COMPUTATIONAL BIOMECHANICAL MODELS OF SQUAT EXERCISE PERFORMED ON THE ADVANCED RESISTIVE EXERCISE DEVICE (ARED)

NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135
ZIN Technologies, 6745 Engle Road, Airport Executive Park, Cleveland, OH 44130
Wyle Science, Technology & Engineering Group, 1290 Hercules Drive, Houston, TX 77058
University of Space Research Assoc., Div. of Space Life Sciences, 3600 Bay Area Blvd., Houston, TX 77058

BACKGROUND

NASA’s Digital Astronaut Project (DAP) Vision

The Digital Astronaut Project implements well-vetted computational models to predict and assess spaceflight health and performance risks, and enhance countermeasure development, by

- Partnering with subject matter experts to inform HRP knowledge gaps and countermeasure development decisions;
- Modeling and simulating the adverse physiologic responses to spaceflight on subjects exposed to vestibular and analog environments; and
- Ultimately providing timely input to mission architecture and operations decisions in areas where clinical data are lacking.

Methods: Bio-Mech., ARED & Integrated Modules

- Derived from motion capture (MoCap) and ground reaction force (GRF) data acquired on the ARED and training using modules exercise-experienced male subjects
- Constructed a forward dynamics module in LeibMOD (a plug-in to Adams™) using the performance of a 1-repetition maximum exercise
- Joint-only and joint/muscle configurations

ARED Device Module

- ARED is a resistance-training exercise device for the crew of the International Space Station (ISS)
- Rigid Body Dynamics module developed using Pro-E solid model files, engineering specifications, and engineering hardware verification data.
- Constructed in MS Adams™

Integration in LifeMOD

- Prior to model merge operation
- Present ARED exercise bar in serial model configuration
- Align reference frames of ARED and biomechanical modules
- Balancing of GRF’s (vs. measured GRF data) hierarchically determines proper co-alignment of the modules
- Visual inspection of model posture using Pro-E solid model and simulation analysis
- Model caliper marker weights are adjusted to obtain proper posture
- Physical contacts modeled as below

Joint and Muscle Training

- Adjustable parameters
 - Servo joints
 - Proportional gain
 - Derivative gain
 - Passive joints
 - Translational Stiffness/Damping
 - Rotational Stiffness/Damping
 - Muscles
 - Damping
 - Flex (P3, P4, and C16 model files)
 - FID joint
 - Insertion geometry

Other Steps

- Motion tracker agent
- Residual forces applied at pelvis in transverse directions to keep the model stable during the exercise
- Adjustable rotational and translational stiffness
- GRF data and joint angle errors iteratively verify the forward dynamics simulations
- With ARED
 - Without ARED – compare to existing biomechanical models
 - Adjust gain and stiffness damping until model is verified

Modeling of Contacts Between Biomechanical Module and ARED

- Contact plane
- Contact plane simulates节点 force plate measuring ground reaction forces
- Feets in contact with simulated force platform
- Grit contact with spinal marker on the upper bar
- Hands and upper back in contact with the bar

RESULTS: MUSCLE AND JOINT-ONLY MODULES

- Results of V&V of ASM-im in 1g per NASA-STD-7009
- Results Robustness
- Use History
- M&S Management
- People Qualifications
- Verification: Are the model results meaningful?
 - Compare calculated forces, muscle tensions and joint torques with reported measurements in the literature made under similar loading conditions.
 - Conform to NASA-STD-7009 standards for assessing the credibility of computational models in all V&V activities
- Validation: Are the model results correct?
 - Compare joint angles and displacements between the forward dynamics (driven by the trained module) and inverse dynamics (driven by MoCap data)
 - Vary the load setting on the ARED module and examine the resulting forces, muscle tensions and joint torques

DISCUSSION: ACCOMPLISHMENTS AND FINDINGS

- Accomplishments to date
 - Completed integrated modules for the 1g squat exercise in both joint-only (ASM-i) and muscle/joint (ASM-im) configurations.
 - Validated kinematics, joint forces/torques, muscle lengths and GRF
 - Validated model kinematics, dynamics and GRF’s versus literature on the squat exercise
 - Performed preliminary sensitivity analysis to quantify effects of perturbations to model parameters
 - NASA-STD-7009 credibility assessed for 1g, estimated for 0g

- Major Findings
 - Kinematic agreement is better during the ascent/descent phases than at the start/end of the movement
 - Joint forces are more accurately reproduced in the ASM-im model than the ASM-i
 - Relative muscle tensions among muscles mimic the activation patterns reported in the literature.
 - The 0g kinematics cannot be predicted by simply ignoring gravity and activating the VIs on the ARED.

FUTURE WORK

- Enhance ARED Squat Model
 - Obtain 0g motion capture data from ISS video to fully develop 0g ARED squat model
 - Quantify the effects of 0g and the VIs on exercise kinematics and dynamics
 - Analyze effects of posture, positioning and cadence on module outputs (kinematics, joint forces/torques and muscle tensions)
 - Overcome limitations in the 1g model such as small data set, artifacts and absence of upper body musculature

- Model Other Exercises on ARED
 - Single-leg Squat
 - Daeidit (pavlov model)
 - Heel Raise

ACKNOWLEDGEMENTS

This work is funded by the NASA Human Research Program, managed by the NASA Johnson Space Center. Specifically, this work is part of the Digital Astronaut Project (DAP), which directly supports the Human Health and Countermeasures (HHC) Element. The DAP project is managed out of NASA/Glenn Research Center (GRC) by Dr. W. Griffin, Ph.D., and Leamul Mulugeta of USRA Houston serves as the DAP Project Scientist.

REFERENCES

8. Thompson et al., Poster #4111, JPPJWSS 2012, 14-16 Feb. 2012, Houston, TX.

www.nasa.gov