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• Performance estimates for 3 electric propulsion cases: 

1. Hybrid electric with room temperature components 

2. TeDP* with room temperature components 

3. TeDP* with cryogenic and superconducting components 

 

• Technical challenges and program for turboelectric propulsion 

1.  Superconducting electric machines 

2.  Cryocoolers 

3.  Cryogenic Inverters/rectifiers 

4.  Overall electric grid system 

Outline 

WE ATTEMPT TO PROJECT TECHNOLOGY TO THE N+3 TIME FRAME (2025 – 2030) 

TeDP: Turboelectric Distributed Propulsion 
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1.  Hybrid Electric Propulsion 
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Hybrid Electric Propulsion (one configuration) 

Some components are not shown (e.g. inverters and thermal management) 

• Ratio of electrical to fuel energy varies with flight distance 
 

• Eliminates CO2 and water vapor emissions at altitude for shorter flights. 
 

• Eliminates ground-generated CO2 if electricity source is nuclear, solar, 

wind, hydroelectric, etc. 
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Hybrid Electric Propulsion Aircraft 

 NRA: Boeing, GE 

• Turbine engines + battery-powered 

electric motors 
 

• NRA: 

–  “SUGAR* Volt” (154 PAX) 

– ~5 MW electric on each of 2 engines 

–   Room temperature components 

–   Motor & engine each sized for cruise, 

            both used at takeoff 

–   Battery pack size depends on range 

–   Sensitivity coefficients developed 

–   Data development underway 
 

 

 

• *Subsonic Ultra Green Aircraft Research 

hFan Concept from:http://ntrs.nasa.gov/archive/nasa/

casi.ntrs.nasa.gov/20110011321_2011011863.pdf

ELECTRIC

MOTOR



National Aeronautics and Space Administration 

www.nasa.gov 

Room Temperature Hybrid Electric (generic example) 

Aircraft mean weight (150 PAX)        ~150 klb 
 

Electric component total weight:                           6 klb         (4% of aircraft wt.) 

      (not incl. batteries) 

Battery pack weight:           ~ 30 klb      (20% of aircraft wt.) 
 

 

  

Battery over-sizing for 6% electrical loss:              6%                (before iterating) 
 

Battery over-sizing for 6 klb added weight:            4%               (before iterating) 
 

Total battery size penalties:               10%               (before iterating) 

 

 

 

 

 

*CNTs: Carbon nanotubes 

But CO2 and H2O emissions are reduced  and are nearly eliminated for 

short missions.  Superconductors could help;  CNTs* might one day. 

10 hp/lb 
 

 Wt: 1.1 klb 

3 hp/lb 
 

Wt: 3.7 klb Wt: 1 klb 

3% 3% 

(Assume 11,000 hp total from 2 motors) 

Cum. loss  
 

6% 0.1% 

BATTERY                     TRANSMISSION LINE            INVERTER                            MOTOR 
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2. Turboelectric Distributed Propulsion  

(Room Temp.) 
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Turboelectric Propulsion 
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Turboelectric Propulsion 
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THE MAIN GOALS OF TURBOELECTRIC PROPULSION ARE TO SAVE FUEL  
AND REDUCE NOISE. 
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Room Temperature Turboelectric Propulsion 

BATTERY 

N3-X aircraft mean weight (300 PAX):  440 klb 
 

Engine & fan mass w/o electric components:           15 klb 
 

Electric component total weight:      53 klb    (12% of aircraft wt.) 
 

 

Extra fuel burn for electrical losses     12%                   (before iterating) 
 

Extra fuel burn for added weight:     12 %               (before iterating) 

 
 

Fuel burn saving from BLI and higher BPR:              16%                   (before iterating) 
 

Net extra fuel burn:               8% increase!  (before iterating) 

(3 hp/lb) 

Wt: 20 klb 

(10 hp/lb) 

Wt: 6 klb 

(10 hp/lb) 

Wt: 6 klb 
(3 hp/lb) 

Wt: 20 klb Wt: 1 klb 

(Assume 60,000 hp total into 15 fans for N3-X BWB aircraft) 

3% 3% 
3% 3% 

Cum. Loss 
 

12% 
 

0.1% 
COMPONENT 

LOSS: 

TeDP at room temp. will not likely save fuel, unless conductors superior 
to copper are developed (CNTs?), but might be used for other reasons 
such as low noise or as a demonstrator. 

     GENERATOR                RECTIFIER             TRANS. LINE          INVERTERS            MOTORS 
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3. Turboelectric Distributed Propulsion 

(Cryogenic and Superconducting Components) 
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“N3-X” Distributed Turboelectric Propulsion System 

Power is distributed electrically from turbine-driven  
generators to motors that drive the propulsive fans. 
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Turboelectric Propulsion System Requires Cryogenic and 

Superconducting Components for Light Weight & High Efficiency 

Superconducting  
transmission lines   

Superconducting  
generator  

Superconducting  
motors   

Cryogenic 
 Inverters/ 
Rectifiers 
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BATTERY 

30 hp/lb 

2 klb 
15 hp/lb 

4 klb 

15 hp/lb 

 4 klb 
13 hp/lb 

5 klb 1 klb 

N3-X aircraft mean weight:              ~440 klb 
 

Engine & fan mass w/o electric components:        ~20 klb 
 

Electric component total weight:    16 klb (3.6% of aircraft wt.) 
 

 

Extra fuel burn for electric losses:   2.1%                  (before iterating) 

 

Extra fuel burn for added weight:    3.6%              (before iterating) 
 

Fuel burn saved by BLI and higher BPR:                   16%                  (before iterating) 
 

 

Net fuel burn saved:             10%  saving    (before iterating) 

0.45% 0.50% 0.50% 0.48% 

Cum. Loss 
 

2.1% 
 

0.1% 

CRYO & SUPERCONDUCTING TURBOELECTRIC PROPULSION 

COMPONENT 

LOSS: 

(incl. coolers) 

GENERATOR                     RECTIFIER              TRANS. LINE         INVERTERS                   MOTORS 

(Assume 60,000 hp total into 15 fans for N3-X) 

This is the system for which I’ll discuss tech challenges. 
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Summary of Performance Estimates 

• Room Temperature Turboelectric           (88% efficient) 

– 24% more fuel burn for electric losses and added weight 

– 16% benefits from BPR & BLI on BWB 

–   8% more fuel burn required 

• Room Temperature Hybrid Electric           (94% efficient) 

– Electric losses and added weight require 10% battery over-sizing 

– Almost no emissions (incl. CO2 or H2O) on short flights 

– Battery & electric system are a weight penalty on longer flights 

• Cryogenic and Superconducting Turboelectric  (98% efficient) 

– 5.7% more fuel burn for electric losses and added weight 

– 16% benefits from BPR & BLI on BWB 

– 10% net fuel burn saving 
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             COMPONENT                              TECHNICAL CHALLENGE 
 

         

        Generators & Motors            1/5th SOA weight and low AC losses 

                                                            NRA (3 yrs @ 300K ea) 

                                                                 In-house sizing analyses 
 

        Cryocoolers                           1/5th SOA weight 

                                                            Phase 1 SBIR 
        

        Cryo Inverters/Rectifiers        ½ SOA weight and ~1/10th SOA loss 

                                                            Phase 2 SBIR 

                                                                 In-house cryo-inverter tests 
 

        Total electric system              Distribute ~50 MW in a stable, responsive grid 

                                                            RTAPS contract 

                                                            In-house subscale system model 

18 

Turboelectric Distributed Propulsion (TeDP) 

and its Electric Technical Challenges 

A ROADMAP FOR EACH AREA WAS DEVELOPED AT A 2009 WORKSHOP. 

EACH GOAL IS DEEMED REACHABLE WITH PLANNED R&D,  
BASED UPON SIZING AND OTHER MODELS - - NOT JUST NEED! 
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Fully Superconducting Motor or Generator 

Technical Challenge: 

    1/5th SOA* weight & low AC losses 

     Fully superconducting windings for power density 

     Fine filament superconductor for low loss 
      

Element: 

      NRA @ Advanced Magnet Lab / U. Houston 

  (3 yrs @ 300K ea) 
 

 Tasks: 

•   Higher fidelity analysis   (F.E., Monte Carlo) 

•   Detailed machine design 

•   Fabricate stator segment for loss tests 

•   AC loss validation 
 

Progress @ 9 months: 

•   Iron magnetization calc. method done  

•   Coil calc. method in progress 

•   Mechanical design begun 

 

*  SOA is 6 hp/lb specific power (Air Force cryogenic exciter). 

SUPERCONDUCTING 

ROTOR WINDINGS 
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Generator Only

"BSCCO"

Technical Challenge: 

      Machines with 1/5th SOA* weight & low AC losses 

 

Element:  In-house analysis 
 

– Sizing model for parametric studies 
 

– Predict weights & efficiencies as functions of 

superconductor and cryocooler parameters. 
 

– Results: Need light cryocoolers and fine-filament 

superconductors.  See graphs. 
 

20 

Fully Superconducting Electric Machine Analysis 
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Flight Weight Cryocooler 

Recuperator plate 

Recuperator stack 

State-of-the-art weight:     30 lb/(hp-input) 

                                        30% of Carnot 
 

Elements: 

     2009 Phase 1 SBIR (Creare): Brayton prelim. design: 

                   5 lb/(hp-input) 

                                         30% of Carnot 
 

      2011 SBIR (Creare) (started Feb 20, 2012): 
  

 Phase 1 - Recuperator detailed design 

                              - Risk mitigation tests 

 Phase 2 - Fabrication & Test 
 

Navy, Air Force and NASA hope to cooperate on  

advanced cooler development. 
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Cryogenic Inverter (or rectifier) 

High power density and efficiency at low 

temp are due to:  
 

   Lower forward resistance 
  

   Faster switching 
 

   Superconducting interconnections 

•  Power transistors change DC power to 

           AC for variable-speed motor drive 
 
   

•  Room temp inverters:   

                   ~95 to 98% efficiency  

                    up to 10 hp/lb 
 

•  Phase 1 SBIR modeling results (MTECH): 
 

                    99.5% efficiency, incl. cooler 

                    17 hp/lb, including cooler 
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Cryogenic Inverter (and rectifier) 

Technical Challenge: 

       ½ SOA weight and ~1/10th SOA loss 
 

Element: 

       Phase 2 SBIR @ MTECH Inc. 

Tasks: 

• Design cryogenic multi-chip module 

• Fab & test multi-chip module and ancillary circuits 

• Design, fab & test one phase leg of a half-bridge inverter 
 

Progress @ 9 months:  

•   Characterized components in liquid nitrogen, etc. 

•   Preliminary design of a compact module 

 

Not in airstream! 
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Challenge: 
      

           Develop stable and responsive high power propulsive electric grid (~50 MW) 
 

Element:  
        

           Liberty Works RTAPS contract, 1 year, 250K,  
        “Stability, Transient Response, Control and Safety of a High-Power Electric Grid for TeDP Aircraft” 
 

Tasks:     
  

           Identify & rank TeDP electric system issues 

           Develop candidate architecture  

           Develop and deliver dynamic system model 
 

Progress @ 6 months: 
 

            Prioritized list of issues developed 

            Now defining architecture 

                   -  Choice of bus voltage 

                     -  Level of redundancy for all systems 

            -  Need energy storage? 

            -  Physical layout                 

            -  Means for failure response 

 

24 

Study of TeDP Electrical System Issues  
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In-House Work 

25 

• Analysis of motors and generators (to feed into aircraft system models) 

 

 

• Cryo-inverter testing 

 

 

• Subscale electrical system model 

 

 

• Small HTS machine 

 

 

• New synthesis method for low-AC-loss MgB2 under consideration 
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Concluding Remarks 

26 

•  Hybrid electric with room temperature components appears 

         viable for reducing emissions aloft, including CO2 and H2O.     (NRA) 
 

•  Turboelectric distributed propulsion (TeDP) requires superconducting 

          and cryo components for good efficiency and power density. 
 

•  TeDP will save fuel if the identified technologies are developed. 
 

•  Fully superconducting generators and motors are feasible.              (NRA) 
 

•  Cryocoolers and cryo-inverters can meet goals with R&D.               (SBIR) 
 

•  Stability and response of electric system are being studied.            (Contract) 
   

•  Some presently set goals may be surpassed and further reduce weight. 

•  New superconductors or carbon nanotube conductors, etc., may appear 

          in the N+3 time frame and contribute to success. 
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Conventional Motor & Generator  

Efficiency vs. Power 
Efficiency of Normal Motors

and Generators
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Ordinary motors reach 98% efficiency at  

50,000 hp .  Half that is core loss which will  

not be present in superconducting motors. 


