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Discussion Topics 

• Why is NASA interested in Smart Grid? 

• Advanced Terrestrial Smart Grids 

• ISS Description 

• DC Power Challenges 

– Fault Control 

– Stability 

• Wrap-up 
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Why Intelligent Power / Smart Grid? 

• NASA 

– Provide a utility–like power 

generation and distribution 

capability with automated 

operation to enable deep 

space exploration and 

settlement 

• Terrestrial  

– Increase the power delivery 

capability and reliability of 

the grid by integrating 

renewables and energy 

storage without major 

increases to the 

transmission and 

generation infrastructure 
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x Increased power demands x 

x Utilization of diverse power sources (renewables) x 

x Incorporation of large amounts of distributed energy storage x 

x Seamless accommodation of Variable / Peak load demand  x 

x Failure diagnostics and prognostics for power components x 

x Automated control for operations management,  fault detection and system reconfiguration x 

x Long term reliability / availability for exploration survivability and terrestrial users x 

Exploration Power Terrestrial Power 

Commonality of Challenges for Grid Developers 

Power Grid Challenges 

Exploration Power vs Terrestrial Power 
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Advanced Terrestrial Smart Grids 
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…the Grid of the Future?* 
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Residential 

Commercial 

Industrial 

Storage 

Wind Fuel Cell 

Solar 

*Courtesy of  John Schneider,  AEP 
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Advanced Power Grid Hierarchy 
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More Advanced Power Grid Hierarchy 
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Why DC Micro grids? 

• DC powered electrical devices make up 50 to 80%* of the 

load in many buildings 

– Computing equipment   

– LED lighting will become more common 

• Variable speed drives are penetrating into the appliance 

market.    

• Many renewables such as solar / wind / batteries (flow and 

non-flow) fuel cells flywheels etc. are already compatible 

with DC systems (Have DC outputs) 
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DC Distribution and the International Space 

Station 
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International Space Station 

Power System Characteristics 
• Power 75 kW average 

• Eight independent power 

channels  -- 9.75 kW 

• Solar array power 200+ kW 

• Planar silicon arrays  

• 18% Efficient 

• NiH battery storage – 3 per 

channel (2 ORUs) 

•  76 cells @ 81 amp*hrs / 

battery  

• Distribution 

– 116 - 170 V primary 

– 120 V secondary 

• Contingency power > 1 orbit 

• System lifetime of 15+ years 
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ISS Primary Grid 
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 Considerations in DC  Distribution Systems 

•  Stability with multiple power converters 

•  Coordinated DC fault control @ high voltage 

Primary Secondary 
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Stability 
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Power System Stability 
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SOURCE LOADZS ZL

•  If |ZS| < |ZL| for all frequencies, 

then the system is stable 

 

• When |ZS| > |ZL|, further analysis 

is needed to determine system stability. 

From SAE Spec AS5698 
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Power System Stability  
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Power System Stability 
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•  When |ZS| > |ZL|, further analysis  

is needed to determine system stability 

 

 

• Using the Nyquist criterion, 

small-signal system stability can  

be determined by whether 

the curve of ZS/ZL circles the  

(-1,0) in the S-plane  

 

 

•  The forbidden region on this diagram 

establishes a system stability margin.   
 

  

From SAE Spec AS5698 
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Power System Stability Examples 
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Stable System Under damped but stable system 
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Stability 

• With soft sources it is generally impractical to avoid crossover 

of source and load impedances 

– Stability is generally determined by phase margin 

• Loads should have 3 db Ohms of gain margin, or 30 degrees of 

phase Margin with respect to source impedance 

• Limit cycles must be avoided when applying loads to current 

limited sources and resettable protective devices 

• Phase Margin is 180 degrees minus phase 



National Aeronautics and Space Administration 

www.nasa.gov 

DC Fault Control 
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DC Fault Control 

• Fault Clearing for DC systems is inherently difficult 

because the current never passes through zero.  

• Challenges 

– Clear the fault quickly with minimum stress on the 

system 

– Minimize the effect on other branches of the system 

• Coordinated fault response 

– Switch closest to the fault needs to trip first 

• Form factor should be compact and lightweight 
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DC Switchgear 
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Fuse Mech Relay Hybrid  CL Solid 

State 

Resettable N Y Y Y 

Mass B 

Losses B 

Coordination  B 

System Impacts B 

Complexity B 

B – Baseline 

Y – Yes 

Best 

Better 

Worse 
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Mechanical Switch:  Kilovac Vacuum Relay 

Description 

• AP350X “Bubba”  -- Largest 

space-rated switch 

• Voltages: 

• 270 Vdc continuous 

• 350 Vdc 10 µsec 

• Currents: 

• 500 A continuous 

• <5000 A surge 

• Switching time: 10 msec 

• Magnetic arc blow-out 

• Low loss 

• No current limiting 

• System transients tend to be high 

 

Kilovac 500 A Vacuum Switch 

“Bubba” 
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Hybrid Switch  
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Schematic of hybrid switch 

Description  

•  Contains both mechanical and  

Solid state components 

•  Solid state switch permits “soft” turn- 

on and turn-off 

•  Mechanical switch provides low loss 

in on-state 

•  Mechanical switch does not need to be 

sized for interrupt 

•  Trip coordination can be tricky 
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Current Limited RPC 
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Description  

•  Remote Power Controllers control 

and protect electrical system 

•  Current limited RPCs provide  

absolute protection for system wiring 

•  Can be reset 

•  Can be paralleled to increase current 

handling capability 

       -  Unlike fuses or circuit breakers  

•  Utilizes an innovative v2t trip curve. 

•  Can distinguish between sever and 

slight overload   

•   Multi-level trip coordination is easily 

implemented 

      -  Avoids ambiguity of using i2t trip 

curves 
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Switch Voltage Drop 

RPC
Vsource

Load

V load

+ Vsw -

Psw = Load * Vsw 

Description 

•  Utilizes switch voltage drop to determine trip time 

•  Can distinguish between sever and 

slight overload  

•   Trip curve utilizes semiconductor „s safe  

operating area  
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Coordination Example 
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Coordination Example 
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Wrap-Up 

• Advanced DC terrestrial micro-grids can learn a great deal 

from experience developing the International Space Station 

Power System 

• The negative impedance of multiple power converters in 

series can pose stability challenges  

• Fault control with soft sources such as power converters 

and solar arrays needs to be accommodated  
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Back-up 
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Challenges 

• Evolution to accommodate peak 

power 

• Variable Loads with constrained 

sources 

• Automated operation 

SSU – Sequential Shunt Unit 

RBI – Remote Bus Isolator 

DCSU – Direct Current Switching Unit 

MBSU – Main Bus Switching Unit 

DDCU – dc to dc Converter 

RPC – Remote Power Controller 

ISS Power Architecture 
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Coordination Example 
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What is NASA‟s Interest In Smart Grid? 
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Planetary Surface Power 

Systems 

ISS Automation 

Facility Sustainability 

NASA‟s interest is in the development of technologies that benefit 

space exploration and enable the Terrestrial Smart Grid 

Deep Space Habitat  


