Standardized Modular Power Interfaces for Future Space Explorations Missions

Presented to
2015 Space Power Workshop
May 11-14, 2015

Richard Oeftering
NASA Glenn Research Center
Power Architecture and Analysis Branch
AMPS: Advanced Exploration Systems
Modular Power Systems

• Introduction to AMPS
• Need for Standardized Modular Power Interfaces
• AMPS Approach Standard
 • Levels of Assembly
 • Common Framework
• Electrical Interfaces
 • Primary Power Backplane/Module
 • Secondary Power Backplane/Module
• Command and Data Interfaces
 • Spacecraft Data Interface
 • Internal Data Bus
• Summary
AMPS: AES Modular Power Systems

AMPS seeks to develop a common set of Modular Power Building Blocks for future Exploration missions

- Long distances, long durations
- No logistics support
- Missions composed of multiple vehicles, multiple power architectures

Improve Operational Supportability:
- Reduced Logistics with Common Spares
- Spare at lower levels of assembly
- Common Maintenance Processes
- Common Diagnostics

Preserve Power Architecture Flexibility

Opportunity: Salvage power hardware from spent stages to exploit hardware as Spares or reuse in new mission applications.
AMPS Standardized Modular Power Interfaces

AMPS is drafting a proposed standard that is:
• Applicable to NASA exploration,
• Accommodates variations in power architecture
• Supports mission flexibility (configuration changes)
• Defines the common infrastructure needed to support the modular design
• Standardizes Data, Electrical and Mechanical Interfaces

The intent is to guide power system developers without restricting design or technology options.
• Adopts existing standards where applicable
• Emphasize Interchangeability and Interoperability
AMPS Standardized Modular Power Interfaces

AMPS Modular Approach

- Extend the modularity of International Space Station to lower Levels-of-Assembly
- AMPS defines modules as “encapsulated units” that are accessible, replaceable, and interchangeable.

<table>
<thead>
<tr>
<th>Levels of Assembly</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly: Composed of sub assemblies</td>
<td>Battery Charge Discharge Unit</td>
</tr>
<tr>
<td>and component parts [typical Avionics LRU</td>
<td>Main Bus Switching Unit</td>
</tr>
<tr>
<td>or ISS ORU]</td>
<td>Power Distribution Unit</td>
</tr>
<tr>
<td>Sub Assembly: replaceable grouping of</td>
<td>Circuit Cards that may support lower level modules.</td>
</tr>
<tr>
<td>components on a substrate or support frame</td>
<td></td>
</tr>
<tr>
<td>Component: lowest level of encapsulated</td>
<td>Point of Load Converters, Switching</td>
</tr>
<tr>
<td>replaceable hardware</td>
<td>Units, Battery Cell, (as plug in modules or mezzanine Cards)</td>
</tr>
</tbody>
</table>
AMPS Standardized Modular Power Interfaces

- Establish a common framework for Data, Electrical, Mechanical interfaces.
- Apply the Standards to 3 segments of a Power Architecture
 - Define interfaces between modules and internal to modules
 - Create Interface Specs for
 - Assemblies,
 - Subassemblies
 - Components

Module Interface Specifications
Generic Power Architecture

Power Generation
- Solar Arrays
- Fuel Cells
- Nuclear

Primary Power Bus
- Bus Regulation
- Main Bus Switching
- Vehicle Bi-Directional Converter

Energy Storage
- Batteries
- Fly-Wheel
- Ultra Capacitors
- Regenerative Fuel Cells

Secondary Power Distribution
- 120V Power Distribution
- Voltage Conversion
- Low Voltage Distribution
- Power Loads

External Vehicle Interface
- Power Loads

Distributed Energy Storage
- C&D Management
- Storage
Standardization Frameworks

Electrical Interface section addresses modular approach that is flexible, configurable, and supportable
- Breaking an architecture into functional blocks
- Grouping functions as common modular elements
- Creating an interconnection framework of Common Backplanes
- Defining the characteristics that make up Modular Interface Specs

Command & Data Interface section addresses the Communication protocols and Software with emphasis on interoperability standards.
- Power modules will support automatic ID, Digital Configuration and Integration. (i.e. Plug-and-Play)
- Internally, modules adopt protocols suited power applications but must support the higher level Interoperability requirements.

Mechanical Interface section addresses the mechanical needs in terms of structural support, encapsulation and thermal control.
- Modules and backplanes must support static and dynamic loads while providing a means of transferring thermal loads.
- Mechanical interfaces must assure ease of access and interchangeability.
Electrical Interface Standards
Electrical Power Standard

Primary Power:
- Main Bus Voltage Regulation, Switching, Directional Conversion
- Follows SAE AS5698 Power Quality Spec

Primary Power Channel A
- Power Generation
- Main Bus Regulation
- Main Bus Switching
- Bi-Directional Converter
- External Spacecraft
- Power Distribution
- Energy Storage

Lines crossing dashed envelopes must meet the Power Quality Spec
Primary Power Regulation Backplane-Module

Modules mounted on an Assembly Level Backplane. Unregulated & Regulated Power, Data and Structural and Thermal Interfaces.

Modules: Switching, Regulation, Unit Control.
Secondary Power:

- Power Distribution Units transfer Main Bus power to loads.
- May involve voltage conversion (120V to 28V) and distribution
- May allow switching to an Alternate Main Bus
- Output channels controlled by a Remote Power Controllers (RPC)
 - Switching, Automatic Fault Interruption, Current Limiting
 - Covered by SAE AS5698
Secondary Power Assembly Backplane-Modules

Secondary Power Distribution with dual main bus inputs

- Main Bus A
- Main Bus B
- Spacecraft Command & Data Network
- Housekeeping Power
- Input Selector
- 120V RPC Modules
- High Current 120V RPCs
- Sub Assembly Controller
- Sub Assembly Level Backplane
- Expansion Slots
- Common Backplane
- Cooling Fluids
- Internal Data & Power Bus

- 120V RPC Modules
- High Current 120V RPCs

www.nasa.gov
Secondary Power Assembly Backplane-Modules

Secondary Power Distribution with 120 Volt and 28 Volts

- Main Bus A
- Main Bus B
- Spacecraft Command & Data Network
- Housekeeping Power
- Input Selector
- 120 Volt RPC Modules
- 120/28 V Converter
- 120 V Bus
- Cooling Fluids
- Data & Power Bus Extension
- Interconnect Module
- 28 V Bus
- 28V Input
- 28V RPC Modules
- High Current 120V RPCs

120 Volt and 28 Volts

Cooling Fluids
Subassembly level backplanes support component level modules.

- Provides an intermediate *layer of accommodation*
- Common Input Power, Internal Data Bus and Housekeeping power
- Mounting and Thermal loads transfer into Assembly Level Backplane

Subassembly Inputs/Outputs

- Inputs from to Assembly Level Backplane
- Output channels conducted via Multilayer Backplane
- Connector Module gathers outputs to loads
- Connector Module is replaceable to allow alternate distribution and connector options
Command and Data Interface
Spacecraft Level Data System Interface

Exploration spacecraft C&DH networks are expected to employ the “DDS” (Data Distribution System) Interoperability standard

- DDS is for reliable real-time (low latency) data communications for safety critical distributed systems.
- Originally for DoD systems, DDS is currently used on SLS and Orion
- Employs a Publish/Subscribe scheme
- Encompasses Automated Integration (Plug and Play capabilities).
- Independent of network protocols
 - Time-Triggered Gigabit Ethernet
 - 1553B
Assembly Level Data Architecture

Internal Data Bus for control of Subassembly Level hardware.

- Currently considering the CAN Bus
- Must be consistent across power system
- Must allow interchangeable spares
- Must support redundancy where needed.
- Must be Visible and Addressable by upper level communications
- Allow Multi-Master control
- Packet Error Checking
- Hardware Based Arbitration

Support Fault Management
- Provide fault detection flags
- Respond to safing actions

Support Health Management
- Diagnostics features
- Prognostics features
Subassembly Level Data Architecture

Local Control Bus: Subassembly to Component Comm
- Common Commands and Data set
- Components Visible and Addressable by upper level communications
- Support Fault Management detection and safing actions
- Support Health Management Diagnostics and Prognostics
- Allow Multi-Master control
- Packet Error Checking
- Hardware Based Arbitration
- Suited for single board or backplane mounted modular components
Subassembly Level Data Architecture

SMBus Standard: Based on a PC Industry Standard and derived from I²C a device-to-device serial bus.
- Use a simple address scheme
- Multi-Master/Slave control
- Uses a hardware based bus arbitration scheme
- Packet Error Checking
- Dedicated Host Interrupt line

PMBus: SMBus with specific power management features, commands and status.

Smart Battery System (SBS): SMBus with specific a battery management features, commands and status

A number of IC manufacturers produce, SMBus, PMBus, and SBS compliant devices
Modular Specification Summary

• **Electrical Interface**
 - Applicable to Primary and Secondary Power
 - Defined Assembly & Subassembly Level Backplanes
 - Provides a common interface for Modules
 - Provides a “layers of accommodation” for more options
 - Replaceable Regulation, Switching, Controller, Input/Output Modules

• **Command and Data Interface**
 - Adopt DDS Interoperability standard
 - Supports Plug and Play features
 - Allows a power specific internal control bus

• **Mechanical Interfaces** (ongoing work)
 - Standardize Structural and Thermal interfaces
 - Define Physical Encapsulation required to create interchangeable modules.
Forward Work

• Work with *Interagency Advanced Power Group* to establish modular standards from a multi-agency perspective
• Compare AMPS Data Standard with other standards
 – AIAA Plug and Play spacecraft avionics standard.
 – Applicable Mil-Standards
• Complete the Electrical Interface definition for distribution
• Develop Mechanical Interfaces Standards for the Backplane
• Build a backplane/module demonstrator.
Thanks for your Attention

Contact Information
Richard Oeftering
richard.c.oeftering@nasa.gov
216-433-2285

AMPS Project Manager
patrick.j.george@nasa.gov