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Future Exploration Mission Requirements Cannot Be
Met with Conventional Materials

Satellites and rovers

* Reduced mass and volume

* Reduced power requirements

* Increased capability, multifunctionality
Vehicles and habitats

* Reduced mass

* High strength

» Thermal and radiation protection

S - Self-healing, self-diagnostic

;‘1 « Multifunctionality
d T * Improved durability
= i  Environmental resistance
(dust, atmosphere, radiation)
EVA Suits

* Reduced mass

* Increased functionality and mobility
» Thermal and radiation protection

« Environmental resistance
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Outline

« Nanocomposites for Highly Loaded Structures

« Nanocomposites for Cold Temperature Applications
(cryogen storage)

« Nanocomposites for High Temperature Applications
(300°C)
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Composite Fan Blade

Goal: Enable Reduced Blade Thickness through Improved
Composite Fracture Toughness and Interlaminar Strain

Approach:

1. Investigate the influence of a wide range of
nanoparticles on epoxy toughness.

2. Design materials to best utilize the various
nanoparticles.
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Materials:
Epon 826
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Jeffamine D230
NH
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Mn < 385

X=2.6

Mn <700, n~1

Tensile strength and ductility are improved when nano-
particles can align in the direction of applied load.
Pre-dispersion forces clay into the more mobile

components of the resin.
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Strain in Un-Toughened Epoxy-Clay

Nanocomposites
Glassy at Room Temperature Rubbery at Room Temperature
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Nanocomposites Based on Aerospace @

Grade Epoxies

sooo ; Clay Particles
000 | Y Fracture surface of
6000 - nano-reinforced
& 5000 - il
£ %00 samples indicate
0 . . .
8 2000 increased material
% 2000 - toughness
1000 1 No Clay
0 T O bR N 5 S N Rl . B ¢
0.000 0.010 0.020
Vertical Strain (in/in)
sooo - CNF and Graphite
5000 Particles
§4000
3000 o
3 Neat resin, fails
52000 0.09 in/in | < 1
1000 PES-5%CNF 6.0kV 12.1mm x250 SE(M)

0.000 0.005 0.010 0.015

Graphite particles were epoxy functionalized via solvent-
Verticle Strain (in/in) based wash. CNF particles were not functionalized.
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Composite Structures

Epoxy Nanocomposite film laid up
with between plies of base laminate.

==30B in API resin

2. Autoclave cured using vendor

recommended cure cycle

3. Characterized for panel quality

1. C-scan
2. Acid Digestion
3. Optical Microscopy

4. Mechanical Testing

== Cloisite 30B

Relative Intensity

.

2 Theta

Resin Interleave

Resin Interleave

Photomicrograph of SBS test coupon,
[0],6 lay-up, along fiber direction
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Load (Ibf)

Composite Testing: Thermal and Mechanical

Testing Results

Short Beam Shear

Resin Toughened Composit
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Next Steps - Improved Nano-Incorporation @/

Need Better Dispersion
— Do not have the facilities to handle
this scale of dispersion.

— Contract in place with Nanosperse
to aid in dispersion

Exploring Alternative
Mechanisms to Include

Nanoparticles

* Purchases in place with
Nanocomp to incorporate
CNT sheets

«  Working with North Carolina
A&T University to electro-spin
PES for interleave material.
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Goal: Reduce Permeation through Composite

Composite Tanks

o The majority of this effort has focused on Composite Tank Helium Leak Rate Comparisons |5% clay in .
: —F——1_ | epoxy matrix
clay nanoparticles. 5~ s S
1 HH 1 \ 4 Nanoczm;si-te.-'—-‘ Iead to a
o Reduced material permeability following 0098 \\\ A 20%
nanoclay dispersion is well documented. ~ reduction in
o Expected that the platelet structure of clay ~ |§°* helium leak
contributes to the improved barrier £ :WW::\ rate
performance. _ | compared to
0,992 the baseline
2 Time, Day6 2 & tank-

Clay layer dispersion and alignment, with
respect to the permeation direction, greatly
influence the barrier performance of the matrix
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High Temperature Polymer Nanocomposites
Goal: Improve High Temperature Durability of Matrix Resin
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Thermal and Physical Properties of PMR-15/Clay

Nanocomposites

Silicate PGV- PGV-
(MDA-C12) | C12
0% 335 335

1% 336 337 increased clay loading.
3% 340 326
5% 337 321
7% 338 311

» Glass transition temperature was maintained
with increased clay loading.
* Weight loss with thermal aging reduced with

* Oxygen permeation through nanocomposite
reduced compared to baseline material.
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High Temperature Polymer Nanocomposites

Modulus of Unaged RTM-370 Samples
Measured at Sample Edge
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Carbon Nanotube Efforts- Focus on Functionalization

SWCNTs Non-Covalent Functionalization
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SWCNTs Non-Covalent Functionalization

Agglomeration of SCTs 5
clearly visible in the SEM image

of the SWCNT nanocomposite
film.

SWCNTs

Tensile Strength, MPa

Complexes form stable colloidal dispersion in polar
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The addition of 3.5 wt% SWCNT/complexes
increased the tensile strength of the polyimide
from 61.4 to 129 MPa; higher loading levels led
to embrittlement and lower tensile strengths
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solvents —enables production of homogeneous polymer films.
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Results: Photo-Oxidation of SWCNTs

* The oxygen content of the SWCNTs (i.e., photo-oxidation, acid treatment) has been
studied by X-ray photoelectron spectroscopy (XPS).

* Photo-oxidation adds nearly 2X the oxygen to the SWNTs than acid treatment alone.
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(a) Overlay of oxygen peaks from the survey scan after normalizing the carbon peaks.

(b) Oxygen concentration of SWCNTs oxidized by photo-oxidation (with and without sensitizer)
and by acid treatment.
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Results: Photo-Oxidation of SWCNTs

* XPS is sensitive to matrix effects and is able to provide both oxidation and chemical
state information about the elements detected.

* An overlay of all of the carbon regions after normalization revealed the presence of a
shoulder on the main carbon peak (284.8 eV) of the photo-oxidized

* Peaks at 286.3 eV, 287.9 eV, and 289.3 eV are indicative of C-O, C=0, and O-C=0,

respectively.

* Analytical characterizations by FT-IR also confirmed the presence of oxygen groups.
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XPS: Curve-fitting of the carbon region of the photo-

oxidized SWCNTs with RB.
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FT-IR: (a) SWCNTs and (b) photo-oxidized SWCNTs.
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Additional Nanomaterials Efforts

« Magnetic nanoparticle synthesis and dispersion

« Nanoparticle influence on shape memory polymer

« Nanoparticle modified carbon fibers

« Boron Carbide Nanotube materials (radiation shielding)

« Graphene nanocomposites for improved electrical
conductivity.
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