., 2009; 

Benna et al., 2010). Seasonal variability is driven by Mercury’s changing 

distance from the Sun, during which the intensities of source, loss, and transport 

processes change (Lammer et al., 2003; Sarantos et al., 2007, Kameda et al., 

2009). In this paper we describe the MESSENGER UVVS results in the context of 
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this previous work, especially with regard to temporal variability. However, a 

direct comparison with ground-based observations is difficult, and sometimes 

impossible, because of the differing nature of the two data sets.  

This paper is organized as follows. In Section 2, we describe the UVVS 

observations and discuss conclusions that can be reached by simple inspection 

of the data, followed by quantitative analysis of UVVS limb scans to estimate 

exospheric temperature (Section 3) and density (Section 4). We close with a 

discussion of implications for exospheric source, loss, and transport processes 

(Section 5). 

 

2. UVVS observations 

 

2.1. Description of UVVS observations  

 

The UVVS is comprised of a telescope feeding a grating monochromator that 

scans discrete narrow wavelength bands to detect exosphere emission 

(McClintock and Lankton, 2007). The sodium spectral scan covers a wavelength 

range of 587.7 nm to 591.1 nm with a 0.2 nm step size, allowing both the D1 

(589.8 nm) and D2 (589.1 nm) emission line centers to fall in the middle of the 

scan. The detected signal is a combination of sodium emission, solar light 

scattered off of Mercury’s surface, and a dark offset (Fig. 1). The dark offset is 

from thermionic emission within the detector and is a function of instrument 

temperature. The dark offset is fully characterized and routinely sampled on the 
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night side of the planet. The scattered sunlight contribution is reflected off of 

Mercury’s surface and scattered into the monochromator. This component is 

determined by fitting a solar continuum spectrum to the dark-subtracted 

spectral scan using only wavelengths near the ends of the scan away from the 

emission lines. The dark and scattered light components are subtracted from 

the measured signal, and the residual is assumed to be sodium emission from 

the exosphere. The instrument radiometric sensitivity calibration is applied to 

convert from counts per second to radiance, and the 11 points around the two 

line (D1 and D2) centers are summed to obtain a total sodium radiance value in 

kilorayleighs (kR) for each spectral scan. Each limb scan presented in this paper 

is made up of a series of spectral measurements as the instrument scans in 

altitude (Fig. 2 and Fig. 4). As mentioned earlier, sodium emission is as bright as 

the Earth’s visible aurorae, making it very easy to detect. Therefore the sodium 

emission dominates the detected signal and the dark and solar scattering 

components are only small sources of retrieval error as shown in Fig. 1.  
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Fig. 1. Example spectrum of sodium D1 and D2 emission observed by MESSENGER UVVS at ~100 

km tangent altitude near the subsolar point. The graph shows the total observed counts s-1 along 

with the estimated solar scattering and dark offset backgrounds. The observation was taken on 

23 May 2012. 

 

In this paper we describe two MESSENGER UVVS observation types, dayside 

limb scans and south pole limb scans, obtained between 5 April 2011 and 29 

July 2013. Dayside limb scans provide most of the data analyzed in this paper. 

An example of the observation geometry is shown at the top of Fig. 2. The 

dayside limb scans are taken when the MESSENGER spacecraft is near apogee 

and the UVVS line-of-sight points approximately northward. UVVS dayside limb 

scans provide altitude profiles at primarily low latitudes from dawn to dusk. 

Each altitude profile extends from just above the surface, as low as 10 km, to 

several thousand kilometers above the surface.   
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Fig. 2. Examples of UVVS lines of sight for dayside limb scans from two perspectives (top) 

and a south pole limb scan (bottom). The spacecraft orbit is indicated by the curved red line. 

The white, blue, red, and yellow lines indicate Mercury’s rotation axis, dawn, dusk, and the 

subsolar point, respectively. Shaded colors indicate sodium emission radiance, which 

increases linearly from blue to red. 

 

The other type of observation described in this paper is a south pole limb 

scan. An example is shown at the bottom of Fig. 2. These are altitude profiles 

above the south pole that can only be obtained during part of Mercury’s year. In 
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these observations the UVVS is scanned back and forth above the south pole 

terminator. Similar observations are not possible at the north pole because 

MESSENGER’s eccentric orbit has its periapse at high northern latitudes. The 

spatial coverage, in latitude and local time, of both limb scan types is shown in 

Fig. 3. The limb scans primarily probe the low-latitude dayside in contrast to 

ground-based observations that typically include Mercury’s entire disk as seen 

from Earth. 

 

  

Fig. 3. UVVS limb scan coverage. Each point indicates the local time and latitude of a limb scan’s 

tangent point at its lowest tangent altitude. Each symbol color represents a different Mercury 

year during MESSENGER’s orbital mission. 

 

 

2.2. Qualitative Interpretation of Limb Scan Data 

 

In this section we describe some general features of the dayside and south 
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pole limb scans. Examples of UVVS dayside and south pole limb scans are shown 

in Fig. 4, which shows the observed sodium radiance (sum of D1 and D2 emission 

lines) above Mercury’s limb as a function of line-of-sight tangent altitude. The 

limb scans show a two-temperature structure, which is apparent in Fig. 4 at 6, 12, 

and 16 h local time by a sharp change in slope between 500 and 1500 km. The 

cooler component has a steeper slope and is closer to the surface. It comprises 

the bulk of the exosphere observed by dayside limb scans. The energetic 

component has a relatively shallow slope, is relatively tenuous, and has been 

detected by UVVS up to 4000 km above the dayside surface.  

Limb scan observations have been conducted regularly throughout the 

mission and provide consistent observing geometry, allowing us to search for 

year-to-year variations in emission. The observations shown in Fig. 4 are very 

similar from one Mercury year to the next, especially for the near-surface 

(cooler) component of the exosphere. We do show an example (Fig. 4, 12h local 

time) where there is evidence of year-to-year variability above ~700 km 

altitude. However, because the signal-to-noise level is low in these observations, 

as indicated by the large error bars in Fig. 4, this variability has yet to be 

confirmed as real.  
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Fig. 4. Examples of UVVS altitude profiles (limb scans). Each symbol color represents a different 

Mercury year during MESSENGER’s orbital mission. The upper left panel shows south pole limb 

scans. The panels labeled by local time show dayside limb scans taken at low latitudes. Each 

panel shows data from a short range of true anomaly angles: between 10° and 15° for the south 

pole plot and between 65° and 70° for the rest. Uncertainties were calculated from the SNR 

obtained during data processing. The gaps in the south pole scans are explained in a footnote.1 

 

This year-to-year repeatability is surprising given the short-term episodic 

variability reported by ground-based observers. For example, Killen et al. 

(2001) reported a factor of three increase in total exospheric content over 

                                                           
1 The gaps in the south pole scans shown in Fig. 4 are due to the unusual observation 
geometry shown in the bottom panel of Fig. 2 at which they were acquired. For those 
scans the UVVS line of sight is swept back and forth across the south polar terminator. 
We filtered those scans to include a short range of local times, resulting in data gaps 
near the surface. 
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several days. Leblanc et al. (2009) also reported changes in exospheric emission, 

both in brightness and spatial pattern, over a single Earth day. Mangano et al. 

(2013) observed changes on the order of hours. The repeatability observed by 

UVVS is also surprising in light of Monte Carlo exosphere simulations that 

populate the exosphere with episodic processes such as sputtering and ion-

enhanced diffusion (e.g., Leblanc and Johnson, 2010; Wang and Ip, 2011).  

It is possible that our observation geometry makes it difficult to detect 

episodic variability in our dataset. One reason might be the limited spatial 

coverage of UVVS as shown in Fig. 3. For example the rapid variability seen by 

Leblanc et al. (2009) was particularly strong over the mid-latitude regions that 

we cannot observe on a routine basis with limb scans, and which may receive 

the highest ion fluxes (Sarantos et al., 2007; Benna et al. 2010). Still, our 

observations do include areas in the southern hemisphere (Fig. 4) bombarded by 

ions (Winslow et al., 2012). 

Sprague et al. (1997, 1998) suggested that sodium emissions in ground-

based data were associated with geological features. In contrast, the year-to-

year repeatability in Fig. 4 implies that geology does not strongly affect the 

exosphere. Because of Mercury’s 3 : 2 orbital resonance (e.g., Zuber et al., 2007), 

the longitude at a given local time changes 180° from one year to the next, yet 

the UVVS observations of sodium emission do not change appreciably between 

successive Mercury years. However, the emissions that Sprague et al. (1997, 

1998) associated with geological features were at middle latitudes with poor 

limb scan coverage. 
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Although many observers and modelers have emphasized episodic 

variability, some have studied the exosphere’s seasonal variability. Potter and 

Morgan (1987) presented the first evidence for this seasonal variation by 

showing a correlation between sodium column density and radiation 

acceleration, the seasonally variable acceleration experienced by sodium atoms 

due to solar photon scattering. This repeatability is also evident in the plots of 

Potter et al., 2007, Leblanc and Johnson (2010), and Wang and Ip (2011). 

 

 

Fig. 5. Seasonal pattern of sodium emissions near the subsolar point, illustrated by the limb-scan 

radiance at 300 km altitude. Each symbol color represents a different Mercury year during 

MESSENGER’s orbital mission. As a result of variable altitude sampling, the radiance at that 

altitude was interpolated from observations at nearby altitudes in each scan using the fits to the 

data described in Section 3.2; the uncertainties are due to this interpolation. The gap in 

observations near aphelion (180° true anomaly) is due to restrictions on observation geometry. 

 

The seasonal pattern in sodium emissions observed by UVVS is shown in Fig. 

5. We chose to plot emissions near the subsolar point at a tangent altitude of 300 

km because there are many observations at this altitude throughout the 
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mission. The pattern is quite different from the ground-based observations 

referenced above, which show a minimum in emission near aphelion (true 

anomaly angle of 180°), where we see a maximum in emission. However the 

ground-based seasonal pattern cannot be compared directly with Fig. 5. The 

seasonal pattern reported by the ground-based observers referenced above is 

for disk-integrated emissions, while Fig. 5 is for the subsolar point only.  

 

3. Quantitative interpretation of limb scans 

 

Limb scans provide ideal data for estimating exospheric temperature and 

density. To make such estimates we adapt expressions from Chamberlain 

(1963) for line-of-sight column density as a function of tangent altitude given 

two parameters: surface density no and temperature T.  We fit these expressions 

to the near-surface dayside UVVS observations, as shown in Fig. 6. Chamberlain’s 

expressions rest on a number of assumptions that we discuss below. 

 

3.1. Estimating line-of-sight column density 

 

The first step, converting the UVVS emission radiance to line-of-sight column 

density N (cm-2), uses the formula 

N=109 4πI/g (1) 

where 4πI is the radiance in kR. The g-value (g) is the rate (s-1) at which a 

sodium atom scatters solar photons in the D1 and D2 lines. It depends on the 
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distance from, and radial velocity relative to, the Sun (Smyth, 1986; Killen et al., 

2009). For this paper, we assume that the sodium atoms are nearly at rest with 

respect to Mercury. This assumption requires justification because sodium 

atoms have a distribution of radial velocities and experience substantial anti-

--sunward acceleration due to radiation acceleration, which can be up to half of 

Mercury’s surface gravitational acceleration (Smyth, 1986; Ip, 1986).  

 We tested and confirmed this assumption with a Monte Carlo model (Burger 

et al., 2010, 2012) that calculates the g-value for each simulated sodium atom 

separately. This analysis is presented in Appendix 1. Our testing shows that the 

approximation introduces minimal error due to the modest speed of most 

sodium atoms relative to Mercury (excluding some portions of the exosphere 

not considered in this paper). This assumption holds despite the strong forces 

experienced by sodium atoms, as applying a force to a gas does not necessarily 

change its speed distribution. This fact is counterintuitive, but Feynman (1963) 

showed, for the simplified case of a plane-parallel exosphere, that the speed 

distribution is independent of height despite gravitational acceleration (see also 

Johnson, 1990). Adding radiation acceleration does not necessarily change this 

result. Feynman (1963) mentioned that a height-independent speed 

distribution applies to any gas in a conservative potential, and Bishop and 

Chamberlain (1989) showed that the addition of (speed-independent) radiation 

acceleration to gravitational acceleration results in a conservative potential.  

These results do not strictly apply to Mercury’s exosphere for several 

reasons. One is that the radiation acceleration is speed dependent (Killen et al., 
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2009), meaning that the sodium atoms are not in a conservative potential. 

Another is that sodium atoms have fairly short photoionization lifetimes, 

resulting in losses not accounted for by the methodology of Chamberlain (1963). 

Finally, Chamberlain (1963) showed that the speed distribution does change 

with altitude, unlike Feynman’s example of a plane-parallel exosphere. Despite 

these caveats our testing shows that the constant g-value approximation is 

adequate for the dayside sodium exosphere. We do, however, have UVVS 

observations for which this approximation would clearly fail, such as in 

Mercury’s sodium tail, whose atoms are moving anti-sunward at many 

kilometers per second  (Ip, 1986; Mura et al., 2009), or for a gas with thermal 

energy close to escape energy, such as Mercury’s calcium exosphere (Burger et 

al., 2012).  

 

3.2. Deriving temperature and density from limb scans 

 

The line-of-sight column density N from Eq. (1) is related to the density 

through 

N=2KHn (2) 

where n is the density of the exosphere at the line-of-sight tangent point, H is 

the scale height of the exosphere, and 2K is the ratio between the line-of-sight 

column density tangent to the surface and the vertical column density (~Hn). 2K 

is approximately (2πr/H)1/2 (Chamberlain, 1963). The scale height is discussed 

in more detail in Section 4.2. This approximation breaks down as the altitude 
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increases or as temperature increases. It also assumes that the exosphere is 

spherically symmetric, which it is not. Practically speaking, however, any 

tangent line of sight will only sample a small portion of the exosphere. 

In Chamberlain’s methodology the density n as a function of altitude is 

approximated by 

n= ζ n0 e -(U-U0)/kT (3) 

where U is the gravitational potential energy, T the temperature, n0 the surface 

density, and U0 is the gravitational potential energy at the surface. The factor ζ 

(≤1), from Chamberlain (1963), accounts for the fraction of the initial isotropic 

Maxwellian distribution that is actually present at a given altitude, subject to 

conservation of energy and angular momentum. Most sodium atoms in 

Mercury’s exosphere are on ballistic orbits for which the only restrictions are 

that the total energy is negative, and orbits must intersect the exobase. We 

assume ζ=1, (no dynamical restrictions) as appropriate for a cool gas deep 

within a gravitational well.2 The limitations of Chamberlain’s approach are that 

there are no loss processes and that the speed distribution of particles leaving 

the exobase is assumed to be a Maxwell flux distribution. It also assumes that 

the exosphere is spherically symmetric while the actual exosphere is non-

uniform. However, our analysis does not assume that the exosphere is uniform, 

it only assumes that exosphere varies more rapidly in the radial direction than 

in the longitudinal/latitudinal directions so that the non-uniformity of the 

                                                           
2 The approximation is valid to an altitude of approximately 1000 km for sodium at 1200 
K  (Chamberlain and Hunten, 1987, Appendix IX). 
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exosphere does not strongly affect the results. We believe this is reasonable for 

the sodium exosphere, given its small scale height (Section 4.2). 

We modified the potential energy U in Eq. (3) to include radiation 

acceleration. Following Bishop and Chamberlain (1989) the potential energy for 

the combination of gravity and radiation acceleration is written as 

U = -GMm/r + mbrcos(ϑ) (4) 

where b is the photon acceleration from Wang and Ip (2011), ϑ is the solar 

zenith angle (the angle between the local radial vector and the Mercury-Sun 

axis), G is the gravitational constant, M is the mass of Mercury, m is the mass of a 

sodium atom, and r is the distance from Mercury’s center.  

We fit Eqs. (2)–(4) to limb scan data in order to estimate the temperature 

and surface density of the sodium exosphere. Example fits are shown in Fig. 6. 

We used a non-linear least squares fitting routine (Markwardt, 2009), which 

adjusted surface density and temperature to find the best fit. Because Eqs. (1)-

(4) are approximate, we tested the fitting routine with the Monte Carlo model as 

described in Appendix 1. 

The columns near the surface are sometimes optically thick, which 

complicates Eq. (1) because some of the photons emitted by sodium atoms are 

scattered before reaching UVVS. For this reason we label the y-axis of Fig. 6 the 

apparent column density. This scattering causes the slight turndown in the data 

at the lowest altitudes shown in Fig. 6. We typically see this behavior for line-of-

sight columns above ~1 1011 cm---2. To match the data better at low tangent 

altitudes and moderate optical depths we provide a correction to account for 
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these scattered photons. The details of this correction are described in Appendix 

2. Both uncorrected and corrected fits are shown in all panels of Fig. 6 to 

illustrate the need for this optical depth correction.  

 

 

Fig. 6. Examples of fits to dayside limb scans (local times indicated) and the south pole. Data 

are represented by crosses, a n d  the model is shown by a black dashed line. The blue line is 

the model with the optical depth correction. The resulting temperature and surface density 

used for the fits are indicated by blue text. Observations were taken on 6 June 2012, except for 

the south pole observation, which took place on 17 October, 2011. 

Despite having only two free parameters, these expressions provide 

exceptional fits to the low-altitude, low-temperature portion of the limb scans 

(Fig. 6). The fits at 12:00 and 16:00 pass through nearly every data point below 

~1000 km, whereas at dawn (6:00) and the south pole, the fits capture the 

general trend of the limb scan but do not match every point. We also tried 
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similar fitting procedures for the more energetic component of the exosphere 

observed at high tangent altitudes, but we were unable to constrain its 

temperature. The problem may be due to the low signal to noise ratio of the data 

or to the inherent limits of our simple physical model. 

 

4. Results 

 

4.1. Temperature 

 

The estimated temperature exosphere near the subsolar point is shown as a 

function of Mercury true anomaly in Fig. 7. This is the temperature for the cooler, 

near-surface portion of the exosphere identified in Section 2. After correcting 

for the effects of radiation pressure and optical depth, the estimated 

temperature is approximately constant at ~1200 K over the Mercury year and 

consistently so over MESSENGER’s first 10 Mercury years of orbital data. The 

error bars in Fig. 7 are derived from the covariance matrix calculated by the 

fitting routine. These are generally quite small because of the quality of the fits 

and large number of data points.  

 The same is true for all low-latitude dayside limb scans, though dawn, dusk, 

and the south pole, are slightly warmer at ~1500 K (as demonstrated in the fits 

in Fig. 6). The average temperature of the low-latitude dayside limb scan fits 

away from the terminator was 1150 K with a standard deviation of 50 K. The 

average temperature of the terminator (dawn, dusk, and south pole) limb scan 
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fits was 1450 K with a standard deviation of 130 K. This large standard 

deviation is reflective of the relatively poor fits of the limb scans taken near the 

terminator.  

The estimated temperature is consistent with some, but not all, previous 

ground-based measurements. Potter and Morgan (1987) made the first 

temperature estimate by measuring the Doppler-broadened emission line width 

and concluded that the sodium was near Mercury’s surface temperature. They 

did not make an estimate of the temperature, but demonstrated that a simulated 

500 K line profile was a much better match than 5000 K. Killen et al. (1999) 

used ultra-high resolution line profiles obtained at the Anglo-Australian 

telescope to derive temperatures of 1500 K for the central disk and a 

combination of 750K and 1500 K sodium at the poles. They ruled out a high 

temperature component (>5000 K). Schleicher et al. (2004), Leblanc et al. 

(2009), and Leblanc et al. (2013) found much higher temperatures, on the order 

of 3000 K, using similar measurements but at lower spectral resolution. In 

addition to Doppler broadening, the line profiles also usually indicate anti-

sunward motion. Leblanc et al. (2009), Potter et al. (2009), Potter et al. (2013), 

and Leblanc et al. (2013) estimated the anti-sunward motion at around 1 km s---1  

or less on the disk. UVVS cannot measure the emission line width or bulk 

velocity because it has insufficient spectral resolution.  

Our temperature estimate is approximately consistent with those estimated 

from exospheric altitude profiles obtained by Potter et al. (2013) during 

Mercury’s solar transits. Potter et al. (2013) used Chamberlain’s (1963) 
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expressions to estimate temperatures around the terminator (the only portion 

of the exosphere visible during the transit). Their estimates were similar, on 

average, to our estimates at the terminator (dawn, dusk, and the south pole), but 

with a wider range of values (800-3000 K). They also identified a possible 

energetic component at high altitudes. Schleicher et al. (2004) measured scale 

heights, an indirect measure of temperature (see Section 4.2), during another 

solar transit and found values similar to ours (Fig. 10). 

The energy distribution of exospheric particles provides a strong constraint 

on source processes. Our estimated temperature for the cooler component seen 

in the limb scans, 1200-1500 K, is consistent with the typical energies of sodium 

atoms ejected by photon-stimulated desorption (PSD). This agreement suggests 

that PSD is the dominant source process for this cooler component, as other 

ejection mechanisms have quite different energy distributions. Measurements of 

the PSD energy distribution were described by Yakshinskiy and Madey (1999, 

2004) and summarized by Schmidt et al. (2012, 2013). Measured energy 

distributions vary with substrate. For example, we found that the measured PSD 

energy distribution from an SiO2 substrate (Yakshinskiy and Madey, 1999) is 

well fit by a 900 K Maxwell flux distribution, while experiments using a lunar 

sample (Yakshinskiy and Madey, 2004) or water ice (Johnson et al., 2002) found 

distinctly non-Maxwellian energy distributions with similar average ejection 

energies.  

By contrast, thermally desorbed or partially thermalized sodium would be 

closer to Mercury’s surface temperature, which ranges from ~100 to ~700 K 
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(Yan et al., 2006). Impact vaporization is expected to produce much warmer 

sodium, at 2000–5000 K (Cintala, 1992). Ion sputtering is much more energetic 

and produces a non-Maxwellian energy distribution (e.g., Johnson, 1990).  The 

latter two may contribute to the tenuous high-energy sodium we see at high 

altitudes (Fig. 4). 

 

 

Fig. 7. Estimated sodium exosphere temperature as a function true anomaly for dayside limb 

scans near the subsolar point. Each point is from a fit to a single limb scan. This is the 

temperature of the near-surface part of the exosphere identified earlier.   

Because thermalization, the thermal equilibration of atoms with a surface, is 

seen in laboratory experiments (e.g., Yakshinskiy and Madey, 2005) and is also a 

common assumption in Monte Carlo models (e.g., Smyth and Marconi, 1995; 

Mura et al., 2009; Leblanc and Johnson, 2010), we searched our data for a colder 

component. Detecting sodium at the surface temperature is difficult for limb 

scans because such cold sodium would be confined within 100 km of the surface 

where we have limited high resolution observations, but we can place upper 
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limits on the presence of a surface-temperature component.  

A demonstration of what a limb scan would look like with the addition of a 

thermalized component is given in Fig. 8 for two different local times: early 

morning, during which thermal desorption might release sodium atoms 

adsorbed on the nightside (e.g., Sprague et al., 1997), and the subsolar point, 

where the surface is warmest. We used Eqs. (2)-(4) to add a surface-

temperature component to the fitted model, giving it the same vertical column 

density as the warmer component. The surface temperature used is typical for 

that local time (Yan et al., 2006). The left panel (early morning) shows that an 

abundant thermalized component would be obvious, but we do not see one in 

the data. At the subsolar point (right panel), the difference is much more subtle. 

Though we cannot rule out the presence of a thermal component, we can say 

that it is much less abundant than the ~1200 K component in the dayside limb 

scans. 

 

 

Fig. 8. Example of a search for a surface- temperature component at early morning (“7:00”) 

and the subsolar point (“12:00”). The solid red line shows a surface- temperature component 

added to the observed 1200 K component. For this example it was assumed that the surface-

temperature component has the same vertical column density as the 1200 K component. 

These observations were taken on 29 October, 2012. 
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Yakshinskiy et al. (2000) provided a possible explanation for the absence of 

a thermal component: space weathering may inhibit thermal desorption. They 

found that it took substantially higher temperatures to desorb sodium from an 

ion-irradiated substrate as compared to a non-irradiated substrate (see also 

Domingue et al., 2007) in a temperature-programmed desorption experiment. 

Temperature-programmed desorption is described, e.g., in Oura et al. (2003). 

Using data from that experiment we estimate that the binding energy of sodium 

to the irradiated substrate is higher, about 2.5 eV, larger than typically assumed 

in Monte Carlo models, a range of values centered on 1.85 eV (Leblanc and 

Johnson, 2003, 2010; Mura et al., 2009). That higher binding energy results in a 

very low thermal desorption rate, only about 10-5 s-1 even at Mercury’s highest 

surface temperature. This rate means that a sodium atom adsorbed at 700 K 

would spend about 105 s on the surface before desorbing. This value contrasts 

with theoretical estimates by Hunten et al. (1988) of ~10-11  s. PSD is about an 

order of magnitude faster than this new estimate of the adsorption time, on the 

basis of the PSD cross sections in Yakshinskiy and Madey (1999), and similar in 

magnitude to the first estimate by McGrath et al. (1986).   

These numbers are highly uncertain given that Mercury’s surface 

composition is unlike the substrates used in those experiments (Evans et al., 

2012), but they provide a possible explanation for the dominance of the 1200 K 

component: sodium atoms adsorbed on the surface are photo-desorbed before 

being thermally desorbed, a process that could repeat itself dozens of times 
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during their photoionization lifetimes. Another possibility is low 

accommodation. In that scenario the atoms do not stick when they return to the 

surface, but rather they scatter off of the surface with reduced energy. Full 

accommodation would result in a surface-temperature exosphere, whereas no 

accommodation is equivalent to an elastic collision. Some sodium exosphere 

modelers (Burger et al., 2010; Mouawad et al., 2011, Wang and Ip, 2011) 

concluded that low accommodation is necessary to match their observations, 

and such low accommodation might explain the lack of a thermalized 

component in Fig. 8. Accommodation is discussed further in Appendix 1. 

Monte Carlo modelers have long populated the exosphere with diverse and 

variable source processes, each with a signature speed distribution ranging 

from surface temperature to non-thermal sputtering. However the nearly 

constant temperature shown in Fig. 7 suggests that, excluding the tenuous 

energetic component, the exosphere observed by these limb scans (low latitude 

dayside and south pole), has a single temperature that does not vary much with 

true anomaly. We considered the possibility that this near-surface portion of the 

exosphere is a mixture of several temperature components, but adding 

additional components only made the fits worse, as demonstrated in Fig. 8.  

It is, however, possible to fit a limb scan with a mixture of source processes 

and thermal accommodation, as Wang and Ip (2011) did with UVVS polar limb 

scans taken during one of MESSENGER’s Mercury flybys (Vervack et al., 2010). 

Those observations were similar to the south polar, dawn, and dusk scans 

shown here (Fig. 6), which we fit with a single temperature component (~1500 
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K). Wang and Ip (2011) used 4 source processes. Such a scenario is unlikely to 

produce an exosphere that can be fit by a single temperature model. Each source 

process used by Wang and Ip (2011) has a different seasonal variation so that 

the temperature should change throughout the Mercury year. Further, at least 

two out those 4 of were episodic processes (sputtering and ion-enhanced 

diffusion) that would not show the year-to-year repeatability evident in Fig. 4. 

Though the bulk of the exosphere observed by limb scans appears to be 

supplied by a single process, PSD, other space-weathering processes must 

contribute to exosphere indirectly. PSD would quickly deplete any surface layer 

of sodium, so sodium must be replenished by processes such as thermal 

diffusion from regolith grain interiors, and the grains themselves must be 

replenished by gardening to maintain the exosphere over the long term (Killen 

et al., 2004). Though we do not see the sporadic sources of sodium expected 

from magnetospheric processes, ion precipitation may help sodium diffuse to 

out of grains, especially where the surface is relatively cold (Sarantos et al., 

2008, 2010; Burger et al., 2010). Further, an exospheric source proportional to 

solar photon flux would peak at the subsolar point, which we do not observe 

(Fig. 6).  

We were not able to constrain the energy distribution of the high-altitude 

hot component. Fitting those data with Eqs. (2)-(4) resulted in a wide range of 

temperatures. If this population is the same as that supplying Mercury’s sodium 

tail, then its energy distribution was constrained by Burger et al. (2010) and 

Schmidt et al. (2012). Both concluded that the tail is primarily populated by the 
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high-energy portion of the PSD energy distribution described by Johnson et al. 

(2002) and Wurz et al., (2010).  

 

4.2. Scale height: Radiation pressure compression of the exosphere 

 

The UVVS limb scan data illustrate that Mercury’s dayside exosphere is 

compressed by radiation acceleration. The scale height used in the expressions 

from Section 3.2 is given by 

H = n/(dn/dr) = kT/( GMm/r2 + mbcos(ϑ) ). (5)  

where the parenthetical expression in the denominator is a sum of two terms, 

the gravitational acceleration and the radial component of the radiation 

acceleration b. This latter term reduces the scale height; according to Eq. (5) the 

dayside exosphere should be compressed by radiation acceleration, and in fact 

we do see this effect in both the Monte Carlo simulations and UVVS 

observations. Fig. 9 shows two limb scans taken during high and low radiation 

acceleration. The limb scan taken during high radiation acceleration has a scale 

height about 30% smaller than the low radiation acceleration case. For each, the 

fit to Eq. (2) gives approximately the same temperature. 
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Fig. 9. Two different noon limb scans taken with different values of radiation acceleration. 

They have similar temperatures but different scale heights because of radiation acceleration, 

which compresses the exosphere. The fit for each limb scan is shown in blue. The low-photon 

acceleration example was observed on 24 May 2011, the other on 13 June 2011.  

Estimated scale heights near the surface and radiation acceleration are 

compared as functions of Mercury true anomaly in Fig. 10. The mean value of the 

scale height is near 90 km, but there is a clear seasonal pattern. The exospheric 

scale height is smallest when radiation acceleration is largest. Scale heights are 

normally directly proportional to temperature, but here we have a different 

system in which the scale height changes while the source temperature remains 

approximately constant (Fig. 7). As described in section 3.2 and Appendix 1, 

there were many approximations that went into the equations used to fit the 

limb scans, but this agreement between the predicted and measured scale 

heights suggest that the approximations were valid. 
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Fig. 10. (Top) Exosphere scale height as a function of true anomaly angle near the subsolar 

point. (Bottom) Radiation acceleration for a sodium atom at rest relative to Mercury as a 

function of true anomaly. 

 

4.3. Density 

 

The estimated near-surface densities have a complex pattern, one that 

depends on true anomaly, local time, and latitude. In general, the near-surface 

density is largest on the dayside away from the terminator and it peaks near 

aphelion, when radiation acceleration and photoionization are at their lowest. 
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Near-surface densities on the dayside range from ~103 cm---3  to ~105 cm---3, and 

those near the terminator ranged from ~102 cm---3  to~104 cm---3. 

Estimated near-surface densities are shown as a function of Mercury true 

anomaly near the subsolar point in Fig. 11. As with sodium emission (Fig. 5) and 

temperature (Fig. 7), there is a seasonal pattern that is unchanging from one 

Mercury year to the next. As with the plot of emission (Fig. 5), this pattern is 

difficult to compare with ground-based observations and models. There is no 

published estimate of density at a specific local time as a function of true 

anomaly. 

As with the temperature, the uncertainties come from the non-linear fitting 

routine and are quite small because of the good fits obtained with Eqs. (2)-(4).3 

However, these uncertainties do not account for systematic errors. Potter et al. 

(2007) described a possible systematic uncertainty. They concluded, contrary to 

our analysis in Appendix 1, that radiation acceleration changes the g-value 

markedly (~±50%) because of anti-sunward acceleration. We have included a 

50% scale bar in the upper left of the figure to show the magnitude of such a 

systematic uncertainty, which is clearly too small to account for the large 

seasonal changes in density seen in Fig. 11. 

 

                                                           
3 Several data points have large uncertainties. These are fits to limb scans with relatively few 
data points from early in the mission. The use of only a few data points in the fitting routine 
resulted in large uncertainties. 
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Fig. 11. Surface sodium density estimated from observations taken near the subsolar point is 

shown as a function of true anomaly angle. The arrow at the upper left shows the magnitude of a 

50% systematic uncertainty (see text). 

 

Although PSD alone may be responsible for the ejection of most sodium in 

exosphere, other physical processes must be involved as described above. If the 

exospheric source rate were only dependent on solar photon flux then there 

would not be a peak in the exospheric density near aphelion. Instead a mix of 

transport, source, and loss processes determines exospheric behavior. Leblanc 

and Johnson (2003), for example, suggested that the sodium source rate might 

peak at aphelion because the terminator rotates fastest at that time, causing 

rapid ejection of sodium adsorbed on the nightside surface. Photon pressure is 

also at a minimum during aphelion (with another, smaller minimum at 

perihelion), during which anti-sunward transport is minimized (Potter et al., 

2006). This could also contribute to a subsolar peak near aphelion. The 
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interplay of source, loss, and transport processes will likely require detailed 

numerical modeling in order to explain the trends in Fig. 11 and elsewhere in the 

exosphere. 

  

5. Conclusion 

 

We report the first orbital observations of Mercury’s sodium exosphere. 

These observations provide unprecedented coverage in both local time and true 

anomaly, though with less geographical coverage than that of ground-based 

observations; the limb scans described here were taken mostly at low latitudes 

and directly above the south pole (Fig. 3). The observations show year-to-year 

repeatability: at a given local time and true anomaly the emissions are nearly 

identical from one Mercury year to the next. 

We interpreted the UVVS limb scan data with a simple model to estimate the 

temperature and density of the near-surface exosphere (within about 500–1500 

km of the surface). The model accounts for the effects of radiation acceleration 

and photon scattering. We found a temperature of about 1200 K, suggesting that 

photon-stimulated desorption is the primary source process. A high-energy 

process is also present and may be episodically variable. That process could the 

energetic tail of the PSD energy distribution, impact vaporization, or sputtering. 

There is no indication in these data of thermal desorption or thermalization 

(accommodation) of the exosphere to the local surface temperature. 
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These conclusions are surprising in light of the previous literature, which 

has suggested that sodium is ejected from the surface by a complex mixture of 

episodic processes. Though aspects of these results have been reported earlier, 

the robust nature of the year-to-year repeatability and nearly constant near-

surface exospheric temperature were unexpected. Although a direct comparison 

with ground-based observations is beyond the scope of this work, ground-based 

data should be re-evaluated in the context of year-to-year repeatability. 
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Appendix 1: Verification of the model fits 

 

In this appendix we describe tests of the assumptions described in the main 

text. The first of these is our assumption that the g-value for exospheric sodium 

is close to the g-value at Mercury’s rest frame (Eq. 1). We also test the 

expressions used to estimate exospheric temperature and density (Eqs. 2-4). We 

used the Monte Carlo model developed by Burger et al. (2010, 2012, 2014) for 

these tests. We ejected sodium from the surface with a Maxwell-Boltzmann flux 

distribution at several different temperatures and for several different true 

anomalies to obtain a range of g-values. The loss processes in the model are 

photoionization and sticking; atoms are removed from the simulation if their 

trajectories intersect Mercury’s surface. We also ran cases with thermal 

accommodation in place of sticking. We used accommodation coefficients of 0.2 

and 0.9. 

To test the constant g-value assumption we compared the model’s calculated 

column density N and radiance 4πI to test the accuracy of Eq. (1) when using the 

g-value in Mercury’s rest frame. If this approximation is valid then the ratio 

Ng/4πI should be close to 1. For a model run with globally uniform sodium 

emission at 1200 K, that ratio is within a few percent of 1 near noon, and within 

10% of 1 near the terminator. Even at 5000 K the results are similar (when 

excluding the escaping component at high altitudes). We also considered the 

case of non-uniform exosphere in which we used a source rate proportional to 
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the cosine of the solar zenith angle. We found that the ratio is again close to 1 

near noon, but that it differs from unity by up to 25% near the terminator for 

the cases with the largest g-values.  

The ratio was also close to 1 for cases with thermal accommodation. This 

might not be the case with other models if they assume that partially-

accommodated atoms retain their transverse momentum. In that case the atoms 

can build up more speed as they are transported anti-sunward. Our model 

assumes that atoms are scattered in a random direction after accommodation. 

Under those circumstances the simulated sodium atoms do not pick up speed as 

they are accelerated anti-sunward except in the extreme case of an 

accommodation coefficient of 0, as demonstrated by Mouawad et al. (2011). 

To test the temperature estimate (fits to Eqs. 2-4) we simulated limb scans 

with the Monte Carlo model. The model replicates the actual observation 

geometry used by UVVS, allowing us to “fly” the instrument through exosphere 

simulations. An example comparison between the Monte Carlo model and Eq. 

(2) is shown in Fig. 12. The agreement between the slopes of the two curves is 

quite good, suggesting that Eq. (2) captures the physics of the sodium exosphere 

quite accurately despite the approximations made in using Eqs. (1)–(4), such as 

the assumption that the g-value and photon acceleration b are independent of 

sodium atom speed. We also ran these simulated limb scans through the fitting 

routine described in the paper and returned the correct temperature to within 

100 K.  
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Fig. 12. Comparison of Monte Carlo model (data points) with the model given by Eqs. (2)-(4) 

(dashed line). The Monte Carlo model, in this example, used the observational geometry from 

limb scans taken on 6 August 2012.  

 

 

Appendix 2: Optical depth correction 

 

Here we describe a simple analytic correction for optical depth near the 

surface. Optical depth causes some of the emitted photons to be scattered before 

reaching the detector, which lowers the apparent column density. The 

correction was applied to the data before fitting to Eq. (2). It has almost no effect 

on most of the data, which are usually acquired along a optically thin lines of 
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sight. Fig. 13 shows that the correction applied to Eq. (2) matches the slight 

turnover in apparent column density near the surface. The correction only 

works only for modest line-of-sight optical depths (on the order of 1); larger 

optical depths require detailed calculations (Killen, 2006; Chaufray and Leblanc, 

2013). The correction clearly breaks down (does not match data) for the largest 

columns in Fig. 13. 

The correction is derived from a few simple assumptions. The first of these is 

that each sodium atom is emitting photons at the rate of g s-1. This assumption is 

true only if the exosphere is illuminated by unattenuated sunlight, which is 

appropriate if we apply the correction only in situations with low optical depths. 

UVVS limb scans look tangent to the surface, resulting in line-of-sight column 

densities much larger than those traversed by sunlight. A line-of-sight column is 

only about one-tenth of the vertical column (factor 2K in Eq. 2). This factor 

means that sunlight traverses one-tenth of the line-of-sight column at noon local 

time, whereas at mid-morning and mid-afternoon that value is about 50% 

larger; this larger figure is still much less than for the line-of-sight column. Even 

at the terminator, where incident sunlight is tangent to the surface, the column 

traversed by sunlight is only half of the line-of-sight column. Because we apply 

this correction for line-of-sight optical depths on the order of unity or less, we 

ensure that sunlight traverses negligible optical depths. We also assume that the 

photons are emitted isotropically, though the D2 emission is slightly anisotropic 

(Chamberlain, 1961).  

Suppose we are looking at emission from a column of uniformly illuminated 
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atoms with optical depth τ along the line of sight. The fraction of photons F that 

make it out of the column without being scattered is given by 

d                                

where the integrand is the probability that a photon will not be scattered while 

passing through an optical depth τ. The factor in front is a normalization 

constant. The optical depth τ is directly proportional to the column density N, 

with the constant of proportionality coming from Brown and Yung (1976). That 

constant is a weak function of temperature, for which we used 1200 K except for 

the simulated thermal components, for which we used the temperatures 

indicated in Fig. 8. The sodium D1 and D2 lines are distinct lines so F must be 

calculated separately for each line. 

The intensity (units of cm-2  s-1  sr-1) of photons that are not scattered is given 

by (Ng/4π)F, where the symbols are defined in the main text. This expression 

suggests that the radiance, which is given by 4π times the intensity, is 

attenuated by the factor F, but scattered photons also contribute to the intensity. 

To calculate the intensity of scattered photons we assume they are scattered 

only once, as appropriate for small optical depths. We also assume that the 

photons come from a plane-parallel column of gas. Given these assumptions the 

intensity of scattered photons is given by (Ng/4π)(1---F)/4, which we calculate as 

follows. The flux of photons produced by the plane of gas in the absence of 

scattering is given by the intensity multiplied by π: (Ng/4π)π. A fraction (1-F) of 

these are scattered approximately uniformly into 4π radians (Killen et al., 2009). 

The resulting intensity of scattered photons is found by dividing the flux by 4π 
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radians to yield (Ng/4π)π(1---F)/4π. 

Putting this all together, the total intensity from both scattered and 

unscattered photons is given by (Ng/4π)(F+(1-F)/4), which means that the 

intensity (Ng/4π) of photons produced in the exosphere is reduced by the factor 

(F+(1-F)/4), with F, the fraction of photons that are scattered. Fig. 13 shows the 

correction applied to limb scan fits. One example is from near perihelion, when 

some of the largest optical depths were observed, and the other is more typical 

with much lower optical depths. We multiplied the model column density 

(dashed black line) by the factor (F+(1-F)/4). The corrected column density 

(blue line) matches the data for moderate optical depths (τ ≤ 2 for the D1 line).  

The correction starts to break down when the optical depth is large, i.e., 

when the assumptions of single scattering and unattenuated sunlight break 

down. Note that an optical depth of 1 corresponds to a column density (black 

dashed line) of ~2 1011 cm-2  for the D1 line or ~4 1011 cm-2  for the D2 line. 

 

 

Fig. 13. Examples of the optical depth correction.  Limb scan fits with and without the optical 

depth correction applied, as indicated. The apparent column density (blue line) is lower than 

the actual column density (black dashed line). The fit parameters are given in the lower left of 

each panel. Note that the optical depth correction breaks down near the surface in the left panel, 
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where the data points and blue line diverge.  

 

The optical depth correction was applied to the data before fitting with Eq. 

(2). We used only those data for which the D1 emission line optical depth is less 

than 1 in the fitting routine. The effect of this correction on our analysis is 

minimal for most of the data, but it is necessary to probe the moderate optical 

depths where colder gas may reside. The consistent agreement between the 

data and model at moderate optical depths suggests that the optical depth 

correction is reasonably accurate and useful, but it is still a simple 

approximation of the actual photon transport problem. For that reason, we do 

not rule out the presence of a low-altitude, low-temperature component of the 

exosphere.  

 

 


