Development of Nanosized/Nanostructured Silicon as Advanced Anodes for Lithium-Ion Cells

James J. Wu
NASA Glenn Research Center
Outline

• Introduction/Background
• Advanced Si Anode Development
 • Nanosized Si
 • Nanostructured Si
• Larger format Cell Development
 – Cycling performance
 – Post analysis
• Summary
• Remaining Challenges
• NASA is developing high energy and high capacity Li-ion cell and battery designs for future exploration missions under the NASA Advanced Space Power System (ASPS) Program. The specific energy goal is 265 Wh/kg at 10°C

• Part of effort for NASA advanced Li-ion cells
 - **Anode:** Silicon (Si) as an advanced anode
 - **Electrolyte:** advanced electrolyte with flame-retardant additives for enhanced performance and safety (NASA JPL)
Si: an Attractive Li-Ion Anode Material

- **Features:**
 - High theoretical capacity: 4200 mAh/g
 - Abundant element on Earth

- **Challenges:**
 - Poor electrical conductivity
 - Low diffusion coefficient of Li\(^+\) in Si
 - High volume changes (up to ~400\%) in Si particles upon Li lithiation (alloying) and de-lithiation (de-alloying)
Approaches for the Challenges

- Carbon to improve electronic conductivity
- Nano-Si to reduce diffusion path length to help Li$^+$ diffusion coefficient and mitigate volume changes
 - Nanosized Si powder (Georgia Tech)
 - Cost-effective
 - Easy scale up for mass production
 - Nanostructured Si: Si Whisker/NCF (PSI, Inc.)
 - 100 nm diameter carbon fibers w/silicon whiskers
 - Supporting matrix forms an electronically conductive frame work
 - High in free volume
Improve/Stabilize SEI on Si Anode

• Important for rate capability and cycle stability

• Desired SEI properties:
 • Stabilized thin layer
 • highly permeable to Li$^+$ diffusion
 • highly ion-conductive

• Electrolyte: important for SEI formation
 • NASA baseline electrolyte (1M LiPF$_6$ in EC:DEC:DMC (1:1:1))
 • NASA baseline electrolyte + vinylene carbonate (VC)
 • NASA advanced electrolyte: 1M LiPF$_6$ in FEC:EMC:TPP (20:65:15)

• SEI studies:
 • Electrochemical techniques: CV, EIS, galvanstic charge/discharge
 • Well-studied graphite anode for comparison
Difficult SEI Formation for Si Anode

- SEI layer is slow to form on Si anode in comparison with C anode
- VC additive in electrolyte help to stabilize SEI formation
Stabilized SEI: Graphite Anode in Baseline Electrolyte for Comparison

Diagram showing the behavior of the SEI before and after cycling.
VC Additive Helps to Stabilize SEI for Si Anode

SEI layer is stabilized with VC in electrolyte as evidenced that Si anode resistance remains constant at lithiation state (0.01V) vs. delithiation state (1.0V)
Stabilized SEI in NASA Advanced Electrolyte

SEI layer is stabilized in NASA advanced electrolyte as seen with VC in electrolyte
Initial Formation Results w/Nanosized Si

<table>
<thead>
<tr>
<th>Anode</th>
<th>Electrolyte</th>
<th>Capacity (mAh/g)</th>
<th>CE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>Baseline</td>
<td>1787</td>
<td>93.5</td>
<td>1758</td>
<td>96.9</td>
<td>1756</td>
<td>94.3</td>
<td>1721</td>
<td>95.6</td>
<td>1705</td>
<td>96.2</td>
</tr>
<tr>
<td></td>
<td>Baseline + VC</td>
<td>1776</td>
<td>90.8</td>
<td>1773</td>
<td>95.5</td>
<td>1670</td>
<td>94.5</td>
<td>1646</td>
<td>98.0</td>
<td>1637</td>
<td>98.2</td>
</tr>
<tr>
<td></td>
<td>Advanced electrolyte</td>
<td>1779</td>
<td>89.0</td>
<td>1802</td>
<td>97.0</td>
<td>1703</td>
<td>93.4</td>
<td>1679</td>
<td>96.6</td>
<td>1671</td>
<td>97.4</td>
</tr>
<tr>
<td>Graphite</td>
<td>Baseline</td>
<td>341</td>
<td>94.0</td>
<td>342</td>
<td>99.3</td>
<td>341</td>
<td>94.0</td>
<td>342</td>
<td>99.3</td>
<td>341</td>
<td>94.0</td>
</tr>
</tbody>
</table>
Rate Characterization of Si Anode in NASA Baseline Electrolyte

Capacity fade at each rate, further fade at increased rate (C/10 to C/2), and capacity at subsequent C/10 only partially recovered (~75%) vs. the initial C/10, all indicate the SEI is not stable and the electrode degrades.
Impact of VC on Rate Characterization

VC in electrolyte minimizes data variation and significantly improves rate cycling capability.
Rate Capability Cycling of Si Anode in NASA Advanced Electrolyte

NASA advanced electrolyte is similar to VC in electrolyte in minimizing data variation and significantly improves rate cycling capability.
Coulombic Efficiency at Rate Characterization

NASA advanced electrolyte and VC in electrolyte improves coulombic efficiency, but still < 99%
At this anode loading, the Si anode is overcharged and the anode voltage reaches 0V (if end cell charged voltage to 4.1V), and the end discharge voltage of anode increases, it is not safe for this anode loading to charge the cell to 4.1V.
Si/NCA Full Cell Pouch Cell:
Si Anode Loading (3.9 mg/cm2) is Fine

At this anode loading, the anode voltage profile is stabilized between ~110 mV (ECV) to 1V (EDCV), it is ok for the cell charged to 4.1V
Nanostructured Si: Si Whiskers/Nanocarbon Fiber

- Rate capacity > 1000 mAh/g
- Rate capability: 0.1C to 1C
- Electrode loading: 2-4 mAh/cm²
- Scalable production process
Cell Components and Design

<table>
<thead>
<tr>
<th>Components</th>
<th>Experimental Cells</th>
<th>Baseline Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode</td>
<td>Si whisker/carbon nanofiber</td>
<td>Graphite</td>
</tr>
<tr>
<td>Cathode</td>
<td>NCA</td>
<td>NCA</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>Low flammable electrolyte (JPL)</td>
<td>Yardney electrolyte</td>
</tr>
<tr>
<td>Projected (Wh/Kg)</td>
<td>193</td>
<td>160</td>
</tr>
<tr>
<td>Projected (Wh/L)</td>
<td>500</td>
<td>409</td>
</tr>
</tbody>
</table>
Initial Cycling Results

<table>
<thead>
<tr>
<th>Measured Initial Value</th>
<th>Experimental Cells</th>
<th>Baseline Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>Wh/Kg</td>
<td>191</td>
<td>163</td>
</tr>
<tr>
<td>Wh/L</td>
<td>505</td>
<td>410</td>
</tr>
</tbody>
</table>
Self-Discharge Test (72 Hour Stand Test)

(Yardney measured the cells before they were shipped to NASA GRC)

OCV (charge state) voltage loss during 72 hours:
- Baseline cells: ~20 mV
- Experimental cells: ~100 mV
Initial Cell Capacities at Various Current Rates

- Yardney Baseline Cells
- PSI-Anode Cells
Experimental Cells: C/10 Cycling at 10°C

Cells w/o prior rate cycling

Coulombic efficiency: 99.0%
What We Observed after DPA

Si Anode

NCA Cathode

tap

The delaminated Si electrode materials adhered to adjacent separator

No cathode delamination was seen

- Delamination was seen on one side of anode sheet (the other side is ok) (this happens on each anode sheet)
- The delaminated Si anode materials adhered to adjacent separator
The thickness was not uniform, possible due to delamination: relative thinner closer to current collector tap portion (A-C, D-F), relative uniform far away (G-I).

The expansion of cycled Si anode is ~ 10-15%
Summary

• Developed and scaled up both nanosized Si and nanostructured Si anodes, which demonstrated reversible capacity (>1000 mAh/g) at practical loadings (>3 mg/cm²)

• Large-format flight-type prismatic cells with NASA supported Si anode and low flammable electrolyte were successfully fabricated

• The Si cells initially delivered the anticipated gain in capacity and performance over the cells constructed with graphite anode

• The cycling performance however fell short of the targeted value, the high moisture in the Si anode, Si anode delamination after cycling, and inadequate electrolyte are the possible causes for the capacity fade
Remaining Challenges

• Promoting fast SEI formation and further stabilizing the formed SEI layer
 ◦ Initial formation coulombic efficiency is <99%
 ◦ Irreversible capacity loss for the initial two formation cycles is still high (10% - 20%)
 ◦ Capacity fade needs to be further reduced

• Compatible and stable electrolytes (required for high voltage cathode materials)
• NASA University Partner – GeorgiaTech/Clemson team (led by Dr. Gleb Yushin)
• NASA Industrial Partner – PSI (Dr. Chris Lang)
• NASA JPL (Dr. Marshall Smart)
• Yardney (Dr. Joe Gnanaraj)
• NASA Advanced Space Power Systems Project and SBIR supported this work
Thank you!