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Expected Deep-space communications downlink data rate trend

D. Abraham, “Deep Space Mission Overview,” Space-Based Large Deployable Antenna System Workshop, Reston, VA, Nov. 14-16, 2006
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NGST! 5m Reflector Evaluated at 32, 38 and
49 GHz as well as laser radar surface accuracy mapping
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Shape Memory Polymer Deployable Antenna
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Deployment Sequence

4 m X 2.5 m Composite Technology Development Laser Vietrology on D
Reflector In NASA Glenn Near Field Antenna Range Reflector at NASA Glenn

http://www.ctd-materials.com/
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Selt-Deploying Gossamer Support Structure @

Phase II SBIR NASA Contract NNCO6CA10C
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Activation sequence of early prototype self-deploying truss:
one minute duration from compressed (2.5 in.) to deployed
(28.5 in.)
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SAC-C Experiment
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SAC-C Experimentl
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“Optimizing Satellite Communications with Adaptive and Phased Array Antennas”,
M. Ingram, R. Romanofsky, R. Lee, et al., ESTC Conference, Anaheim, CA, June, 2004
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Investigation of Noise Reduction Properties of the @

Zone Plate Antennal

Autocorrelation of white noise at the output of the antenna is a sinc
function. Thus for a band-limited system of 400 MHz , for example,
the correlation time is approx. 2.5 ns. Since the ZPA induces a delay
of 0.27 ns per ring by design, partial correlation of white noise may be
present, resulting in some destructive interference of the noise signal

« Complete field test by July 1, 2012 ° O
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12 cm Uniform Amplitude Taper Array Feed for
150 cm diameter Zone Plate Antenna
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ZPA Noise Minimization Array Feed 9 + 9
Elements @ 11.7 GHz with
COTS Attenuators (Directivity = 7.9 dB)
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Array Feed Mounted on ZPA Bridge Conduct_solar flux and colgl sky measurements and
compare with well-characterized results to demonstrate
'alienworksltd@earthlink net noise cancellation of the ZPA. 8
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SAA with GATR?! Technologies since 200
to develop Inflatable Radome Antenna
System

*® First-response disaster relief support
v humanitarian aid through support for communications in Haiti following the
2010 earthquake
* Emergency search-and-rescue support
v" The inflatable antenna was used to assist with communications efforts in the
search for a missing girl in San Diego, California.
* Large sports and entertainment venue backup communications
* Homeland security and military communications
support
* Federal Laboratory Consortium Award for
Excellence in Technology Transfer (2010)
* IR&D 100 Awards (2010)
* Featured in “Spinoff Day on the Hill” (2010)

lwww.gatr.com Officers with the Air Force Special Operations Command set up the
inflatable antenna at Hurlburt Field in Eglin, Florida,
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Ferroelectric Reflectarray

* A scanning reflectarray that consists of a flat surface
with integrated phase shifters and patch radiators
illuminated at a virtual focus

— The signal passes through the phase shifters and is
re-radiated as a focused beam in the preferred /
target direction

— Enabled by unique low loss ferroelectric phase
shifters

* Reciprocal surface — the same aperture can transmit
or receive so antenna is ideal for two-way
communications or monostatic radar

* 2010 R&D 100 Award-winning innovation
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Ferroelectric Reflectarray

Key benefits are

Significant cost reduction: 10X to 100X (at
scale) lower cost than direct radiating phased
array

Unlimited gain: gain is not limited by a beam
forming manifold

Efficient: up to a 5X reduction in power vs.
GaAs MMIC array

Reliable: high reliability compared to a
gimbaled reflector due to no moving parts
Simple construction technique: only three
layers per phase shifter compared to at least
five for an MMIC

Simple device lithography: smallest feature

size 1S ~10 um compared to sub-micron for
MMIC devices
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Superconducting Quantum Interference @
Filter Receiver!

Josephson junctions
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* Comparison between transfer characteristicof conventional SQUID (single loop) and

SQIF (multiple-loop device). The amplitude of the peak is a function of the number (N)
of SQUIDs in the array.

Sensitivity is a function of the slope and magnitude of the impulse-like response and dynamic
range is a function of the linearity.

www.hypres.com
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Table I. Critical Temperature for some key superconductors

Superconducting Material Critical Temperature, T, (K)
Niobium (Nb) 0.2
Magnesium Diboride (MgB.,) 39
Yttrium Barium Copper Oxide 90
(YBa,Cu;0-)

* The microscopic origin of this pure quantum mechanical phenomenon is
the formation of pairs of two conduction electrons having opposite
momentum and spin (Cooper pairs)

Mercury roa * In conventional superconductors, electron attraction is generally attributed
to an electron-lattice interaction. In the BCS framework, superconductivity is
Zﬂr_':' a macroscopic effect which results from "condensation” of Cooper pairs. The
resistance! attractive interaction between electrons (necessary for pairing) is brought
about indirectly by the interaction between the electrons and the vibrating
a 1T"'-: =42K crystal lattice (phonons)
= 4‘.1 4.2 41.3
Temperature (K) * The spatial extent of the pair correlation can be several orders of magnitude

Resistance versus Temperature
for Hg' (perfect dc conductivity

larger than the interatomic distance and is characterized by the coherence
length &,

below a critical temperature)

‘http-/fhyperphysics phy-astr

hbase/solids/scond.html

* Due to the quasi-boson character of the Cooper pairs, they are allowed to
condensate into a common ground state, which can be described by a single

macroscopic wave function
gsu_edu/
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Semiconductor Receiver versus SQIF Receiver @/
E vs. B

SQUIDs can detect magnetic fields lower than one flux quantum h/(2¢)(= 101> Wb),
10-18 Wb reported in the literature

Conventional Receiver SQIF Superconducting Receiver
Mars link at 64 MBPS Mars link at 64 MBPS
-EIRP = 84 dBW (=2.5 X 108 W) -EIRP = 84 dBW (=2.5 X 108 W)
Assumes 100 W TWT, 12 m aperture Assumes 100 W TWT, 12 m aperture
Range=3.7X10% km Range=3.7X10% km
» Power density at receiver = 2.8X101®* W/m? * Power density at receiver = 2.8X101®* W/m?
Electric Field = 4.6 X 107 V/m Electric Field = 4.6 X 107 V/m
Displacement flux density =~ 10-18 C/m? Displacement flux density =~ 10-18 C/m?
. Magnetic Field = 10 A/m
* Receive Antenna Aperture . Magnetic flux density = 10-1°> Wb/m?
QPSK, Block Turbo Code, 3 dB margin
Required E,/N_=4.6 dB * Receive Antenna Aperture

Flux Concentrator
Mechanical refrigerator at 4K

72 meters ~ | meter???

WWW.nasa.gov



