Large Tapered Crystal (LTC) Growth Method: A New Single Crystal Silicon Carbide Bulk Growth Technique

Andrew Woodworth¹, Philip Neudeck², Ali Sayir² and Andrew Trunek³

¹NASA Postdoctoral Program Fellow, NASA Glenn Research Center
²NASA Glenn Research Center
³OAI NASA Glenn Research Center

ANFF-AFOSR Review
May 2, 2012
What is Silicon Carbide (SiC)?

• Si and C sp³ bonded (much like diamond)
• 212 polytypes (crystallographic structures)
• Chemically inert
• Wide band gap semiconductor

Applications

• Abrasives
• Structural
• Electronics
 • Power systems
 • High temperature environments
 • Harsh environment

David Monniaux, Silicon carbide (SiC) monocrystal from the LMGP (Minatec) lab in Grenoble, France
SiC for Aerospace Applications

Aviation Industry Trends:
- Demand for higher energy efficiency, lower GHG emissions
- Replacing hydraulic and pneumatic systems with more-electric architecture
- Power conversion efficiency and size critical for more-electric architecture
- Flight profiles of new military planes limited by power electronics thermals

SiC Electronics Benefits to NASA Missions

Intelligent Propulsion Systems

Space Exploration Vision PMAD

More Electric + Distributed Control Aircraft

Venus Exploration

All combinations of high temperature and/or high power applications!
DOE Applications

• Smart Grid
 • Ability to network many sources and sinks
 • Need to minimize losses in complex system

• Electric and hybrid electric vehicles
 • Minimize weight and size of converters
 • Minimize or eliminate cooling requirements

Diagram of a power electronics and electrical machines in a plug-in hybrid electric vehicle (PHEV). http://www1.eere.energy.gov/vehiclesandfuels/technologies/electronics/index.html
SiC devices are ~2X voltage or current-density de-rated from theoretical material performance.

Unipolar Power Device Comparison
(Volume Production Commercial Devices)

- Commercial silicon devices operate near theoretical limit.
- ~6X SiC Benefit has been achieved.
- ~2X (100%) SiC benefit still to be realized.

Above comparison does NOT take yield, cost, other relevant metrics into account.
SiC Wafer Material Defects

Over the past decade there have been numerous studies (including NASA GRC) linking degraded SiC power device performance, yield, and reliability to the presence of defects in the SiC wafer crystal.

Magnified view small area in middle of wafer imaged by Ultra-Violet Photoluminescence
- Each white dot or line is a dislocation defect!
- Average dislocation density $\sim 10^4$ per cm2

Two-fold defect-induced SiC device over-design roughly translates into corresponding energy loss and/or power circuit size increase trade-off.

Description of Technology/Approach

Present SiC Growth Process
(Vapor transport)

Vertical (c-axis) growth proceeds from top surface of large-area seed via thousands of screw dislocations. (i.e., dislocation-mediated growth!)

Crystal grown at T > 2200 °C
High thermal gradient & stress.

Limited crystal thickness.

Proposed LTC Growth Process
(US Patent 7,449,065 OAI, Sest, NASA)

Vertical Growth Process:
Elongate small-diameter fiber seed grown from single SiC dislocation.

Lateral Growth Process:
CVD grow to enlarge fiber sidewalls into large boule.
- 1600 °C, lower stress
- Only 1 dislocation

Lateral & vertical growth are simultaneous & continuous (creates tapered shape).

Radically change the SiC growth process geometry to enable full SiC benefit to power systems.
LTC Development: Two track approach

SiC fiber growth by Solvent-Laser Heated Floating Zone (Solvent-LHFZ)

Lateral growth by Chemical Vapor Deposition (CVD)
Solvent-LHFZ Technique

Laser Heated Floating Zone

+ Solvent Growth Method

Apply Heat (Melt Solvent)

Contact and Wetting

Seed Crystal Solvent

Si & C source material

Growth Direction

500 µm

CO₂ Laser

Feed Rod (Source Material)
Seed Crystals

4H-SiC

(1120) a-plane
(1100) m-plane

[0001] c-axis

sliver
basal plane

[1120] [1100]

[0001]

Si face

[0001]

C face

m-plane

a-plane
Seed Crystals

Growth face
- 4H-SiC C-face (0-10° off axis)
- ~500 µm X ~450 µm

Mounting
- Seed ~1.5 cm long
- Ceramic pasted into an alumina tube
- After curing seed crystals cleaned
 - HCl:HNO₃ (2:1)
 - HF

Source Material / Feed Rod

Powders
- Fe(3N5), Si(2N), graphite (3N)
- -325 mesh or < 44 µm in dia.

Feed Rod Processing
- Powders mixed by ball mill
- Formed into rods by cold isostatic press
- Sintered @ 1150°C, 1 hour in hydrogen
Feed Rod Compositions

@1523K = 1150°C

High-Fe, Low C

High-Si, High-C

High-Si, Low-C

Summary of Results

- X-ray transmission Laue diffraction patterns of the grown crystals
 - Single crystal
 - Retains the 4H-SiC polytype of the seed crystal
- Synchrotron White Beam X-ray Topography
 - Significant inhomogeneous strain

<table>
<thead>
<tr>
<th>Fe/Si (atomic ratio)</th>
<th>C (at.%)</th>
<th>M.P. (°C)</th>
<th>M.P.+90 °C</th>
<th>M.P.+190 °C</th>
<th>M.P.+325 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Si (Fe/Si~0.35)</td>
<td>8</td>
<td>1170</td>
<td>4 / ~10^{17}</td>
<td>40 / ~10^{17}</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1195</td>
<td>50 / ~10^{18}</td>
<td>120 / ~10^{18}</td>
<td>N/A</td>
</tr>
<tr>
<td>High-Fe (Fe/Si~1.9)</td>
<td>8</td>
<td>N/A</td>
<td>No Growth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• M.P. = temperature at which the feed rod formed a melt
• at.% = atomic
• Temperatures are not corrected for emissivity
Growth Front Evolution
Growth Front Evolution (cont.)

Competing Growth Fronts

Void Forming

Voids Closing To Form Defects
Proposed Seed Crystal

Lateral Chemical Vapor Deposition (CVD) Epi-Growth

Cross Section of Custom Hot-Wall Reactor

<table>
<thead>
<tr>
<th>Growth Time [hours]</th>
<th>In-situ etch [min]</th>
<th>Etch Pressure [mb]</th>
<th>Growth Pressure [mb]</th>
<th>Hydrogen [sccm]</th>
<th>Silane(^1) [sccm]</th>
<th>Propane(^1) [sccm]</th>
<th>HCl(^1) [sccm]</th>
<th>Estimated Temperature(^2) [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>40</td>
<td>325</td>
<td>4260</td>
<td>0/4</td>
<td>1.5/1.5</td>
<td>15/20</td>
<td>1600</td>
</tr>
<tr>
<td>16.5(^3)</td>
<td>6(^3)</td>
<td>40</td>
<td>325</td>
<td>4910</td>
<td>0/8</td>
<td>1.5/2.5</td>
<td>15/40</td>
<td>1600</td>
</tr>
</tbody>
</table>

\(^1\)Etching conditions / growth conditions

\(^2\)Direct observation of temperature by pyrometry was possible. An inferred temperature was calculated based upon melting points Si and Pd

\(^3\)Growth performed in four stages (0.5, 4, 4 and 8 hours), in situ etch performed in first stage only.
Lateral CVD Epi-Growth 5 Hour Growth

4H/6H SiC a/m-plane slivers prior to growth

4H/6H SiC a/m-plane slivers post growth

20mm
Lateral CVD Epi-Growth 5 Hour Growth (cont.)

Epi Growth Rate: ~80 μm/hour
Max. Film Thickness: ~0.15 mm
Max Diameter: ~1 mm (mostly seed)
Rough grown surfaces/mini-facets
X-ray Topographic Image of Lateral CVD Epi Growth

Grown Crystal

Simulated* 4H-SiC (1-100)

- Courtesy of Balaji Raghothamachar and Michael Dudley
- Recorded at Stony Brook Synchrotron Topography Station, Beamline X19C at the National Synchrotron Light Source, Brookhaven National Laboratory
X-ray Topographic Image of Lateral CVD Epi Growth

- X-ray transmission Laue diffraction patterns of the grown crystals
 - Single crystal
 - Retains the 4H-SiC polytype of the seed crystal
- Synchrotron White Beam X-ray Topography
 - No long grain strain
 - Some local areas of strain
Lateral CVD Epi-Growth (16.5 hour of growth)

Polycrystalline 3C-SiC

SiC coating failure

Epi Growth Rate: ~ 120 μm/hour
Max. Film Thickness: ~2 mm
Max Diameter: ~4 mm (mostly epi)
Smooth Tapered Hexagonal Facets!
Conclusions

• Solvent-LHFZ
 • Have grown single crystal SiC
 • Growth Rates in excess of 120 μm/hour
 • Growth fronts are “complex” and therefore create inhomogeneous strain
• Lateral CVD Epi-Growth
 • Growth rates in excess of 120 μm/hour
 • Growth conditions do not seem to be creating crystal defects, but more analysis is needed.

Future Work

• Solvent-LHFZ
 • Implement new seed crystal
 • Continued refinement of source material/ feed rods
• Lateral CVD Epi-Growth
 • Extend growth of boule beyond 5mm
 • Confirm CVD growth is not inducing new defects

Areas for Collaboration

• Start a parallel effort in GaN
• Alternative uses for SiC fibers (unique structure)
• Lateral growth on SiC fibers may be able to create other unique structures
Team Members

RHS
(SiC growth, sensors & electronics)
Phil Neudeck
Andy Trunek
David Spry
Tony Powell (retired)
Michelle Mrdonovich-Hill
Beth Osborn
Chuck Blaha

RXC
(Ceramics)
Ali Sayir
Fred Dynys
Thomas Sabo

Special Thanks
Balaji Raghothamacher & Mike Dudley (SWBXT)-Stony Brook University

Funding
NASA Vehicle Systems Safety Technologies Project in the Aviation Safety Program, US DOE Vehicle Technology Program via Space Act Agreement (SAA3-1048) (DOE IA # DE-EE0001093/001) monitored by Susan Rogers and internal funding from the NASA Glenn Research Center