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INTRODUCTION
A number of geophysical applications require the use of the lin-
earized version of the full model. One such example is in numerical
weather prediction, where the tangent linear and adjoint versions
of the atmospheric model are required for the 4DVAR inverse prob-
lem.

The part of the model that represents the resolved scale pro-
cesses of the atmosphere is known as the dynamical core. Advec-
tion, or transport, is performed by the dynamical core. It is a central
process in many geophysical applications and is a process that often
has a quasi-linear underlying behavior. However, over the decades
since the advent of numerical modelling, significant effort has gone
into developing many flavors of high-order, shape preserving, non-
oscillatory, positive definite advection schemes. These schemes are
excellent in terms of transporting the quantities of interest in the
dynamical core, but they introduce nonlinearity through the use of
nonlinear limiters.

The linearity of the transport schemes used in Goddard Earth
Observing System version 5 (GEOS-5), as well as a number of other
schemes, is analyzed using a simple 1D setup. The linearized ver-
sion of GEOS-5 is then tested using a linear third order scheme in
the tangent linear version.

1D CASE STUDY
The one dimensional advection equation is given by,

∂q

∂t
+ u

∂q

∂x
= 0, (1)

where q(x, t) is the tracer being advected, u is the wind and t is time.
The horizontal domain is periodic on x ∈ (0, 1]. The number of grid
points is N = 64 and the grid spacing is ∆x = 1/N . The velocity is
constant and set to u = 1 and the Courant number is chosen as 0.1
to ensure stability, giving a time step of ∆t = 1/640.

Three initial profiles are considered. A step function,

qj =

{
1, if 0.25 < xj < 0.75

0, otherwise
, (2)

a sine wave,

qj = 0.5(1 + sin(2πxj)) (3)

and a point function.

qj =

{
1, if j = N/2

0, otherwise
. (4)

The profiles are advected once around the domain using the
schemes outlined in the table.

Scheme Type Nonlinear limiter Acronym
1st order FD None
2nd order FD None
3rd order FD None

PPM None
PPM Colella and Woodward (1984) CW
PPM Colella and Sekora (2008) CS
PPM CW + Lin (2004) CWL

3rd order FD Leonard (1991) (universal) UL
SLICE None
SLICE Bermejo and Staniforth (1992) BES
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FIGURE 1: This figure shows the advection of the three ini-
tial profiles using a third order scheme, an unlimited PPM
scheme and the PPM scheme with CWL limiter that is used in
GEOS-5. The limited PPM scheme prevents oscillations and
negative values and maintains the shape most accurately.

Various infinitesimal perturbations δq are applied to the initial con-
ditions. Linearity is measured by comparing the nonlinear per-
turbation trajectory m(q + δq) −m(q) with the linear perturbation
trajectory Mδq. The behavior of individual solutions can be ascer-
tained by seeking wavelike solutions q′ ∼ exp (λt).
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FIGURE 2: This figure shows the advection of a perturbation
applied to the step function. The schemes used are second
order, third order, unlimited PPM and three limited PPM
schemes. For linear schemes the linear and nonlinear per-
turbation trajectories are equivalent (red curves equal blue
curves). The nonlinear schemes have large oscillations.
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FIGURE 3: This figure shows the complex-plane scatter plot of
the eigenvalue spectrum for the CWL limited PPM scheme.
Many solutions with large amplitude growth are present,
leading to the development of spuriously large perturba-
tions. This many growing modes are seen at most time steps.

The 1D case study reveals that:
• If the perturbation has the same shape as the underlying function

all schemes perform linearly.
• If the underlying profile is smooth then the nonlinear limiters are

inactive, and the performance of the nonlinear schemes is similar
to the linear part of the scheme.
• If the underlying profile contains discontinuities all of the non-

linear schemes have problems when linearized, e.g. PPM and UL
schemes have growing modes.

GEOS-5 LINEARIZED MODEL
A simplified configuration of the linearized version of GEOS-5 is
used in order to compare the behavior of the linear third order
scheme with the default PPM with CWL limiter for realistic ap-
plications. A 24 hour long integration of the nonlinear model is
initialized from realistic conditions. A second integration, and non-
linear perturbation trajectory, is obtained by adding an analysis in-
crement to the initial conditions. That same analysis increment is
propagated using the tangent linear model and compared with the
nonlinear perturbation trajectory after 24 hours.
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FIGURE 4: Correlations for cloud liquid water, cloud liquid
ice and specific humidity after 24 hours.

When using the PPM scheme with CWL limiter perturbations can
grow very large. Problems occur where the wind speeds are low. In
regions where large perturbation growth does not occur, the errors
for PPM CWL are generally larger than using the linear third order
scheme.
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(a) Nonlinear perturbation trajectory at 800hPa
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(b) Linear perturbation trajectory with CWL limiter
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(c) Linear perturbation trajectory with third order
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FIGURE 5: This figure shows the nonlinear perturbations tra-
jectory and the linear perturbation trajectory at 800hPa when
using the PPM scheme with CWL limiter and the third or-
der finite difference scheme. With the third order scheme no
spurious perturbation growth is seen.

When switching to the third order scheme the biggest improvement
is seen for the most discontinuous fields, which are the clouds. Spe-
cific humidity and ozone also benefit significantly.

CONCLUSIONS
Motivated by finding a suitable advection scheme to use in the
linearized version of GEOS-5, the linearity of a selection of com-
mon tracer transport schemes has been tested. All of the nonlinear
schemes tested had some degree of problem. The PPM and UL
schemes support rapidly growing solutions which cause unrealistic
perturbation growth. It is argued that a third order linear scheme
should be used in the linearized version of GEOS-5: it is linear,
performs advection similarly to limited schemes, does not support
large perturbation growth, does not produce significant negative
values, has limited oscillations and is relatively inexpensive.
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