Nasa’s Digital Astronaut Project (DAP) Vision

The Digital Astronaut Project implements well-vetted computational models to predict and assess spaceflight health and performance risks, and enhance countermeasure development, by:

- Partnering with subject matter experts to inform HRP knowledge gaps and countermeasure development decisions;
- Modeling and simulating the adverse physiologic responses to repeatedly transitioning from low- and analog environments;
- Ultimately providing timely input to mission architecture and operations decisions in areas where clinical data are lacking.

VERIFICATION AND VALIDATION (V&V)

- Computed calculated joint angles, torque and forces with reported data
- Validated model kinematics, dynamics and GRF’s versus literature on the squat exercise
- Performed preliminary sensitivity analysis to quantify effects of perturbations to model parameters
- NASA-STD-7009 credibility assessed for 1g, estimated for 0g

RESULTS: MUSCLE AND JOINT-ONLY MODULES

- Ground Reaction Forces (GRF) - Verification
- Compare model-predicted GRF’s with measured GRF

DISCUSSION: ACCOMPLISHMENTS AND FINDINGS

- Kinematic agreement is better during the ascent/descent phases than at the start/end of the movement
- Joint forces are more accurately reproduced in the ASM model than the DAP
- Relative muscle tensions among muscle mimics the activation patterns reported in the literature
- The 0g kinematics cannot be predicted by simply ignoring gravity and activating the VIS on the ARED.

FUTURE WORK

- DAP Bone Adaptation Model
 - Provide exercise-induced loading inputs
 - Key skeletal sites: hip, spine and femoral neck
- DAP Muscle Adaptation Model
 - Change LifeMOD muscle parameters to reflect adaptations to spaceflight
- Quantity effects of changes to cross-sectional area, maximum isotonic force and recruitment of individual muscles

ACKNOWLEDGEMENTS

This work is funded by the NASA Human Research Program, managed by the NASA Johnson Space Center. Specifically, this work is a part of the Digital Astronaut Project (DAP), which directly supports the Human Health and Countermeasures (HH&C) Element. The DAP project is managed out of NASA/Glenn Research Center (GRC) by DelWin W. Griffin, Ph.D., and Leamul Mulugeta of USRA Houston serves as the DAP Project Scientist.

REFERENCES

CONCLUSIONS

- Accurate predictions of joint angles, torques and forces in both static and dynamic conditions
- Improved muscle and joint model performance and fidelity increases with additional anatomical information
- Joint and muscle training models can inform the DAP muscle adaptation framework

FACILITIES

- LifeMOD: Indeterminate 3D dynamic analysis
- Pro-E solid models, engineering specifications, and engineering hardware verification data.
- Constructed in Msc-Adams™

METHODS: IMPLEMENTATION DETAILS

- Integration in LifeMOD
- Prior to model merge operation
 - Preset ARED exercise bar to barbell configuration
 - Align reference frames of ARED and body in virtual environment
 - Balancing of GRF’s (vs. measured GRF data) hierarchically propagates results of the modules
 - Visual inspection of model posture using Pro-E solid model files, engineering specifications, and engineering hardware verification data.
- Modeling of Contacts Between Biomechanical Module and ARED
- Adjusted parameters
 - Servo joints
 - Proportional gain
 - Derivative gain
 - Passive joints
 - Translational Stiffness/Damping
 - Rotational Stiffness/Damping
 - Muscles
 - Stiffness
 - Damping
 - Phys. Cross Sectional Area
 - Ground reaction force (GRF)
 - FID plane
 - Inertial geometry
- Joint and Muscle Training
 - Motion tracker agent
 - Residual forces applied at pelvis in transverse directions to keep the model stable during the exercise
 - Adjustable rotational and translational stiffnesses
 - GRF data and joint angle errors iteratively verify the forward dynamic simulations
 - With ARED
 - Without ARED – compare to existing biomechanical models
 - Adjust gain and stiffness/damping until model is verified

METHODS: BIO-MECH., AREDS & INTEGRATED MODULES

- Derived from motion capture (MoCap) and ground reaction force (GRF) data acquired on the ARED ground unit utilizing a modules exercise-experienced male subject
- Constructed a forward dynamics module in LifeMOD (a plug-in to Adams™) to ensure the performance of a 1-repetition maximum exercise
- Joint-only and joint/muscle configurations

NASA’s Digital Astronaut Project (DAP) Vision

The Digital Astronaut Project implements well-vetted computational models to predict and assess spaceflight health and performance risks, and enhance countermeasure development, by:

- Partnering with subject matter experts to inform HRP knowledge gaps and countermeasure development decisions;
- Modeling and simulating the adverse physiologic responses to repeatedly transitioning from low- and analog environments;
- Ultimately providing timely input to mission architecture and operations decisions in areas where clinical data are lacking.

VERIFICATION AND VALIDATION (V&V)

- Computed calculated joint angles, torque and forces with reported data
- Validated model kinematics, dynamics and GRF’s versus literature on the squat exercise
- Performed preliminary sensitivity analysis to quantify effects of perturbations to model parameters
- NASA-STD-7009 credibility assessed for 1g, estimated for 0g