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Motivation and Technical Challenges

• Several incidents where engine icing is suspected (Mason 

2006)

• User request for mixed phase capability

• Prior LEWICE versions did not include:

– Change in droplet size, phase or temperature

– Differences in solid impact dynamics versus liquid impacts

– Changes to energy and mass balance equations 
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Hypothesis of the Environment that Causes 

Engine Events 

• Ambient temperature between 0 to -50 °C

• Altitude above 11500 ft. to at least 39000 ft

• Temperature can be as much as 25 °C above ISA

• Environment is dominated by ice crystals as high as 10 

g/m3 with particle size < 100 microns

• Very little, or no, ambient liquid water content required 

for ice accretion

• Light radar reflectivity
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GlennICE

• Grid Generation
– Use SmaggIce to generate 2D surface grids for panel model or 2D 

multi-block structured grids for Naviér-Stokes model

• Flow Solver
– Use potential flow code (S24Y) or use structured Naviér-Stokes 

solver (e.g. WIND) to determine flow field

• Water Collection
– Determine water droplet impact location pattern by successive 

calculation of individual droplet trajectories

• Heat Transfer
– Perform mass and energy balance

• Several different formulations available

• Ice Growth
– Density correlations used to convert ice growth mass into volume

– Geometry changed by moving surface geometry normal to surface

• Iterate
– With new ice shape, iterate entire sequence
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Simulation Levels of 

Fidelity

NPSS Model of Engine
0-D Engine system

performance to establish 

compressor BC’s at altitude 

cruise icing conditions

1-D Compression system

analysis to determine location

of blade row where icing can 

accrete.

2-D Compressor aero with

and without ice blockage

3-D Detailed CFD with iced

accretion on blade geometry 

3-D Multi-disciplinary blade 

aero-heat transfer analysis
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Engine and Compression System Modelling and Simulation 
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Does ice particle shape matter?

What are the drag differences? 

How does particle temperature and phase change affect the solution? 

Is a coupled solution necessary? 
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Effect of ice crystal particles with air
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Particle Drag

• Spheres

For Re < 100

For Re > 100

• Cylinder

For Re < 0.01

For 0.01 < Re < 20

For 20 < Re < 1000

For Re > 1000

• Discs

For Re < 40

For 40 < Re < 1000

For Re > 1000
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Particle Energy Balance

• Prior to phase change (ice particles)

• During phase change (melting)

• After phase change (water droplets)
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Heat and Mass Transfer Correlations

• Spheres

• Cylinders

• Discs
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Coupling Analysis

• Mass coupling

» Mass coupling is not needed

• Momentum coupling

» Momentum coupling is not 

needed

• Energy coupling

» Energy coupling is not needed
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Do ice particles stick or bounce off?

What is the coefficient of restitution?

Do ice particles fracture on impact?

Do ice particle impacts erode an existing ice shape?

What is the variation of ice fracture strength with temperature? 

With materials and surface finish? 

Particle Impact Analysis
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Coefficient of Restitution

• Ice particles fracture on impact

• Almost all of the energy and mass is transferred to surface
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Ice Erosion

• Empirical model based on extremely limited amount of data

• Relationship with icing variables estimated
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It has been demonstrated that ice crystals bounced off sub-freezing 

surface shaped like wing leading edge, how about large stagnation 

regions like the turn inside a scoop? 

Can ice crystals accrete in large stagnation regions without liquid water? 

Where is the probable source of water in this zone? 

Would an anti-iced stage upstream be responsible for the recreation of 

liquid water ? 
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Accretion on sub-freezing metal surfaces
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How long of a contact time is needed for heat exchange between ice 

particles and a metal surface? 

What is the particle melting mechanism? 

Does the pressure & temperature rise across a stage play a role in 

melting? (rotating rig)

Does evaporation and sublimation and erosion play a role during 

accretion?

Accretion on above-freezing metal surfaces
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Do melted particles create a film or rivulets? 

Does this film experience centrifugal forces? 

How thick a film is needed to capture ice particles? 

Is there film splashing due to ice impact? 

Is water film on ice particle important to the ice accretion process? 

Would an anti-iced stage upstream be responsible for the recreation of 

liquid water ?

Accretion on above-freezing metal surfaces
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Mechanism of glaciated ice accretion inside 

engine core

• Exact mechanism is not known, only a hypothesis exists

• In the mixed phase/glaciated ice cloud, large amount of ice 

crystals are scooped into the core of the engine

• Liquid water is also present in the core either being 

ingested from the atmosphere or generated upstream due 

to melting of small ice particles

• Presence of liquid on an engine component surface slows 

down the ice crystals allowing heat transfer to take place 

between the ice and the metal

• Heat removed from the metal reduces its temperature until 

freezing point is reached

• Further liquid and ice impingement will continue to accrete 

on the component until self shedding or engine anomaly 

occurs
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Mass and Energy Balance

• Added term for mass of ice impingement

• Added kinetic energy from ice impacts

• Added melting of ice crystals

• Remove accreted mass from ice impacts if energy balance 

does not produce a liquid film

• Melting ice

• Impinging water
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E3 Test Case

• Energy efficient engine (E3) is a publicly available design 

for preliminary analysis

• Section analyzed is from fan to entrance of the high-

pressure compressor
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Fan and Quarter-Stage/Booster

Cruise condition @39,000 ft, 

∆T +22R, 80% max thrust

10 stage HPC
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• Engine operating point in cruise at 39000 ft was 

selected for testing GlennICE 
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Fan Hub and Quarter Stage Performance Map 

Flow Rate, corrected, lbm/sec
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Ice Collection Efficiency on First Splitter

First Splitter
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Ice Shape Assuming No Erosion
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40k Thrust Engine Test Case

• Single splitter case more typical of current engine designs

• Section analyzed is from fan to entrance of the high-

pressure compressor
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Test Conditions for Flight Profile

• 17 test cases were ran to simulate a typical flight

Case Mach No Alt(ft) Thrust(%) Pt(psi) Tt(R)

1 0.780 35000 100 5.18 466.4

2 0.780 35000 75.6 5.18 466.4

3 0.780 35000 72.9 5.18 466.4

4 0.780 35000 69.9 5.18 466.4

5 0.780 39000 100 4.28 462.0

6 0.780 39000 84 4.28 462.0

7 0.780 39000 79.8 4.28 462.0

8 0.780 39000 76.8 4.28 462.0

9 0.780 39000 10 4.28 462.0

10 0.730 38334 10 4.22 455.8

11 0.714 37357 10 4.36 453.9

12 0.669 34281 10 4.84 455.8

13 0.608 30029 10 5.60 465.6

14 0.552 25666 10 6.50 476.5

15 0.490 20047 10 7.90 491.7

16 0.446 15435 10 9.31 505.0

17 0.406 10735 10 11.01 518.9
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Typical Ice Collection Efficiency on Splitter
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Ice Shape Assuming No Erosion
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Stator Ice Shape Assuming No Erosion



Glenn Research Center
at Lewis FieldIcing Branch Page 31

Future Work

• Experimental data needed on:

– Deposition rate of ice particles when water film is present

– Coefficient of Restitution / ice fracture

– Ice erosion (especially with a water film)

– Mixed phase icing 

– Engine icing

• Allow impingement on grid boundary (lower wall)

• Incorporate higher fidelity NPSS results

• Incorporate model into LEWICE3D
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Conclusions

• Multiphase physics were added to GlennICE including:

– Temperature and phase change of particle before impact

– Drag and heat transfer correlations for cylinders and disks

– Particle bouncing (coefficient of restitution)

– Ice erosion

– Additional terms to mass and energy balance

• Test case on E3 geometry showed ice build up is possible

• Verification of models needed before release is possible


