Fundamental Aeronautics Program

Supersonics Project

Airport Noise Overview
James Bridges, Technical Lead

2012 Acoustic Technical Working Group
April 11-12, 2012
Cleveland, Ohio

www.nasa.gov
Technical Challenge: Airport Noise

• What are we trying to do?
 – Allow supersonic aircraft to be acoustically acceptable around airports.
 – Develop low noise concepts and the ability to engineer them on low-boom supersonic aircraft.

• What is our approach?
 – Develop and use physics-based codes more and experiments less.
 – Couple both code and concept development to delivery of system-level noise prediction modules

• What are the payoffs if successful?
 – Documented noise reduction technologies with ability to trade design parameters against other design goals.
 – Detailed, physics-based jet noise prediction tools applicable to all stages of aircraft design.
Measuring Progress:
Airport Noise Technical Challenge Milestones

What are the intermediate and final exams to check for success?

- Suite of noise prediction codes at multiple fidelities, validated in component tests.
- Refinement of key low-noise concepts, captured in system-level prediction tools.
- Suite of tools used in multi-objective optimization exercise.

Recent Progress Toward Meeting Technical Challenge

- Tool Development
 - Completed Greens function code for HARN jets.
 - Validated unstructured CFD (RANS & LES) for prediction of nozzle plumes.
- Concept Development
 - Assessed three-stream mixer-ejector variable cycle nozzle concept
 - Assessed inverted velocity profile and fluid shield concept
 - Assessed scalability of plasma actuation for jet turbulence control.
 - Designed low-noise high-aspect ratio nozzles.
NASA External Collaborations

Recently Completed NRA

Ongoing

- **NRA: N+2 System Validation**, Lockheed-Martin, Rolls-Royce LibertyWorks, GE Global Research, John Morgenstern, PI
- **SBIR Phase II: LES of Rectangular Nozzles**, CRAFT Tech, Neeraj Sinha, PI.

Other Government Agencies

- **Air Force/Navy/NASA Cooperation on SBIR/STTR** for Jet Noise Research topics
- **Navy/NASA Research Opportunity**: joint funding of 8 awards in jet noise experiments, LES development, and noise reduction

14:20 Thursday—Brenda Henderson
Airport Noise Tech Challenge at a Glance

<table>
<thead>
<tr>
<th>Concepts</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
</tr>
<tr>
<td>• Offset stream</td>
<td>Ready</td>
</tr>
<tr>
<td>• Inverted velocity profile</td>
<td>Ready</td>
</tr>
<tr>
<td>• High aspect ratio nozzles</td>
<td>Ready</td>
</tr>
<tr>
<td>• Multiple Jets</td>
<td>Needs Development</td>
</tr>
<tr>
<td>• Mixer-ejector</td>
<td>Needs Development</td>
</tr>
<tr>
<td>• Jet Excitation</td>
<td>Needs Development</td>
</tr>
<tr>
<td>• Integrated Propulsion</td>
<td>Needs Development</td>
</tr>
</tbody>
</table>
Airport Noise Tech Challenge at a Glance

<table>
<thead>
<tr>
<th>Concepts</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
</tr>
<tr>
<td>• Offset stream</td>
<td></td>
</tr>
<tr>
<td>• Inverted velocity profile</td>
<td></td>
</tr>
<tr>
<td>• High aspect ratio nozzles</td>
<td></td>
</tr>
<tr>
<td>• Multiple Jets</td>
<td></td>
</tr>
<tr>
<td>• Mixer-ejector</td>
<td></td>
</tr>
<tr>
<td>• Jet Excitation</td>
<td></td>
</tr>
<tr>
<td>• Integrated Propulsion</td>
<td></td>
</tr>
</tbody>
</table>

Tool Development Scale

- Needs Development
- Ready
N+2 System Validation Nozzle Test—NASA

- N+2 Low Noise Nozzle concepts use three-stream engine architecture to achieve highly variable cycles.
- Test rig required second fan stream to test concepts for noise.
- NASA GRC High Flow Jet Exit Rig modified to provide *quiet* third stream coannular to existing Rig in same outer envelope.
N+2 System Validation Nozzle Test—LM/RRLW

- Three-Stream Mixer-Ejector
 - Lockheed Martin/RR-LibertyWorks contract
 - Model hardware designed and built by RR-LW
 - Three-stream engine test rig provided by NASA
 - Acoustic and flow diagnostic testing performed at NASA
 - Nozzle tested in complicated subsonic ejector mode

- Objective
 - Validate low-noise operation of highly variable nozzle
 - Validate acoustic design tools

- Outcome
 - External jet noise satisfy noise requirements
 - Internal resonances spoil total success
 - Steady RANS CFD did not foreshadow resonances
 - Shows importance of unsteady flow design tools, unstructured grid methods
N+2 System Validation Nozzle Test—LM/GE

- Inverted Velocity Profile w/Fluid Shield
 - Lockheed/GE Global Research contract
 - Model hardware designed and built by GE GR
 - Acoustic and flow diagnostic testing performed at NASA
 - Hot stream inversion in GE model hardware.

- Objective
 - Validate low-noise operation of nozzle with variable cycle conditions, shield orientations
 - Validate acoustic design tools

- Outcome
 - IVP and fluid shield benefit demonstrated when nozzle operating properly expanded.
 - Over-aggressive divergence removed benefit at low-speeds.
 - Steady RANS CFD did not predict divergence issue.
 - Shows need for prediction of noise from separations.
Plasma Actuator for Jet Turbulence Control

- Jet Turbulence Control
 - Control jet turbulence via instabilities
 - NASA/OSU collaboration to develop high-authority actuators for jets
 - LES simulations and adjoint optimization methods to find control strategies for minimum noise

- Objective
 - Replicate jet control in university lab
 - Demonstrate scaling of actuator authority with nozzle size

- Outcome
 - Small-scale results replicated
 - Jet response scales \textit{linearly} with actuator energy over 6:1 range
 - Require more work on optimization strategies for reduction

16:10 Thursday—Cliff Brown
Validation of Unstructured CFD—RANS & LES

- CFD critical to design of realistic exhaust systems
 - Accurate TKE in plume for noise
 - Accurate separation prediction
 - Non-dissipative LES schemes
- Objective
 - Validate total CFD approach—grid, solver, turbulence models—for several codes
 - Adopt best practices to obtain “good enough” solutions
- Outcome
 - New Wind-US unstructured code validated and documented
 - Low-order LES demonstrated and limitations explored

Grid:
- 11M
- 293M

Data
- Rectangular jet
- Isotemperature
- (CharLES code)

Far-field sound spectra

Jet centerline
Nonaxisymmetric Greens Functions

- CFD-based noise prediction
 - Requires Greens function to couple turbulent source to far-field observer
 - Important to capture beneficial noise refraction

- Objective
 - Create and validate analytic approximations for twin jets, fluid shield, etc.

- Outcome
 - Initial results encouraging, illustrative
 - Validation in process

![Twin Jet Test Rig, AAPL](image)

15:40 Thursday—Stew Leib
Including Surfaces in Propulsion Noise

- Airframe critical in prediction of source and propagation of propulsion noise
- Green's functions for RANS-based prediction tools must include surfaces
- Adjoint methods make computation feasible
- Requires stretch in far-field approximation
- Pushing acoustic analogy where it hasn't gone before, starting with ground effects.

Minimum Propulsion-Airframe Interaction...
Recent Publications
