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Future Exploration Mission Requirements Cannot Be  

Met with Conventional Materials 

Satellites and rovers 

• Reduced mass and volume 

• Reduced power requirements 

• Increased capability, multifunctionality 

 Vehicles and habitats 

• Reduced mass 

• High strength 

• Thermal and radiation protection 

• Self-healing, self-diagnostic 

• Multifunctionality 

• Improved durability 

• Environmental resistance 

   (dust, atmosphere, radiation) 

 EVA Suits 

• Reduced mass 

• Increased functionality and mobility 

• Thermal and radiation protection 

• Environmental resistance 

http://www.nw.net/mars/mars-b2.jpg
http://www.frassanito.com/exploration/hirez/MrsOptMicroscope.1k.jpg
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Characterization 

RXP Nanomaterials Research 
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Outline 

• Nanocomposites for Highly Loaded Structures 

 

• Nanocomposites for Cold Temperature Applications 

(cryogen storage) 

 

• Nanocomposites for High Temperature Applications 

(300oC) 
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Composite Fan Blade 
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Goal: Enable Reduced Blade Thickness through Improved 

Composite Fracture Toughness and Interlaminar Strain 

Approach: 
1. Investigate the influence of a wide range of 

nanoparticles on epoxy toughness. 

2. Design materials to best utilize the various 

nanoparticles. 
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Composite Fan Blades 

Background 
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Materials: 

o Tensile strength and ductility are improved when nano-  

     particles can align in the direction of applied load. 

o Pre-dispersion forces clay into the more mobile 

components  of the resin. 
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Strain in Un-Toughened Epoxy-Clay 

Nanocomposites 
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Nanocomposites Based on Aerospace 

Grade Epoxies 
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Composite Structures 
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1. Epoxy Nanocomposite film laid up 

with between plies of base laminate.  

2. Autoclave cured using vendor 

recommended cure cycle 

3. Characterized for panel quality 
1. C-scan 

2. Acid Digestion 

3. Optical Microscopy 

4. Mechanical Testing 

Resin Interleave 

Resin Interleave 

Photomicrograph of SBS test coupon, 

[0]16 lay-up, along fiber direction 
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Composite Testing: Thermal and Mechanical 
Testing Results 
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Nanoclay interleave shows 

drop in short beam shear 

strength, but comparable or 

improved ductility  

Little difference in 

dynamic mechanical 

data. 
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Next Steps - Improved Nano-Incorporation 

• Need Better Dispersion 
– Do not have the facilities to handle 

this scale of dispersion. 

– Contract in place with Nanosperse 

to aid in dispersion 

 

• Exploring Alternative 

Mechanisms to Include 

Nanoparticles 
• Purchases in place with 

Nanocomp to incorporate  

 CNT sheets 

• Working with North Carolina  

 A&T University to electro-spin  

      PES for interleave material. 
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Composite Tanks 
Goal: Reduce Permeation through Composite 

12 12 

03S02233-1009

ABL Tanks and Reuseable Launch Vehicles;
Composite Ducting
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5% clay in 

epoxy matrix 

lead to a 

70% 

reduction in 

helium leak 

rate 

compared to 

the baseline 

tank.   
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Permeability of epoxy/clay (no carbon fiber).   

o The majority of this effort has focused on 

clay nanoparticles. 

o Reduced material permeability following 

nanoclay dispersion is well documented. 

o Expected that the platelet structure of clay 

contributes to the improved barrier 

performance. 

Clay layer dispersion and alignment, with 

respect to the permeation direction, greatly 

influence the barrier performance of the matrix 

Bharadwaj, R.K. Macromolecules 2001, 34, 9189 
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High Temperature Polymer Nanocomposites 
Goal: Improve High Temperature Durability of Matrix Resin 
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Thermal and Physical Properties of PMR-15/Clay 

Nanocomposites 
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•  Glass transition temperature was maintained      

   with increased clay loading. 

•  Weight loss with thermal aging reduced with  

   increased clay loading. 

•  Oxygen permeation through nanocomposite     

   reduced compared to baseline material. 
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Neat Resin 

0.5 wt% CNF 

High Temperature Polymer Nanocomposites 

CNF dispersion 

results in weight loss 

comparable to clay 
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Carbon Nanotube Efforts- Focus on Functionalization 

16 
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SWCNTs Non-Covalent Functionalization  
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SWCNTs 

Complexes form stable colloidal dispersion in polar 

solvents –enables production of homogeneous polymer films.  

SWCNTs Non-Covalent Functionalization  
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Agglomeration of SWCNTs is 

clearly visible in the SEM image 

of the SWCNT nanocomposite 

film.  
The addition of 3.5 wt% SWCNT/complexes 

increased the tensile strength of the polyimide 

from 61.4 to 129 MPa; higher loading levels led 

to embrittlement and lower tensile strengths 
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Carbon Nanotubes Functionalization – PMC Peer Review 18 

• The oxygen content of the SWCNTs (i.e., photo-oxidation, acid treatment) has been 

studied by X-ray photoelectron spectroscopy (XPS). 

• Photo-oxidation adds nearly 2X the oxygen to the SWNTs than acid treatment alone. 

Results: Photo-Oxidation of SWCNTs   
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(b) Oxygen concentration of SWCNTs oxidized by photo-oxidation (with and without sensitizer) 
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Carbon Nanotubes Functionalization – PMC Peer Review 19 

 70 

 75 

 80 

 85 

 90 

 95 

 100 

%
T

 

 70 

 75 

 80 

 85 

 90 

 95 

 100 
%

T
 

 1000    1500    2000    2500    3000    3500    4000   

Wavenumbers (cm-1) 

a 

b 
C-O-C 

-O-C=O 

OH-C=O O-HCO 

FT-IR: (a) SWCNTs and (b) photo-oxidized SWCNTs. 

280285290295

0

2000

4000

6000

8000

10000

SWNT’s Photo-oxidized w/sensitizer

Carbon Curve Fitting

Binding Energy (eV)

c/
s

C
-C

C
-O

O
-C

=
O

C
=

O

XPS: Curve-fitting of the carbon region of the photo-

oxidized SWCNTs with RB. 

. 

• XPS is sensitive to matrix effects and is able to provide both oxidation and chemical 

state information about the elements detected.   

• An overlay of all of the carbon regions after normalization revealed the presence of a 

shoulder on the main carbon peak (284.8 eV) of the photo-oxidized 

• Peaks at 286.3 eV, 287.9 eV, and 289.3 eV are indicative of C-O, C=O, and O-C=O, 

respectively. 

• Analytical characterizations by FT-IR also confirmed the presence of oxygen groups. 

Results: Photo-Oxidation of SWCNTs   
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Additional Nanomaterials Efforts 

• Magnetic nanoparticle synthesis and dispersion 

• Nanoparticle influence on shape memory polymer 

• Nanoparticle modified carbon fibers 

• Boron Carbide Nanotube materials (radiation shielding) 

• Graphene nanocomposites for improved electrical 

conductivity. 
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