Multifunctional Graphene Polyimide Nanocomposites

Mitra Yoonessi, Matthew A. Dittler, Daniel Scheiman, Marisabel Lebron-Colon, James Gaier, John Peck, Michael A. Meador

Ohio Aerospace Institute, Cleveland, OH
NASA Glenn Research Center, Cleveland, OH
ASRC, Cleveland, OH

Graphene in Space, NASA’s Spitzer Space Telescope has spotted the signature of flat carbon flakes, called graphene, in space
Nanotechnology
Engineered Materials and Structures

Light Weight Materials
- Multifunctional
- Adaptive Materials
- Self Healing Materials

Development of nanostructured materials 50% lighter than conventional materials with equivalent or superior properties

Reduced Vehicle Mass

Boeing 787 composite aircraft
Copper mesh 4000 lb of weight

NGST ½-scale Sunshield Demonstration Model Deployment,
Cadogan, D. P. et al.

Meador, M., Files B., Li J., Manohara, H., Powell, D., Siochi, E.J. Nanotechnology Road map Technology Area 10
Nanoparticles:

- SWNT ~ 1315 m²/g
- DCNT ~ 700-800

Graphite and Graphene – Giem 2004
- Graphene ~ theoretical: 2600 m²/g, 700-1300 m²/g
- Carbon nanofibers

Alumina silicates – Fukushima, Toyota 1987
- Montmorillonite ~ 725 m²/g
- Magadiite, Laponite, Vermiculite

Magnetic Nanoparticles
- Organometallic physical crosslinkers
- POSS

Composite Nanoparticles
- Magnetic graphene
- Oxide graphene
Polyimide
High Performance Polymer

Satellite
Aromatic polyimide:
- Low color
- Flexibility
- High thermal stability
- Dimensional stability
- Low dielectric constant
- High T_g
- Radiation resistance
- Low coefficient of thermal expansion

General Ind.
Stiffness and modulus and reinforcement

Electrical performance and EMI shielding

Multifunctional
Actuation and morphing

Thermal performance and stability

Continuous operating range between -65 °C to +357 °C

Quartz fabric–polyimide 815 °C

Multifunctional

• Space
• Aero
• Electronics

Polyimide, thermal stability >500 °C, $T_g > 200$ °C, flexible and semi-transparent.

Thermal imidization:

- Mixing and dissolving equi-molar ratio diamine in anhydrous-NMP under dry N_2 followed by addition of dry anhydride and stirring for 24h in flame dried vessels.
- Then, increasing the temperature ~230 °C (NMP reflux) for 3h and precipitating in methanol and drying

Polyimide Graphene Nanocomposites

Electrical Performance

\[\sigma_{DC} = \sigma_f \left[\left(\phi - \phi_c \right) / \left(1 - \phi_c \right) \right]^t \]

Percolation
- Chemically graphene PS nanocomposites 0.1 vol.%
- PS Gr, Latex method 0.6 wt%
- PET graphene 0.47 vol.%
- PC graphene, emulsion 0.14 vol.%
- PC graphene, solution 0.38 vol.%
- PS CCG 0.19 vol.%

Max. Conductivity
- Chemically graphene PS nanocomposites 0.01 S/cm
- PS Gr, Latex method 0.15 S/cm
- PET graphene 0.021 S/cm
- PC graphene, emulsion 0.512 S/cm
- PC graphene, solution 0.226 S/cm
- PS CCG 0.722 S/cm

CNT/nanocomposites
- t = 1.2 – 2
- CNF/polyimide t ~ 3.1
- PET graphene t ~ 3.47 ± 0.64
- PS graphene t ~ 2.74 ± 0.2

Viet Hung Pham et al., J. Mater. Chem., 2011, 21, 11312
AC Electrical Performance

Broad band AC impedance spectroscopy

Extended pair approximation model

\[\frac{\sigma(\omega)}{\sigma_{DC0}} = 1 + k\left(\frac{\omega}{\omega_c}\right)^s \]

<table>
<thead>
<tr>
<th>Vol.%</th>
<th>(\sigma_{DC0},) S/cm</th>
<th>(\omega_c,) Hz</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03046</td>
<td>8.21e-9</td>
<td>150.47</td>
<td>0.499</td>
</tr>
<tr>
<td>0.3051</td>
<td>1.879e-6</td>
<td>7.027e3</td>
<td>0.647</td>
</tr>
<tr>
<td>0.6115</td>
<td>2.11e-4</td>
<td>1.241e5</td>
<td>0.446</td>
</tr>
</tbody>
</table>

S ~ 0.99 -> hopping
S ~ 0.72 -> 3D material
S ~ 0.58 -> anomalous diffusion in fractal cluster exist

Dispersion of graphene in polyimide

TEM

Conductive path

Graphene vol. %

Conductivity, S/cm

0.25 vol.%

1.1 vol.%
Temperature Dependence Conductivity

\[\sigma = 0.2844T^{0.2177} \]

\[T = 322.404\sigma^{4.6} \]

5 vol. % graphene polyimide
Addition of graphene resulted in composite reinforcement without adverse effect on the T_g.

- $E = 1500 \text{ MPa}$ for $T_g = 150 \degree C$
- Storag
- 2wt\% graphene

Graphene wt%

$T_{g,\circ C}$ vs Graphene, vol. %

$T_{d,95,\circ C}$ vs Graphene, wt%
Composites Nanoparticles
Thermal decomposition of Ni(acac)_2 in the presence of O-graphene

First-order reversal curve (FORC)
Controlled Directionality

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>B_x</th>
<th>B_y</th>
<th>B_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1150</td>
<td>-1150</td>
<td>-237</td>
<td>-50</td>
</tr>
<tr>
<td>B</td>
<td>976</td>
<td>-948</td>
<td>475</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>440</td>
<td>-432</td>
<td>-55</td>
<td>-120</td>
</tr>
<tr>
<td>D</td>
<td>500</td>
<td>-520</td>
<td>-12</td>
<td>42.3</td>
</tr>
</tbody>
</table>

2.8 wt% Ni-Graphene polyimide nanocomposite
Anisotropic Properties

Electrical properties

- Random Orientation
- Mild Magnetic field Orientation
- Strong Magnetic field Orientation

Conductivity, S/cm

- In-plane in the magnetic field direction
- In-plane perpendicular to the magnetic field direction

Graphene weight percent, %

In-plane
Magnetic field
Anisotropic Properties

Mechanical Properties

Graphene wt%

Stress

Tensile Modulus, MPa

Graphene wt%
Transmission Electron Microscopy

1.77 wt% Ni-graphene polyimide
90% parallel and 5% perpendicular
Conclusions

-Addition of graphene resulted in nanocomposites with high conductivity with a percolation as low as 0.036 vol.% and a maximum conductivity of 0.94 S/cm.

-Dynamic moduli of the nanocomposites increased with addition of graphene with no adverse effect on T_g or flexibility.

-Magnetic graphene were synthesized enabled controlled orientation of graphene in magnetic fields.

-Ni-graphene/PI nanocomposites were obtained which has e-2 S/cm in-$plane$ conductivity and insulating in the $through$-$plane$ direction.

-Ni-graphene/PI nanocomposites exhibited increased modulus with increasing orientation.

-The orientation was verified by magnetic characterization and TEM studies.
Acknowledgements

• The NASA Aeronautics-Subsonic Fixed Wing Program: Contract NNC07BA13B

• Dr. Dave Kankam, NASA USRP program, NASA GRC
 • Dr. Kathy Chuang, NASA GRC
 • Dr. Dean Tigelaar, NASA GRC
 • Dave Hull, Derek Quade, Terry McCue, NASA/GRC
 • Professor Aksay, Princeton University,
 • Vorbeck Materials Inc., John Lettow