Fatigue Life of Haynes 188 Superalloy in Hydrogen

Tim Gabb1, Henry Webster2, Greg Ribeiro2, Tim Gorman3, John Gayda1

1. NASA Glenn Research Center
2. ATK
3. Univ. of Dayton

Materials Science & Technology 2011
October 19, 2011
• The Durable Combustor Rig (DCR) provides a flexible and efficient test bed to demonstrate the durability of actively cooled scramjet engine structures, static and dynamic sealing technologies, and thermal management techniques.
 – DCR is hydrogen fueled and cooled
 – Flight-like structural test panels also hydrogen cooled
 – Testing at NASA Langley Research Center

T. D. Drozda, D. P. Capriotti, R. L. Gaffney, “Modeling and Simulation of Mach 6 Tests of NASA’s Durable Combustor Rig with VULCAN”, 58th JANNAF Propulsion Meeting / 44th CS / 32nd APS / 32nd EPSS / 26th PSHS Joint Subcommittee meeting, April 2011, Crystal City, VA.

• Statement of Problem: Actively cooled combustor walls of Haynes 188 superalloy shall encounter severe conditions that could challenge low cycle fatigue durability in repeated runs

Haynes 188 Panel Cross-section
- Temperatures up to 650°C
- High thermal gradients
- High pressure hydrogen environment
- Surface finish variations

• Objective: Assess low cycle fatigue capability of Haynes 188 for DCR application
 - 25 and 650°C
 - Hydrogen and helium environments
 - Low stress ground (LSG) and electro-discharge machined (EDM) finish
• Material: Haynes 188

<table>
<thead>
<tr>
<th>Element</th>
<th>B</th>
<th>C</th>
<th>Cr</th>
<th>Fe</th>
<th>La</th>
<th>Mn</th>
<th>Ni</th>
<th>Si</th>
<th>W</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight %</td>
<td>0.015*</td>
<td>0.10</td>
<td>22.0</td>
<td>3.0*</td>
<td>0.03</td>
<td>1.25*</td>
<td>22.0</td>
<td>0.35</td>
<td>14.0</td>
<td>39 (bal.)</td>
</tr>
</tbody>
</table>

* Maximum

40 μm Grain Size

- Specimens machined from remnants of DCR structural panels
- EDM finish of cooling holes reproduced on specimens surfaces
- No cracks observed in EDM recast layer

LSG and EDM Finished Fatigue Specimens

Recast Layer

W₆C

W₆C

50 μm

Gage Center

5.35

12.7

69
The EDM finish gave higher roughness and tensile residual stresses near the surface in comparison to LSG specimens.
Fatigue Testing: Performed at the NASA Marshall Space Flight Center, hydrogen test facility
- 25 and 650° C, hydrogen and helium gas environments at 34.5 MPa pressure
- Constant total strain range (Δεₜ) tests, min./max. strain ratios (Rₜ)=0.05 and -1
- Lives compared using the Smith-Watson-Topper stress parameter,\[SWT = (\sigma_{\text{max}} \Delta \varepsilon_t \cdot E/2)^{0.5} \]
- Accounts for variations in:
 - Total strain range Δεₜ
 - Maximum stress σ_{\text{max}}
 - Elastic modulus E
- NASA GRC has successfully used this fatigue parameter in past studies (1) of Haynes 188

Results: Hydrogen Reduced Fatigue Life At Room Temperature

Higher strain ratio consistently reduced life at 650°C
Hydrogen Reduced Mean Fatigue Life 5x
At Room Temperature

EDM finish did not strongly degrade mean fatigue life, but increased scatter at 25°C
Multiple Linear Regression

- Continuous variables of temperature, σ_{SWT}, roughness, and residual stress were scaled to be -1 to +1 so magnitudes of regression constants could be used to rank their influences:
 \[\log(\text{life}) = 3.7901 - 0.3678 e^{-0.4373 T'} - 0.7213 \sigma_{\text{SWT}}' + 0.1843 e^{T'} - 0.1876 T' \sigma_{\text{SWT}}' \]

- Environment was included as a discrete variable (helium-0, hydrogen-1)

Log(life) = 3.7901 - 0.3678 e$^{-0.4373 T'}$ - 0.7213 σ_{SWT}' + 0.1843 e$^{T'}$ - 0.1876 T' σ_{SWT}'

$R^2_{\text{adj}} = 0.855$,
rms Error = 0.1846
Fatigue Failure Initiation Sites Varied With Environment At Room Temperature

LSG / 1% Strain / He
LSG / 1% Strain / H
EDM / 1% Strain / H

Normal to Load Axis Grain Facet Grain Facet

Crystallographic grain facets initiated surface cracks in hydrogen

- Subsequent crack growth was transgranular, but not faceted (brittle)
Fatigue Failure Initiation Sites Varied With Environment At 650°C

Grain boundary cracking at the surface was encouraged by hydrogen

- Subsequent crack growth was transgranular, did not appear faceted
Additional Samples Were Prepared With Purposefully Varied EDM Finish and Resulting Roughness

Low

Standard

High

Recast Layer

Recast Layer

Recast Layer

Tests performed in hydrogen at an intermediate temperature of 325°C indicated “high” EDM conditions reduced life.
EDM Recast Layer Thickness and Surface Roughness Versus Fatigue Life in Hydrogen at 325°C

Valley roughness (Rv) had the strongest correlation with fatigue life.

- Substantial scatter remained, suggesting other factors at “high” have influence.
Fatigue Failure Initiation Sites Did Not Consistently Vary With EDM Condition for Tests in Hydrogen at 325°C

Cracking at surface facets was less prevalent than at 25°C, and often occurred normal to the loading axis at valleys

- Subsequent crack growth was transgranular, did not appear faceted (brittle)
• Summary: Low cycle fatigue capability of Haynes 188 was assessed for DCR application
 – 25 and 650°C
 – Hydrogen and helium environments
 – Low stress ground and electro-discharge machined finish

• Conclusions: Low cycle fatigue life capability of Haynes 188 in hydrogen looks quite satisfactory for DCR application
 – Capability moderately decreased by hydrogen at low temperature
 – Capability not decreased with controlled EDM machining
 – Failures indicate retention of ductility during crack growth

• Acknowledgements
 NASA Langley Research Center: Anthony Calomino, Diego Capriotti
 NASA Marshall Space Flight Center: Tina Malone, Keith Hastings, Eric King