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Background 

• High performance fan blades 

– High excitation levels 

– Vibratory stresses  fatigue 

• Incorporate damping into blades 

– Piezoelectric materials 

• Passive damping – e.g. shunt circuit 

• Active vibration control 

– Spin testing with active control 

• Surface-mounted sensors and actuators 

• Control 1st bending vibration 

– Possibility of embedding into blades 

• Protect from airflow and debris 

• Future testing 
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Piezoelectric Damping Research 

• Basic Research 
– Chopra (2002) – survey of smart structures 

– Hagood and von Flotow (1991) – analysis of piezoelectric damping 

– Lesieutre (1998) – types of passive damping shunt circuits 

• Turbomachinery Application 
– Cross and Lewis (2002) – smart materials for future engines 

– Cross and Fleeter (2002) – stator blade damping with passive shunt circuit 

– Remington et al. (2003) – stator blade actuation for noise control 

– Watanabe et al. (2008) – blade flutter control in a linear transonic cascade 

– Struzik and Wang, Yu and Wang (2007,2009) – piezoelectric circuits for mistuning and 

damping 

– Hohl et al. (2009) – bladed disk model with shunt circuits – analysis and testing 

– Kauffman and Lesieutre (2010) – frequency-switching for resonance avoidance 

• Implementation 
– Hilbert et al. (2001) – patent for shunted piezoelectric damping of blades 

– Duffy et al. (2009) – piezoelectric plate damping under rotation 

– Siemann et al. (2009) – piezoelectric actuation of compressor blades under rotation 

– Bachmann et al. (2010) – pre-compressing piezoelectric elements to reduce centrifugal 

tensile stress 

– Duffy et al. (2012) – effects of embedding on composite strength 
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Piezoelectric Vibration Control 

• K = “generalized electromechanical coupling” 

• Damping is proportional to K2 

• K2 = energy converted by the piezoelectric material into electrical energy divided 

by the system modal strain energy 

• Centrifugal effects: 

– Centrifugal stiffening may increase resonance frequency, decreasing K 

– Modal stress contours will also change with rotational speed, affecting K 

– Tensile stress in the piezoelectric material due to spinning 
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Test Configuration 

• Two actuators 

• One sensor 

• Located at high modal 

strain location for 1B mode 

• Expected centrifugal strain 

at max speed of 5000 RPM 

is 300x10-6 m/m 
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Test Articles 

Blade Material Type Description 

Polymer matrix fiber 

composite 

HexPly 8551-7 

with IM 7 carbon fibers 

Epoxy resin with unidirectional 

carbon fibers, ply stack-up 

Piezoelectric Materials Type Description 

Flexible, 

macro-fiber composite, 

d31-type, 300mm 

(0.012”) thick 

 

PZT-5A 

(Navy Type-II PZT) 

Smart-Material Corp. 

Sensor: 

M-0714-P2 Qty:1 

14.0 mm x 7.0 mm (0.55” x 0.28”) 

6.5nF nominal capacitance 

-600x10-6 free strain 

-85N (-19 lbf) blocking force 

Smart-Material Corp. 

Actuators: 

M-2814-P2  Qty: 2 

14.0 mm x 28.0 mm (0.55” x 1.10”) 

25.7nF nominal capacitance 

-700x10-6 free strain 

-85 N (-19 lbf) blocking force 
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Dynamic Spin Rig Facility 

• Two blades place opposite each other in 

dovetail fixtures 

• Vacuum 

• Excitation provided by magnetic bearings 

to the rotor 

• Slip ring 

• 0- 5000 RPM for this test 

• Instrumentation 
– Piezoelectric sensor on each blade 

– Two piezoelectric actuators on each blade 

– Endevco model 25A accelerometer on blade 

fixture 

• Equipment 
– Data Physics SignalCalc Mobilyzer provided 

excitation voltage, also measured response from 

sensors 

– dSPACE control system 

– Midé Piezoelectric amplifiers 
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Dynamic Spin Rig Facility 
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Spin Test 

• Piezoelectric Sensor 

– Measure response to magnetic bearing excitation – no control 

• Piezoelectric Actuator 

– Measure response to piezoelectric actuator excitation – no control 

• Open Loop Control 

– Magnetic bearing excitation 

– Piezoelectric actuator at same frequency as excitation, phase chosen to 

reduce blade response 

• Closed Loop Control 

– Based on a tuned RLC circuit (Choi 2008) 

– Implemented in dSPACE control code 

– Amplified signal (from amplifier and within control code) 
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R L 

Passive RLC Shunt Circuit 
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• Closed-loop control based on RLC circuit 

• Capacitance C 

– Piezoelectric material property 

• Inductance L 

– Sets the electric circuit frequency 

• Resistance R 

– Dissipates energy  damping 

– Sets the bandwidth 
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Closed-Loop Control System 
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dSPACE Control System 

(based on RLC circuit) 

Amplifier 

Amplifier 

sensor 

actuators 
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Blade Resonance Frequency/Damping 
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Generalized Electromechanical Coupling 
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Piezoelectric Patch as Sensor 
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• Excitation provided by magnetic 

bearings 

• Strain measured by piezoelectric 

sensor 

• Strain should be proportional to K 

• Piezoelectric sensor – 

voltage output proportional 

to strain 

• Average strain over sensor 

area 
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Piezoelectric Patch as Actuator  
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• Excitation provided by 

piezoelectric actuator 

• Strain measured by 

piezoelectric sensor 

• Strain should be proportional 

to K 

• Piezoelectric excitation 

levels much lower than 

magnetic bearing excitation 

levels (60 microstrain 

versus 250 microstrain) 
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Open Loop Vibration Control 
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Closed Loop Control 

17 

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

Se
n

so
r 

St
ra

in
 (

M
ic

ro
st

ra
in

)

RPM

0.4 V to MB -
Baseline
1.0 V to MB -
Baseline
1.5 V to MB -
Baseline
2.0 V to MB -
Baseline
0.4 V to MB -
Control
1.0 V to MB -
Control
1.5 V to MB -
Control
2.0 V to MB -
Control

0

20

40

60

80

100

120

140

160

180

0.0 1.0 2.0 3.0

Se
n

so
r 

St
ra

in
 (

m
ic

ro
st

ra
in

)
Voltage Amplitude to MB

None

Actuator 2

Actuator 3

Actuators 2 and 3

3000 RPM 

Reduced Response from 

Single Actuator 



National Aeronautics and Space Administration 

www.nasa.gov 

Damping from Closed Loop Control 
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Control

• Control system is simulated RLC 

circuit with amplification 

• R = 2500W, bandwidth ~4 Hz 

• L changes with blade frequency 

• Low excitation level – voltage to 

actuators below max allowable 
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Conclusions 

• Spin test conclusions 

– Successful demonstration of open and closed loop control of blade 

vibration over a rotational speed range 

• Up to 1% damping at 0 RPM, 0.5% damping at 5000 RPM 

– Piezoelectric patches operated as designed under centrifugal and 

vibrational load 

– Damping shown to be proportional to K2 

• Maximize K to maximize damping 

– Effect of target resonance mode 

– K is proportional to piezoelectric material elastic modulus and 

thickness (to first order) 

– K is proportional to material electromechanical coupling, k  

• Single crystal material 

• d33 versus d31 type actuators 

– Optimize coverage area 
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Complementary Research at NASA GRC 

• Composites with embedded piezoelectric materials – 

component strength and fatigue properties 

– Material coupon testing (Duffy 2012) 

• Subscale composite fan blades with embedded piezoelectric 

sensors and actuators 

– Blades currently being fabricated – vibration testing 

• Piezoelectric material property variation with temperature 

– New material compositions 

• Power transmission to piezoelectric actuators from the 

stationary frame 

– Collaboration with Mesa Systems Co. to develop inductive power 

transmission device 
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