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Outline @/

* Motivation: Ultra-low emissions, lean-burning, Multi-point Lean
Direct Injection (MP-LDI) combustors
— More susceptible to instability

» Active Combustion Control as an enabling technology

» Experimental Setup and Approach
— Advanced, low-emissions combustor prototype

» Experimental Results

* Concluding Remarks and Future Directions

Fundamental Aeronautics, Supersonics,
High Altitude Emissions

Axial Velocity Predictions of Lean Direct Injection Low NOx

Objectives Emissions Concept

«  Develop the necessary technologies to
enable low emissions (gaseous and
particulate) combustion systems to be
developed for supersonic cruise
applications.

* Develop and validate physics-based
models to enable quantitative emissions
and performance predictions at supersonic

b,

cruise conditions using Combustion CFD U S8 18 03 11 a Wb MD B4 1073 82 12
simglaBions, Zero Axial Velocity Contours Side View through center

»  Develop and validate high temperature
sensors for use in intelligent engines.

Also - Fundamental Aeronautics, Subsonic Fixed Wing,
Clean Energy and Emissions

*Combustion Chemistry and Turbulence Modeling Integrated Systems Research
*Particulates Sampling and Modeling «Environmentally Responsible Aviation
«Alternate Fuels *Airframe Technology

*Propulsion Technology
*Vehicle Systems Integration



Lean-Burning, Ultra-Low-Emissions Combustors:
Are More Susceptible to Thermoacoustic Instabilities

PN |

——
-

L

Higher performance fuel injectors => more turbulence

No dilution air => reduced flame holding

Reduced film cooling => reduced damping

More uniform temperature distribution => acoustically homogeneous

1.
2,
3.
4.
5:

Shorter combustor => higher frequency instabilities

Combustion Instability @/

Closed-Loop Self-Excited System

o

Pl

Fuetalc Natural feed-back process J
Mixture |«

system




Combustion Instability Control Strategy @

Objective: Suppress combustion thermo-acoustic instabilities when they occur

Closed-Loop Self-Excited System

ml
PI
POl Natural feed-back process J
Mixture (e
system
A
Artificial control process

Active Combustion Instability Control Via Fuel Modulation @

Advanced control methods

High-frequency fuel delivery
system and models

High-temperature sensors
and electronics

Physics-based instability models

[ NS R
Realistic combustors, rigs for resear

ch




Active Combustion Instability Control

Demonstrated Experimentally for Conventional Combustor

Large amplitude, low-frequency instability
suppressed by 90%

Liquid-fueled combustor rig emulates engine observed
instability behavior at engine pressures, temperatures, flows

High-frequency, low-amplitude instability

is identified, while still small, and / ™~

suppressed almost to the noise floor.

e

platc1, Run 423 and 425, 040527 - 040603
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“Froquency, Hz

Low Emissions Combustor Prototype with Observed Instability @/

as installed in NASA GRC CE5B-Stand 1

Range of Combustor Operating Conditions

Inlet P i 65-250 X
e P lin) 2 1-element traversing probes |

Inlet Temperature, °F 400-1000

Air Flow, Ib,,/s 09-4.0

[e—10.0 139

S-element probe

approx.100 — 8.5—»!
Fuel Flow, Ib,/hr approx. 400

dynamic pressure transducer,
P 4pynpn, semi-infinite coil

| 2 dynamic pressure transducers, Pgl,& P3, |

dynamic pressure transducer, P py,up,
semi-infinite coil




Trend in Instability Amplitude vs. FAR
Multiple Test Conditions and Runs

Combustor Pressure Amplitude at Instability Freq., psi

0.0220 0.0240 0.0260 0.0280 0.0300 0.0320 0.0340 0.0360
Fuel/Air Ratio

Low Emissions Combustor Prototype
Sectored 1-D Instability Model
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< Fuel | E [Li :
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CE5B-STAND 1 SIMULATION LAYOUT
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Blockage
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Fk \P4DynUp

< 28.4in. > 35.7in. >
>

1.34in.

Water spray




Low Emissions Combustor Prototype

Sectored 1-D Instability Model @

N

Combustion Instability Simulation Results Match Experimental Results
for Multiple Operating Conditions

B Exp-P3=250 psia, T3=1000degF
B Sim-P3=250 psia, T3=1000degF

@ Exp.-P3=166 psia, 1000degF =
*  Sim-P3=166 psia, 1000degF /

o

o
®©

o
>

o
N}

}
s

P4DynDn Amplitude at Instability Frequency (psi)
o
o

0.0

Frequency trend replicated

$

L

g

0.024

Amplitude trend replicated - . +Exp P3=166psia

0.025 0.026 0.027 0.028 0.029 0.03 0.031 0.032

fla Ratio 8 Exp-P3=250psia

= Sim -P3=250 psia

\

g

]

# Sim - P3=166 psia, a=0 0016, K;=25

470
0.024 0.025 0.026 0.027 0.028 0.029 0.03 0.031 0.032

Delaat, J.C.; Paxson, D.E.: “Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low
Emissions Combustor Prototype.” 44th Joint Propulsion Conference and Exhibit, Hartford, Connecticut, July 21-23, 2008.
AlAA-2008-4878, NASA/TM—2008-215291.

Experimental Program Research Objectives @

DeL.

Replicate previously observed combustion instability behavior of the
low-emissions combustor prototype;

Demonstrate combustion instability control and extend the combustor
operating range into previously unstable regions;

Determine if combustion instability control can be accomplished using
the dynamic pressure at P3 for feedback;

Determine if combustion instability control can be accomplished through
modulation of the pilot fuel flow; and

Obtain dynamic characterization data for construction of a closed-loop
version of the NASA Sectored 1-D combustor simulation as a benchmark
problem.

aat, J.C.; Kopasakis, G.; Saus, J.R.; Chang, C.T.; Wey, C.: “Active Combustion Control for Aircraft Gas-Turbine Engines —

Experimental Results for an Advanced, Low-Emissions Combustor Prototype” 50th AIAA Aerospace Sciences Meeting, Nashville, TN,
January 2012. AlAA-2012-0783.



A. Comparison of Combustion Instability Behavior vs.
Prior Testing

Instability peak at 620 Hz
08—t NG 2 —

I
i

LU il

Combustor Pressure, psi

10 . 102 103 1 1.01 1.02 1.03 1.04
Frequency, Hz Time, sec
Combustor Pressure Amplitude Spectra Combustor Pressure Time History

P3=166psia, T3=1000degF, FAR=0.037, combustor AP/P=3%

B. Demonstration of Combustion Instability Control @/

Fuel Actuator
(other side)




B. Demonstration of Combustion Instability Control

Combustor Dynamic Pressure Response to Open-Loop Fuel Modulation of the Main Injector
500 Hz
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B. Demonstration of Combustion Instability Control

Closed-Loop Self-Excited System
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B. Demonstration of Combustion Instability Control
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B. Demonstration of Combustion Instability Control @

Fuell/air ratio Filtered Combustor Pressure
0042 — - " ' . - 2 T T T T T

i i i
Timp RMS=0, Mean=0.04 ] 4 \
) | i | i

0.04 Timb RMS=0.54, Moan=%

0.038
0.036 Controller off
0.034
0.032 *5 o
O,OGO 5 16 15 20 2‘5 3;3 3; 40 ~20 5 1’0 1‘5 éO 2‘5 30 35 40
Time, sec Time, sec
B. Demonstration of Combustion Instability Control @

Adaptive Sliding Phasor Averaged Control (ASPAC) able to prevent instability growth

Fuel/air ratio Filtered Combustor Pressure

Timb RMS=0, Mean=0.04
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with P3 Dynamic Pressure as Feedback
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D. Combustion Instability Control Using
Pilot Fuel Injector Modulation

+ Advantage: Pilot carries only 20% of total fuel flow

— Smaller fuel actuator, not lean-burn part of flame

e

— Possible downside: Smaller actuator authority, different part of flame

* Experimental Results:

— Negligible response to pilot fuel modulations in combustor

— Optimizations attempted with the high-frequency valve
+ Shorten fuel feed line

» Optimize valve average Flow Number
+ Vary fuel feed line diameter (volume)

« Stiffen valve mounting

» Optimize valve internal return spring force

— Conclusion: High-frequency valve is oversized for pilot
* Was developed for higher-flow operation

Saus, J.R.; Chang, C.T.; DelLaat, J.C.; and Vrnak, D.R.: “Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve
For Active Combustion Control,” 50th AIAA Aerospace Sciences Meeting, Nashville, TN, January 2012. AlAA-2012-1274.

E. Closed-Loop Combustor Data for Development of
Combustion Control Simulations
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Concluding Remarks @

Active control of combustion instability has been demonstrated for an advanced low-
emissions aircraft engine combustor prototype:

* The ASPAC algorithm can suppress an already existing instability

* The controller can also prevent instability growth, enabling high-power operation
* A pressure sensor at P3 was used as a control feedback sensor

* Instability control was demonstrated with main stage fuel modulation.

— Pilot fuel modulation was investigated, but was unsuccessful due to inadequate
fuel modulation strength.

Future plans:
* Development of fuel actuators sized for pilot injectors
* Development of feedback sensors able to operate at engine temperatures

* Apply combustion instability control technologies via pilot fuel modulation to
increasingly advanced lean-burn combustors.

* Extend existing simulation of uncontrolled combustion instability to include the
controlled case.




