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Overview 
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• Engine materials 
– Update on engine cycle studies 

(POC: Dr. Robert Bruckner) 

– Erosion resistant thermal barrier coatings (TBC’s) for turbine blades 
(POC: Dr. Robert Miller) 

– Ceramic matrix composites (CMC’s) for turbine vanes and blades 
(POC: Mr. Michael Halbig) 

• Drive system materials and structures 
– Composite material applications 

(POC’s: Mr. Lee Kohlman; Mr. Charles Ruggeri) 
• Hybrid metal/composite gear 
• Dynamic test method development 

– Super-elastic alloy for bearings 
(POC: Dr. Christopher Dellacorte) 
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Engine cycle studies 
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• Current work on TBC’s and CMC’s 
addresses the need for higher T4 

• Recent studies indicate that fuel burn 
continues to improve with OPR ~45 and 
T4~3200. 

• Impeller technologies needed to achieve 
the required OPR (higher T3) are being 
considered 

T4 T3 



Erosion resistant thermal barrier coatings 
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• New TBC’s can enable an additional 200ºF (111ºC) increase in surface temperature 
compared to current TBC’s, but erosion and impact resistance become a greater issue 

• Goal is to improve erosion resistance of coatings and demonstrate performance of the new 
coatings in future engine tests (SRW project demo tests or industry collaborations) 

0       10       20 mm 

Data needed before future 
engine qualification tests 
• Erosion tests with high fidelity rig 
• Impact  (rig under construction) 
• Furnace cyclic life 
• High heat flux performance 
• Thermal conductivity  

FY11 accomplishments 
• Improved burner rig design produced a more 

uniform erosion area in button specimens 
• 4 new TBC’s were down-selected for further work 

(see next chart) 
• A roadmap was developed to take advantage of 

possible future engine test opportunities 



Erosion resistant thermal barrier coatings 

Composition: 
• Current TBC’s are 2 component 
• 4 component coatings have improved erosion resistance with lower thermal conductivity 
• 6 component coatings should be tougher (Ti and Ta additions), but are harder to deposit by 

vapor deposition techniques (vapor pressure differences) 
Process: 
• EB-PVD is the baseline process 
• Directed vapor process has shown promising results for 4 and 6 component compositions 
• Plasma Spray-PVD has potential, but is currently at low TRL 7 



8 

Ceramic matrix composites (CMC’s) 
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Joining Performance Requirements 
• Strength of 25 Mpa 
• Temperature capability to 1200ºC 
• Uniform and leak free bonds 
• FT11 Accomplishments 

– Joining approaches developed 
• Diffusion bonding with Ti and B-Mo metallic foils 

– Good bond quality - but requires use of a hot press and flat geometries 
• Brazing with eutectic phase powders (Si-Cr, Si-Ti, and Si-Hf)  

– Paste interlayers gave non-uniform bonds with gaps/voids 
– Developed a green tape interlayer for brazing (Si-Hf) which gave very 

good bonds. Approach down-selected. 
– Shear strength tests at R.T. and elevated temperatures conducted 

Joining of Vane Segments 

Joint Microstructures 

Joint from Si-Hf tape 

SA-Tyrannohex 

SA-Tyrannohex 

Joint from Si-Hf tape 

SiC/SiC 

SiC/SiC ROOM TEMP 750° C 1200° C 

Substrate Number of Si-Hf 
Tape Layers 

Average Apparent 
Shear Strength, MPa 

Average Apparent 
Shear Strength, MPa 

Average Apparent 
Shear Strength, MPa 

┴ SA -
Tyrannohex  1 95.2 (±18.7) 65.6 (±3.4) 75.7 (±13.8)

┴ SA -
Tyrannohex 2 102.1 (±15.9) 70.9 (±5.2) 56.9 (±12.1)

Joining of 
airfoil and 
endcaps                                 
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Ceramic matrix composites (CMC’s) 
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• Airfoils fabricated by Hyper-Therm High-
Temperature Composites, Inc. 

– Material details: two sets of SiC/SiC 
airfoils with Sylramic and Hi-Nicalon-S 
SiC fibers, CVI SiC matrix, and SiC 
foam core 

• Challenges include:  
– Fabrication of a small airfoils: 1”x1”  

(vane cord length x height) 
– Internal cooling schemes and external 

film cooling 
– High inter-laminar strength and robust 

leading and trailing edges. 
• Planned testing 

– High pressure burner rig 
– Laser high heat flux thermal gradient rig 

Fabrication Ability of Small CMC High Pressure Turbine Vanes  
Concept #1 – Internally Cooled Vane 

 

  

NASA environmental barrier 
coating applied 

1.25” (32mm) 

SiC Foam 
SiC / SiC Composite 

Axial Cooling Holes 
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Hybrid gear fabrication at A&P Technology 
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Baseline metal spur gear 
• 12 pitch spur gear (42 teeth) 
• AISI 9310 gear steel 
• 25 degree pressure angle 
• 3.5’’ pitch diameter 
• ¼’’ face width 

0.8847 lb 

0.7081 lb 
(22% reduction) 

Hybrid gear 
(NASA patent pending) 3.5 in 

• Contract completed to fabricate small test gears 
• New SBIR Phase 1 contract awarded for larger gears 
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Hybrid gear testing at NASA 
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Current test results 
• 300x106 cycles, 553 in-lb torque, 10,000 RPM 

with no damage 
• Possible noise and vibration reduction 
• Detailed results to be presented 

(Handschuh et al., AHS Forum, May 1-3, Ft Worth, 
TX) 

 

Driving Gear  
Driven Gear 

Accelerometer
s 

Spur gear test rig Loss of oil test (steel gears) 

Future plans 
• Endurance testing to 109 cycles 
• Torque overload 
• Single tooth loading 
• Loss of oil 
• Large gears 



Dynamic test method development 
Shaft used as a test article in a closed loop gear test rig 
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• Detailed results to be presented 
(Kohlman et al., AHS Forum, May 1-3, Ft Worth, TX) 

• High speed cameras are triggered 
to capture multiple images per 
revolution 

• Digital image correlation is used to 
measure deformation 

• Pulsed lighting approaches are 
being developed for better time 
and spatial resolution 



Angular displacement measurements 
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Y (load 
direction
) 

X 

• Currently working to reduce noise and 
improve resolution 
(shutter time, light intensity, lens aperture, 
pulsed lighting, field of view, static 
reference) 

• Goal is to measure local  deformation 
at resolutions similar to previous work 
with low speed cameras 
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Static – undamaged 
Dynamic – undamaged 
Dynamic – impact damage 

θ 
Reference 
point 

Strain pattern during a pressurization 
test observed with low speed cameras 



Deformation near impact damage 

In-plane 
shear (εxy) 

Radial 
displacement 

10,000 in-lbs 38,000 in-lbs 

Static 

Dynamic 
(5,000 RPM) 

Static 

Dynamic 
(5,000 RPM) 

+0.0073 in max (red) 
- 0.0030 in min (blue) 

0.0042 max shear strain 
near impact damag site 

Need better resolution and data analysis 
algorithms (blue spot is a result of edge 
effects and calculation method) 



Super-elastic bearing material - NiTiNOL 

• Material 
– Non-ferrous intermetallic, 60NiTi (60wt% Ni + 40wt% Ti)  
– Invented by W.J. Buehler (late 1950’s) at the Naval Ordinance Laboratory (NiTiNOL 

stands for Nickel-Titanium Naval Ordinance Lab) 
– Similar composition to 55NiTi shape memory alloy 

• Key material properties 
– 15% lighter than steel 
– Super-elastic (high elastic strain to failure, low modulus) 
– High hardness 
– Corrosion resistant 

• Potential benefits for bearing performance 
– Lighter weight 
– Higher power density 
– Higher transient load capability 
– Debris tolerant 
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Super-elastic bearing material 
• Some critical bearing material requirements 

– High hardness (>Rockwell C58) 
– Wear resistant and compatible with existing lubricants 
– Resistant to rolling contact fatigue (RCF) 
– Capable of fabrication into ultra-smooth surfaces 
– Dimensionally stable and easy to manufacture 
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NiTi-60 NiTi-55 440C M-50 

Density 
(g/cm3) 6.7 6.5 7.7 8.0 

Hardness 
(HRC) 56-62 35-40 58-62 60-65 

Young’s modulus 
(Gpa) 95 100 200 210 

Fracture toughness 
(MPa/m½) TBD TBD 22 20-23 

High hardness, low modulus, and high elasticity for NiTi-60are an unusual 
combination of properties that could resulting in improved bearing performance 



Super-elastic bearing material 

• Accomplishments for FY11 
– Demonstrated 60NiTi and 61 NiTi hardness >62 HRC using heat 

treatment above 900ºC 
– Ongoing investigation of processing methods to achieve a fine 

microstructure and minimize precipitates 
– Performed fabrication trials for bearing smooth, round, straight rods 

for measurement of rolling contact fatigue (RCF) 
• RCF data is critical to evaluate use in highly loaded, high speed, 

long duration bearings 
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