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W NASA: High Energy (HE)/Ultra High Energy (UHE)
Li-ion Cell Development

e NASA is developing High Energy (HE) and Ultra-High Energy (UHE) Li-ion cell
designs and batteries for future exploration missions

High Energy (HE) Ultra High Energy (UHE)

Anod Conventional Developmental

noae Graphite Nano Si anode
(MPG 111) (by GeorgiaTech)

Cathode Li-rich NMC Deye!opmental

(Toda 9100) Li-rich NMC
(by UT-Austin)
Electrolyte . Developmental
Baseline Electrolyte Fire-retarded electrolyte
(by JPL)
Projection of
Energy Density 200 265
(Wh/kg)
(specific on 18650 cell, C/10 10°C)

® The development of UHE Li-ion cells and batteries will be the main focus



The Initial NASA High Energy (HE) Cell Build Failed
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Approach for Failure Investigation at NASA GRC

e Assessment using full cell pouch cell configuration with reference electrode

O Harvested anode, cathode and separator from remaining but non-
activated cells (i.e. dry cells, no electrolyte was added)

o Fabricated pouch cells using the harvested anode, cathode
separator, with a reference electrode (Li metal) inserted between

o Added the same type of electrolyte and quantity of electrolyte
equivalent to actual cell build (40% access based on the porosity)

o Adapted the same formation and test protocol for the pouch cell
as actual cells

e Impedance monitoring before and after formation and at cycling stages
(non-destructive analysis)
o Whole cell
o Anode vs. reference electrode
o Cathode vs. reference electrode

® Destructive Physical Analysis (DPA)
o SEM/EDX
o ICP/Mass Spectroscopy



N(@\A What We Learned from Harvested Components:

riginally Intended S Was Not Used

® The initial observation of delayed wetting of electrolyte on
harvested separator — suspecting wrong type of separator
was used

e SEM/FT-IR analysis further confirmed that incorrect type of
separator was used

® The harvested separator (Celgard 25 um): multi-layer and
thicker

® The original intended separator (Tonen 16 um): single layer and
thinner



Pouch Cell Full Cell: Matrix for Failure Investigation
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The anode, cathode and separator were harvested from the same failed lot but
non-activated cells




Initial Impedance Measurement: Before Formation
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® Initial impedance: Group 3 << Group 2 < Group 1
e Implying inadequate electrolyte to wet electrodes or non-uniform electrolyte
distribution in Group 2 and Group 1 (worse in Group 1)




s Full Cell Pouch Cell Assessment: Formation Cycling
B  Electrolyte Quantity Equivalent to Actual Cells
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Formation capacity corresponds fairly well with the initial impedance measurement




Impedance Measurement: After Formation

pouch Cells with Limited Electrol
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Poor formation discharge capacity has a corresponding higher cell impedance
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NM‘ Rate Capability Cycling Test with Limited Electrolyte
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Cells with limited electrolyte give poor rate capability cycling results
Worse w/harvested separator




Voltage Profile of Cell vs. Corresponding Individual Electrode

L3 (with originally intended separator)
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Rapid rising anode voltage causes cells to reach cut-off voltage earlier




Impedance after Rate Capability Cycling

20°C

L3 (with intended separator) L2 (with harvested separator)
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Anode impedance dominates in the cell impedance after rate capability cycling




® The cell comPonents were dr
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e The cell components were dry

e Elements such as Mn, Ni, Co, Cu
were detected in EDX mapping

® Mn: dissolution from cathode
and migration to the anode




Full Cell Pouch Cell Assessment:
Formation with Flooded Electrolyte
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Consistent formation data (with minimum variation) with flooded electrolyte




Impedance after Formation of

at 35°C at 20°C
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The cathode electrode dominates the diffusion part in the cell impedance
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Consistent rate capability cycling data with flooded electrolyte
(but appear to be sensitive to rate)




Voltage Profile of Cell vs. Corresponding Individual Electrode
with Flooded Electrolyte
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Consistent voltage profiles, and anode voltage profile becomes normal
but could not recover at 2" C/10 cycling




Impedance after Rate Capability Cycling
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o The cell internal resistances of the cell, anode and cathode remain the same
before and after rate capability cycling

o The cell charge transfer resistance increases significantly, and is mainly from
anode side




Lessons Learned - Summary

® The wrong separator was mistakenly used in the actual cell build, but it is
only part of the reason for the poor capacity fade

® Inadequate electrolyte in the cells and/or non-uniform distribution of
electrolyte are among the factors for the cell failure

® Inadequate electrolyte/non-uniform distribution has a significant impact on
anode performance: incomplete anode wetting can cause Li plating, resulting
in the anode voltage to rise rapidly (passivation) and forcing the cell to reach
cut-off voltage earlier and the fast capacity fade

® The anode performance may worsen due to Mn dissolution from the
cathode to dope/poison the SEl on anode surface, especially with limited
electrolyte conditions



Recommendation/Next Step

e Cathode coating to reduce/eliminate the Mn dissolution

e Additives in electrolyte to minimize the Mn dissolution/migration to anode

e Allow to have adequate electrolyte in the cell
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