Graphene Polymer Nanocomposites

Mitra Yoonessi
mitra.yoonessi@nasa.gov

Thermal, Mechanical Properties, and Fracture Toughness of Surface Modified Graphene Epoxy Nanocomposites

Eileen Boyd, Derek J. Quade, Daniel Scheiman

Ohio Aerospace Institute, Cleveland, OH
NASA Glenn Research Center, Cleveland, OH
Polymer Nano-Composites for Aerospace Applications

Multi-Functional Materials

Reinforcements, Mechanical strength in a wide temperature range - Barrier - Toughness

- Graphene
- Layered Silicates
- Carbon NT
- Expanded Graphite
- Carbon nanofibers
- Magnetic nanoparticles
- Organometallic physical crosslink

Conductive Polymers

DC & AC Electrical - Permittivity - Stiffness / Ductility

Smart Adaptive Materials

Actuation – Thermal, Magnetic, Electrical

- Morphing fan casing
- Blended wing body inlet
- Flex. packaging
- Space deployable structures

Sensors

Static discharge
Lightening strike
Actuators

A two-seat F106B jet made 1,496 thunderstorm penetrations and got struck by lightning 714 times during NASA’s eight-year Storm Hazards Research Program. Credit: NASA

Figure 2. SMP Composite Truss in Packed and Deployed Configurations

www.nasa.gov
Graphite and Graphene

Graphite:
- Advantages: Naturally abundant material, Low cost

Graphene:
- Mechanical peeling
- CVD
- Acid intercalation, thermal shock, sonication
- Acid intercalation followed by high pressure, high temperature treatments

Graphene:
- In-plane stiffness of 1,060 GPa
- Resistivity in the range of 50 μΩ cm
- 98.7% transmission normal to the incident beam for the first layer, 2.3% reduction for the next layers in vacuum
- Thermal conductivity: ~ 3000 W/mK
- Field effect mobility of 200 000 cm²/Vs

Polymer nanocomposites, optoelectronic applications; transparent conductors, field emission displays, supercapacitors, devices, emissive displays, micromechanical sensors.
Graphene Surface and Interface

Tailored Interface
- Compatibility with the polymer matrix
- Improving dispersion
- Load/stress transfer
- Electron transfer
- Thermal energy transport

Surface Characteristics:
- SP² hybridization for electron transport
 - van der Waal Interaction (aromatic structures)
- Combination of sp³ and sp² hybridization
 - Covalent bonding; -OH, -COOH, -phenolic-OH, -epoxide

Covalent bonding

Grafting to

Grafting from
Epoxy Graphene Nanocomposites-Reinforcement

Objectives:
• To determine the effects of graphene addition and surface modification on the thermal and dynamic modulus, fracture toughness of the low content graphene nanocomposites.

Epoxy: Epon 826
Chemical and heat resistance
Good to excellent mechanical properties
Low viscosity resin
Transparent
Excellent adhesion

Jeffamine D230: a polyetheramine, (an amine terminated PPG)
MW 230, X ~ 2.5

Dispersion via sonication

Reinforcement, toughness and thermal properties

Polymer+

• Solution mixing
• Sonication
• High shear mixing

Epoxy

- Dynamic mechanical analyzer, modulus, T_g
- Fracture toughness
- TGA
- Morphology; electron microscopy
Epoxy Graphene Nanocomposites - Surface Modifications

Reduced graphene

O- graphene

Reduced graphene
sp² hybridized

Highly oxygenated graphene,
sp², and sp³

Amino propyl polydimethyl siloxane
graphene, sp², and sp³

2500 – 27000 g/mol

Weight, %

14 wt%

320 °C

86%

Intensity, counts

C1s

OKLL

O1s

Cl2p

S2p

Temperature, °C

Absorbance

Wave numbers, cm⁻¹
XPS, O- Graphene Surface

XPS

A range of carbon oxygen moieties with 7% atomic oxygen (high resolution survey scans).

\[\text{O1s binding energy: 532.73 eV} \]

\[\text{C=O, C-O, O-C-O} \]

\[\text{C1s: 285.07, 286.78, 289.2, 291.48, 294.19 eV} \]

Bonding energies: ester, carboxylic, ether carbon, hydroxyl carbon, phenolic hydroxyl, carbonate, ..

O1s binding energy: 532.3 eV
ketone, ester, or acetate

XPS – Surface Modified

Atomic percentage, %

<table>
<thead>
<tr>
<th></th>
<th>C1s</th>
<th>O1s</th>
<th>Si2p</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1s</td>
<td>79.1</td>
<td>14</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Binding Energy, eV

Intensity, a.u.

Epoxy Graphene Nanocomposites

Glass Transition Temperature

Graphene loading
0.05 - 0.5 wt%
Graphene loading 0.05 - 0.5 wt%
Mode I Fracture Toughness

The fracture toughness improved with low graphene content, where further addition of graphene resulted in K_{IC} deterioration.

$$K_{IC} = \frac{P_{\text{max}}}{B^{\frac{1}{2}}Wf(x)}$$

$$f(x) = 6x^{1/2} \left[\frac{1.99 - x(1 - x)(2.15 - 3.93x + 2.7x^2)}{(1 + 2x)(1 - x)^{3/2}} \right]$$
Epoxy Graphene Nanocomposites
Thermal Stability

Graphene, wt% vs. T_d^o °C

O-graphene,
Reduced graphene,
PDMS-graphene,
Neat Epoxy
Good dispersion was obtained in all nanocomposites.
Fractured, O₂ plasma treated surface of PDMS-Graphene epoxy nanocomposites

0.5 wt% PDMS-graphene Nanocomposites
Concluding Remarks

• Low graphene content (0.05-0.5 wt%) graphene epoxy nanocomposites using reduced graphene, O-graphene, and surface modified graphene were prepared by solution mixing.

• All nanocomposites exhibited improvements in glass transition temperature, modulus, thermal stability, and fracture toughness.

• TEM studies showed good dispersion of graphene in the epoxy resin matrix.

• SEM micrographs indicated crack generation and energy dissipative phenomena in the graphene nanocomposites compared to neat epoxy.
Acknowledgements

• The NASA Aeronautics-Subsonic Fixed Wing Program: Contract NNC07BA13B

• Dr. Michael A. Meador, Agency Nanotechnology Lead, Polymer Branch Chief, NASA GRC
• Dr. Dave Kankam, NASA USRP program, NASA GRC
• Dr. Rick Rogers, Dave Hull, Terry McCue, NASA/GRC
• Professor Aksay, Princeton University,
• Vorbeck Materials Inc., John Lettow
NASA-University Programs

GRC Lead for the agency nanotechnology

- NRA – Aeronautics
 - NASA inspire web site

- NASA Graduate Student Researchers Program (GSRP)
 - http://fellowships.hq.nasa.gov/gsrp/nav/

- NASA Undergraduate Student Research Program (USRP)
 - http://usrp.usra.edu/

- NASA Experimental Program to Simulate Competitive Research (EPSCoR)

- NASA Glenn Faculty Fellowship Program (NGFFP)

- LERCIP Higher Education (College) – Undergraduate program

- Space Grant Consortium