Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

Kirsten P. Duffy – University of Toledo
Benjamin B. Choi – NASA Glenn Research Center
Andrew J. Provenza – NASA Glenn Research Center
James B. Min – NASA Glenn Research Center
Nicholas Kray – GE Aviation
Background

• High performance fan blades
 – High excitation levels
 – Vibratory stresses → fatigue

• Incorporate damping into blades
 – Piezoelectric materials
 • Passive damping – e.g. shunt circuit
 • Active vibration control
 – Spin testing with active control
 • Surface-mounted sensors and actuators
 • Control 1st bending vibration
 – Possibility of embedding into blades
 • Protect from airflow and debris
 • Future testing
Piezoelectric Damping Research

• Basic Research
 – Chopra (2002) – survey of smart structures
 – Hagood and von Flotow (1991) – analysis of piezoelectric damping
 – Lesieutre (1998) – types of passive damping shunt circuits

• Turbomachinery Application
 – Cross and Lewis (2002) – smart materials for future engines
 – Cross and Fleeter (2002) – stator blade damping with passive shunt circuit
 – Remington et al. (2003) – stator blade actuation for noise control
 – Watanabe et al. (2008) – blade flutter control in a linear transonic cascade
 – Hohl et al. (2009) – bladed disk model with shunt circuits – analysis and testing
 – Kauffman and Lesieutre (2010) – frequency-switching for resonance avoidance

• Implementation
 – Hilbert et al. (2001) – patent for shunted piezoelectric damping of blades
 – Duffy et al. (2009) – piezoelectric plate damping under rotation
 – Siemann et al. (2009) – piezoelectric actuation of compressor blades under rotation
 – Bachmann et al. (2010) – pre-compressing piezoelectric elements to reduce centrifugal tensile stress
 – Duffy et al. (2012) – effects of embedding on composite strength
Piezoelectric Vibration Control

- $K = \text{“generalized electromechanical coupling”}$
- Damping is proportional to K^2
- $K^2 = \text{energy converted by the piezoelectric material into electrical energy divided by the system modal strain energy}$
- Centrifugal effects:
 - Centrifugal stiffening may increase resonance frequency, decreasing K
 - Modal stress contours will also change with rotational speed, affecting K
 - Tensile stress in the piezoelectric material due to spinning

\[
K^2 = \frac{f_{oc}^2 - f_{sc}^2}{f_{oc}^2}
\]

1B modal strain
Piezoelectric element at high strain location
Test Configuration

- Two actuators
- One sensor
- Located at high modal strain location for 1B mode
- Expected centrifugal strain at max speed of 5000 RPM is 300×10^{-6} m/m
Test Articles

<table>
<thead>
<tr>
<th>Blade Material</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer matrix fiber composite</td>
<td>HexPly 8551-7</td>
<td>Epoxy resin with unidirectional carbon fibers, ply stack-up</td>
</tr>
<tr>
<td></td>
<td>with IM 7 carbon fibers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Piezoelectric Materials</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible, macro-fiber composite, d_{31}-type, 300mm (0.012") thick</td>
<td>Smart-Material Corp. Sensor: M-0714-P2 Qty:1</td>
<td>14.0 mm x 7.0 mm (0.55" x 0.28") 6.5nF nominal capacitance -600x10^{-6} free strain -85N (-19 lbf) blocking force</td>
</tr>
<tr>
<td>PZT-5A (Navy Type-II PZT)</td>
<td>Smart-Material Corp. Actuators: M-2814-P2 Qty: 2</td>
<td>14.0 mm x 28.0 mm (0.55" x 1.10") 25.7nF nominal capacitance -700x10^{-6} free strain -85 N (-19 lbf) blocking force</td>
</tr>
</tbody>
</table>
Dynamic Spin Rig Facility

- Two blades place opposite each other in dovetail fixtures
- Vacuum
- Excitation provided by magnetic bearings to the rotor
- Slip ring
- 0-5000 RPM for this test
- Instrumentation
 - Piezoelectric sensor on each blade
 - Two piezoelectric actuators on each blade
 - Endevco model 25A accelerometer on blade fixture
- Equipment
 - Data Physics SignalCalc Mobilyzer provided excitation voltage, also measured response from sensors
 - dSPACE control system
 - Midé Piezoelectric amplifiers
Dynamic Spin Rig Facility
Spin Test

• Piezoelectric Sensor
 – Measure response to magnetic bearing excitation – no control
• Piezoelectric Actuator
 – Measure response to piezoelectric actuator excitation – no control
• Open Loop Control
 – Magnetic bearing excitation
 – Piezoelectric actuator at same frequency as excitation, phase chosen to reduce blade response
• Closed Loop Control
 – Based on a tuned RLC circuit (Choi 2008)
 – Implemented in dSPACE control code
 – Amplified signal (from amplifier and within control code)
Passive RLC Shunt Circuit

- Closed-loop control based on RLC circuit
- Capacitance C
 - Piezoelectric material property
- Inductance L
 - Sets the electric circuit frequency
- Resistance R
 - Dissipates energy → damping
 - Sets the bandwidth
Closed-Loop Control System

dSPACE Control System (based on RLC circuit)

Amplifier

Amplifier

sensor

actuators
Blade Resonance Frequency/Damping

![Graph showing the relationship between frequency and damping factor with respect to RPM. The graph displays a trend of increasing resonance frequency and damping factor as RPM increases.](image-url)
Generalized Electromechanical Coupling

\[K^2 = \frac{f_{oc}^2 - f_{sc}^2}{f_{oc}^2} \]
Piezoelectric Patch as Sensor

- Excitation provided by magnetic bearings
- Strain measured by piezoelectric sensor
- Strain should be proportional to K

- Piezoelectric sensor – voltage output proportional to strain
- Average strain over sensor area
Piezoelectric Patch as Actuator

• Excitation provided by piezoelectric actuator
• Strain measured by piezoelectric sensor
• Strain should be proportional to K

• Piezoelectric excitation levels much lower than magnetic bearing excitation levels (60 microstrain versus 250 microstrain)
Open Loop Vibration Control

- 0.4 V to MB, Actuator 2
- 0.4 V to MB, Actuator 3
- 0.4 V to MB, Actuators 2&3
- 1.0 V to MB, Actuator 2
- 1.0 V to MB, Actuator 3
- 1.0 V to MB, Actuators 2&3
Closed Loop Control

Reduced Response from Single Actuator

Sensor Strain (Microstrain) vs RPM

- 0.4 V to MB - Baseline
- 1.0 V to MB - Baseline
- 1.5 V to MB - Baseline
- 2.0 V to MB - Baseline
- 0.4 V to MB - Control
- 1.0 V to MB - Control
- 1.5 V to MB - Control
- 2.0 V to MB - Control

3000 RPM

Sensor Strain (Microstrain) vs Voltage Amplitude to MB

- None
- Actuator 2
- Actuator 3
- Actuators 2 and 3
Damping from Closed Loop Control

- Control system is simulated RLC circuit with amplification
- \(R = 2500\Omega \), bandwidth \(\sim 4 \) Hz
- \(L \) changes with blade frequency
- Low excitation level – voltage to actuators below max allowable
Conclusions

• Spin test conclusions
 – Successful demonstration of open and closed loop control of blade vibration over a rotational speed range
 • Up to 1% damping at 0 RPM, 0.5% damping at 5000 RPM
 – Piezoelectric patches operated as designed under centrifugal and vibrational load
 – Damping shown to be proportional to K^2

• Maximize K to maximize damping
 – Effect of target resonance mode
 – K is proportional to piezoelectric material elastic modulus and thickness (to first order)
 – K is proportional to material electromechanical coupling, k
 • Single crystal material
 • d_{33} versus d_{31} type actuators
 – Optimize coverage area
Complementary Research at NASA GRC

• Composites with embedded piezoelectric materials – component strength and fatigue properties
 – Material coupon testing (Duffy 2012)
• Subscale composite fan blades with embedded piezoelectric sensors and actuators
 – Blades currently being fabricated – vibration testing
• Piezoelectric material property variation with temperature
 – New material compositions
• Power transmission to piezoelectric actuators from the stationary frame
 – Collaboration with Mesa Systems Co. to develop inductive power transmission device
Acknowledgments

• NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project
• Space Act Agreement – NASA Glenn Research Center and GE Aviation

• Thanks to Jeff Kauffman (Penn State University) and Carlos Morrison (NASA Glenn) for their assistance during testing