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Abstract: A fully coupled deformation and damage approach to modeling the response of composite
materials and composite laminates is presented. It is based on the semi-analytical generalized method
of cells (GMC) micromechanics model as well as its higher fidelity counterpart, HFGMC, both of which
provide closed-form constitutive equations for composite materials as well as the micro scale stress and
strain fields in the composite phases. The provided constitutive equations allow GMC and HFGMC to
function within a higher scale structural analysis (e.g., finite element analysis or lamination theory) to
represent a composite material point, while the availability of the micro fields allow the incorporation of
lower scale sub-models to represent local phenomena in the fiber and matrix. Further, GMC's
formulation performs averaging when applying certain governing equations such that some degree of
microscale field accuracy is surrendered in favor of extreme computational efficiency, rendering the
method quite attractive as the centerpiece in a integrated computational material engineering (ICME)
structural analysis; whereas HFGMC retains this microscale field accuracy, but at the price of
significantly slower computational speed. Herein, the sensitivity of deformation and the fatigue life of
graphite/epoxy PMC composites, with both ordered and disordered microstructures, has been
investigated using this coupled deformation and damage micromechanics based approach. The local
effects of fiber breakage and fatigue damage are included as sub-models that operate on the microscale
for the individual composite phases. For analysis of laminates, classical lamination theory is employed
as the global or structural scale model, while GMC/HFGMC is embedded to operate on the microscale to
simulate the behavior of the composite material within each laminate layer. A key outcome of this
study is the statistical influence of microstructure and micromechanics idealization (GMC or HFGMC) on
the overall accuracy of unidirectional and laminated composite deformation and fatigue response.

1. Introduction

Experimental micrographs of composite microstructures have shown that actual microstructures

rarely resemble ordered arrangements and show at least some degree of spatial randomness (see
Figure 1 for an example of a polymer matrix composite). However, due to the diminishing effect of
microscale randomness at higher length scales, microstructural variability is often ignored and
micromechanics based models assuming periodic boundary conditions, with an ordered array of fibers
(either square packed or hexagonally packed), are typically utilized. Researchers have investigated the
effect of random or disordered microstructures on various composite behaviors, assuming elastic and
damage behavior (Trias et al., 2006; Huang et al., 2008; Maligno et al., 2009; Wang et al., 2011;
Romanov et al., 2013). Wang et al. (2011) and Trias et al. (2006) focused on the generation of random
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distributions of fibers and quantified their elastic and failure effects using a two dimensional
representative volume element (RVE) finite element method (FEM) model loaded in transverse tension.
These authors found that as the disorder in the microstructure increased, so did the tensile modulus.
This was attributed to higher fiber stresses in the random microstructure when compared to the
ordered microstructure. Huang et al. (2008) developed a three dimensional RVE model for the purpose
of studying the effects of transverse tensile, shear, and thermal loading on the elastic behavior (e.g.,
traction, stress concentration, and stress invariant distributions) for ordered and random
microstructures of varying volume fractions and loading angles. One conclusion the authors reached is
that the range in stress invariant distribution is wider for a disordered (i.e., random fiber array)
compared to an ordered array due to irregularity in inter-fiber distance; the effect being lower predicted
strength. Maligno et al. (2009) investigated the local elastic and damage evolution effects of inter-fiber
spacing in unidirectional fiber-reinforced composites using an RVE comprised of three partial fibers. The
authors found that the inter-fiber spacing and residual stress play an important role in damage initiation
and evolution. Similarly, Garnich et al. (2013) showed significant differences in fatigue life predictions of
a transversely loaded unidirectional PMC depending upon whether one assumes ordered hexagonally
packed or disordered microstructures.

Figure 1: Micrograph of polymer matrix composite

With the increased emphasis on reducing the cost and time to market of new materials, Integrated
Computational Materials Engineering (ICME) has become a fast growing discipline within materials
science and engineering. ICME is an integrated approach to the design of products and the materials
which comprise them by linking material models at multiple time and length scales; such that
manufacturing processes, which produce internal material structures that in turn influence material
properties and allowables, can be tailored (engineered) to specific industrial applications. In this paper
we will utilize the general, synergistic, multiscale-modeling framework for composites, developed by the
NASA Glenn Research Center (GRC) and known as MAC/GMC and FEAMAC, see Bednarcyk and Arnold
(2002) and Aboudi et al. (2013). This framework can be effectively utilized to link the material
microstructure (e.g., constituent phase properties, volume fraction, fiber packing) to ply/laminate
properties (mesoscale) and finally to performance (at the macroscale), see Figure 2, in an efficient and
accurate manner to enable "fit-for-purpose” tailoring of the composite material. The ability to localize
and homogenize between scales with efficiency and accuracy makes MAC/GMC and FEAMAC ideal
candidates for ICME simulations in a multiscale environment in which the microstructure can be
optimized spatially based on the local loading and environmental history (Pineda et. al. (2014)).
Specifically, in this study we will investigate the statistical influence of microstructure (both ordered and
disordered) on the overall accuracy of predicted unidirectional and laminated composite effective
properties and fatigue life. In addition to examining microstructure-property-performance
relationships, prior work (Pineda et al. (2013)) suggests the importance of examining the accuracy of the
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micromechanics idealization (Generalized Method of Cells (GMC) or High Fidelity Generalized Method of
Cells (HFGMC)) when considering microstructural arrangement.
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Figure 2: lllustration of relevant levels of scales for multiscale composite analysis.

2. Generalized Method of Cells

GMC, first developed by Paley and Aboudi (1992) and HFGMC, first developed by Aboudi et al.
(2002), are semi-analytical in nature, and their formulation involves application of several governing
conditions in an average sense. It provides the local fields in composite materials, allowing incorporation
of arbitrary inelastic constitutive models with various deformation and damage constitutive laws. The
microstructure of a periodic material, within the context of GMC and HFGMC, is represented by a
rectangular (doubly-periodic) or parallelepiped (triply-periodic) repeating unit cell (RUC) consisting of an
arbitrary number of subcells, each of which may be a distinct material (Figure 3). In the case of GMC the
displacement field is assumed linear, whereas in the case of HFGMC the displacement approximations
are assumed quadratic, thus leading to a constant and linear subcell strain field, respectively. In fact it is
precisely this higher order assumption in the displacement field that enables HFGMC to retain its ability
to compute nonzero transverse shear stress distributions within the composite (i.e., normal and shear
coupling), which is so important when dealing with disordered microstructures (Liu and Ghoshal (2014)).
However it is also this high-order field assumption, which makes HFGMC more computationally
expensive and subject to subcell discretization dependence as compared to GMC.

Displacement and traction continuity is enforced in an average, or integral sense at each of the
subcell interfaces and the periodic boundaries of the RUC. These continuity conditions are used to
formulate a strain concentration matrix A, which gives all the local subcell strains (€s) in terms of the
global, average, applied strains €gppiied (i-€., €s = A €qppiiea). The local subcell stresses (o) can then be
calculated using the local constitutive law and the local subcell strains. Finally the overall RUC stiffness is
obtained utilizing the local constitutive law and the strain concentration matrix averaged over the RUC
dimensions. The detailed methodology of GMC and HFGMC and the formulation to be embedded within
classical laminate theory is described thoroughly in Aboudi et al. (2013). Also in this reference the



Downloaded by NASA GLENN RESEARCH CENTER on April 6, 2015 | http://arc.aiaa.org | DOI: 10.2514/6.2015-0202

superior accuracy of HFGMC over that of GMC is demonstrated, consequently in this study HFGMC will
be assumed to provide better predictions.

] .

a) Doubly-periodic b) Triply Periodic
Figure 3: Composite with repeating microstructure and arbitrary constituents.

3. Continuum Fatigue Damage Model
The fatigue life of the composite will be predicted utilizing micromechanics and the isotropic form
of the multiaxial, isothermal, continuum damage mechanics model of Arnold and Kruch (1994) for the

matrix constituent. When reduced to its isotropic form (the parameters W, Wg @, M, Ny, and N,

are set equal to one) this model reduces to the Non-Linear Cumulative Damage Rule (NLCDR) developed
at ONERA (Chaboche and Lesne (1988)). This model assumes a single scalar internal damage variable, D,
that has a value of zero for undamaged material and one for a completely damaged (failed) material.
The implementation of the damage model within GMC and HFGMC has been performed on the local
scale, thus damage evolves in a given subcell based on the local stress state and number of cycles. For a
given damage level, the stiffness of the subcell is degraded by (1 — D). Further, the implementation
allows the application of a local damage increment, AD, and then calculates the number of cycles, N,
required to achieve this local increment of damage. This approach allows the model to determine the
stress state in the composite, identify the subcell that will reach the desired damage level in the fewest
cycles, apply that number of cycles, and calculate the damage that arises throughout the remainder of
the composite. Then the composite can be reanalyzed and a new stress state determined based on the
new, spatially varying, damage level throughout the composite RUC. In this way, the local and global
stress and damage analyses are coupled. As the damage in the composite evolves, the stress field in the
composite is redistributed, which then affects the evolution of damage.

For an isotropic material, the damage parameters that must be selected reduce to M, £ and a,

and the pertinent equation relating the fatigue life of the isotropic material to the cyclic stress state is,

(0, -am)(M)

_ O, —O
e &(1+/5)(amax —E—Oﬂ)

B

N

for N. >0

where o, is the material ultimate strength, o is the material fatigue limit (stress below which damage
does not occur), o, is the maximum stress during a loading cycle, O is the mean stress during a

loading cycle, and NF is the number of cycles to failure. Note that, in the terminology of Arnold and
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Kruch (1994), a = a&. Utilizing the above equation, the damage model parameters M, 8 and a

o,
can be selected for an isotropic material based on the material’s S-N curve (stress level vs. cycles to
failure). Both the fatigue limit and the scaling parameter M are general enough to account for the effect
of mean stress. However in this study this additional effect is ignored since only one R ratio is examined.

An S-N curve for epoxy was obtained from Plastics Design Library (1995), and the fatigue damage model
parameters were selected as M = 150 MPa, f =9, and a = 0.05, with o, =80 MPa, and O, = 27

MPa. A plot showing the fatigue model characterization is given in Figure 4.

A second damage model within GMC and HFGMC is much simpler and involves degradation of a
material’s strength due to cyclic loading. As shown by Wilt et al. (1997), this type of damage model can
be used to simulate the fatigue behavior of fibers that occurs in-situ during fatigue of a composite. The
model assumes a logarithmic relation between the material’s strength and the number of cycles within a
certain range such that:

o,=0, 0=sN=N

o -0 _(Oul_auz)IOg(N/Nl) N <N<N
u ul log(Nz/Nl) 1= = 2

o,=0, N,=N

This strength degradation model was employed in the present example to model the longitudinal
fatigue behavior of the graphite fiber. The necessary parameters for the model are o, 0,,, N|, and

N2. The values of these parameters chosen for the graphite fiber are shown in Fig. 5. Note that these

data were not correlated with experiment, but rather chosen based on the expected trend. Given these
required parameters for the fatigue damage models for each phase in the graphite/epoxy composite,
macroscopic or composite fatigue life of both unidirectional and [0/90] cross-ply composite laminates
can be simulated. The static deformation response of both fiber and matrix were assumed to be linear
elastic, with all damage coming from cyclic fatigue. The associated material properties are given in
Table 1.
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Figure 4: Characterization of the stiffness reduction fatigue damage model
parameters for the epoxy matrix. Experimental data are from Plastics
Design Library (1995).
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Figure 5: Strength reduction fatigue model parameters assumed for the graphite
fiber.

Table 1: Constituent (fiber/matrix) elastic properties

Graphite Fiber Epoxy Matrix
E11=388.2 GPa Em=3.45 GPa
Ef;,=7.6 GPa v=0.35
v1,=0.41 G 23=1.278 GPa
Vf23=0.45
G12,=14.9 GPa
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4. Results

GMC and HFGMC RUC Refinement: Ordered Microstructure

The elastic properties of graphite fiber and epoxy matrix are given in Table 1, while the fatigue
parameters are given in Section 3. The matrix (represented by green subcells in Figure 6) was assumed
isotropic with a Young’s modulus E,, and a Poisson’s ratio v,,, and the fiber (shown in Figure 6 with red
subcells) was assumed transversely isotropic; where Efy; is the longitudinal fiber modulus, Ef, is the
transverse fiber modulus, v, and viy; are the longitudinal and transverse fiber Poisson Ratios, and Gy, is
the longitudinal (axial) fiber shear modulus in Table 1. Note the ratio of constituent properties are Eq/E,
=112; Ex/En =2.2; Gi/Gn = 11.6; Gir/G, = 2.62. Although it is well known that GMC (Aboudi et. al.
2013) has no subcell discretization dependence, for a fixed RUC, the RUC can still be refined such that
the volume fraction of fiber and matrix can be better represented. The influence of such discretization
dependence is shown in Figures 6 and 7, wherein one sees that the transverse normal and transverse
and longitudinal shear moduli (effective stiffness’s) are only slightly impacted for both GMC and HFGMC
(with HFGMC having the larger dependence). The transverse fatigue life (Figure 7), on the other hand, is
significantly affected as it depends more heavily on the accuracy of the local fields. Figure 7 indicates
that fatigue life is much more sensitive to RUC discretization than effective properties in that the
maximum difference in life (from one RUC discretization to another) for GMC is approximately a factor
of 2.5, whereas, for HFGMC, the factor is 28. The difference in life between GMC and HFGMC for a given
RUC idealization was typically less than a factor of two, with Arch ID 1 and 13 being exceptions at 5x and
3x, respectively. GMC typically predicted longer lives than did HFGMC for a corresponding RUC
idealization.

The numerical error between the effective composite properties predicted by HFGMC and GMC are
given in Table 2, with the maximum normal stiffness error being less than 2% while the maximum error
in shear stiffness is approximately 30%. Clearly, the largest difference occurred when using Arch ID 1
(2x2) discretization. This is not surprising since in the case of HFGMC (which has discretization
dependence, due to the capturing of local normal and shear coupling) the circular nature of the fiber is
not well represented; see Aboudi et al. 2013. Furthermore, as the circular nature of the fiber is better
approximated, local stress concentrations within the RUC are better captured, and the fatigue life
decreases, with HFGMC being more dramatically impacted than GMC. Note that in all RUC idealizations,
except the last one (i.e., 12 x 12), only two matrix subcell are present between fibers. Comparing the 5 x
5 and 12 x 12 RUCs one can see that a further discretization of the matrix between fibers further
impacts the life predictions produced by HFGMC as the stress field variation between fibers is captured
more accurately. In the subsequent microstructure study, the 12 x 12 RUC will be used as the baseline
RUC representing ordered and disordered periodic microstructures. This is primarily done for
computational efficiency purposes since, although HFGMC is more accurate, on average it is orders of
magnitudes slower than GMC. Therefore the size of the RUCs examined, particularly in fatigue, must be
limited.
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Figure 7: Predicted fatigue life for a unidirectional, transversely loaded, PMC composite (22% fiber
volume fraction, .y = 40MPa, R=0.1).

Table 2 Difference between HFGMC and GMC effective property predictions as a function of RUC
discretization.

RUCType | E1l E22 E33 v23 vi2 vi3 G23 | G12 | Gi3
ArchiD 1 | 0.0001 | 0.0188 | 0.0188 | -0.012 | 0.0027 | 0.0027 | 0.0469 | 0.3061 | 0.3061

5x5 0 0.0011 | 0.0011 | 0.0004 | 0.0008 | 0.0008 | 0.019 | 0.0526 | 0.0526
ArchiID 6 0 0.0013 | 0.0013 | 0.0004 | 0.0008 | 0.0008 | 0.0197 | 0.0608 | 0.0608
ArchiD 7 0 0.0013 | 0.0013 | 0.0012 | 0.0011 | 0.0011 [ 0.0217 | 0.0684 | 0.0684
ArchiD 13 0 0.002 | 0.002 | 0.0004 | 0.0011 | 0.0011 | 0.0217 | 0.069 | 0.069
12x12 0 0.0044 | 0.0044 | -0.002 | 0.0011 | 0.0011 [ 0.0123 | 0.0759 | 0.0759

Ordered versus Disordered Microstructures

Given a fixed, single fiber 12x12 RUC (ordered, square packed microstructure), as well as RUCs with
multiple fibers with the same level of discretization, the influence of random fiber placement
(disordered microstructure) can be examined. As the number of fibers within a given RUC increase, this
RUC can approach what is termed a statistical RUC. Figure 8 illustrates three cases for a 4 fiber RUC;
Case 1: ordered (this case gives identical answers to a single fiber RUC with periodic boundary
conditions), while Cases 2 and 3 are disordered. In Figure 8 we have shown the actual RUCs which have
periodic boundary conditions applied to them and the tiled (expanded) version of Case 2 to better
illustrate the actual microstructure being simulated for that case. Table 3 provides results (effective
composite properties and number of cycles to end of life) from both GMC and HFGMC micromechanics
analyses. Although unrealistic for PMCs, a volume fraction of 22% was assumed, since as volume
fraction increases the ability to move fibers decreases. Clearly, the longitudinal stiffnesses, E;;, are
identical for both GMC and HFGMC, while all other normal moduli and Poisson's ratios are very close
(less than 1.5% difference). The largest variations occur in the longitudinal shear moduli (G12 and G13),
approximately 7-15% depending upon the case, whereas the transverse shear moduli (G23) differ by no
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more than 3% between GMC and HFGMC. Note, Case 2 produces the highest discrepancy between
HFGMC and GMC. Also, as will be shown in a future publication, the actual percentage discrepancy is
highly dependent upon volume fraction and property mismatch between constituents. However, the
trends indicated herein remain the same.

Case 2: Tiled

Figure 8: Square-packed 24x24 RUC subcell architecture. Red subcells=Fiber, green subcells= matrix

Before considering failure, it would be informative to assess the influence of the number of fibers
within a given RUC (e.g., 4 fibers: 24 x 24; 9 fibers: 36 x 36; 25 fibers: 60 x 60, and 100 fibers: 120 x 120
subcells, see Fig. 9) on the predicted effective properties, when utilizing either the GMC or HFGMC
idealization. Table 4 and 5 provide these results. Table 4 illustrates the impact of considering additional
fibers for the case of random perturbations of a square pack microstructure (defined as slightly random)
whereas Table 5 assesses the case of truly random microstructures. Clearly, as more fibers are added
(tending toward a statistical RUC), all properties tend to converge. One measure of convergence (for
the case of truly random, Table 5) is whether or not transverse isotropy can be recovered such that E22
= E33, G12 = G13, and G23 = E22/(2(1+v23). Although transverse isotropy is not expected to be
recovered in the case of slight perturbations of square pack (see Table 4), the properties appear to
converge for an RUC containing 9 or more fibers. Similarly, it is apparent that predicted in-plane normal
moduli (E22 and E33) and longitudinal shear moduli are slightly different (< 1% and approximately 2.5 %,
respectively when using GMC; and less than 0.2% for all when using HFGMC) when slight perturbations
are present as compared to those obtained from an ordered periodic microstructure. Consequently, in
practicality 4 fiber RUCs should be sufficient to investigate the influence of disorder on the two
micromechanics approaches. In the case of truly random microstructures, the computed G23 modulus
matches (<0.5% error) that obtained from the isotropy assumption when 25 fibers are used in the case
of GMC and 9 fibers in the case of HFGMC. Four fibers produce in-plane modulus agreement within
0.8% when using HFGMC. Another potential measure is to create probability density functions (PDFs)
for each property and determine the number of fibers required to minimize the variation about the
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mean value. Although not shown here, this was done and it was determined that 100 or more fibers
would be required to retrieve “deterministic” effective properties.

Table 3: Elastic effective composite properties and transverse cycles to failure

4 Fiber: 24x24 Base cell Models; Vf=22% |
Case 1l Case 2 Case 3

Property GMC HFGMC GMC HFGMC GMC HFGMC
E11S 88950 88950 88950 88950 88950 88950
N12sS 0.3639 0.3643 0.363 0.364 0.363 0.364
N13S 0.364 0.3643 0.363 0.364 0.363 0.364
E22S 4483 4503 4380 4443 4388 4454
N23S 0.508 0.5073 0.518 0.514 0.517 0.513
E33S 4483 4503 4380 4443 4388 4454
G23S 1442 1460 1442 1487 1442 1481
G13S 1730 1872 1607 1893 1615 1886
G12S 1730 1872 1607 1893 1615 1886
Life 1,590,152 1,018,736 3,605,070 2,930,013 2,428,430 2,903,263

a) Slight Perturbation on Square Pack

b) Truly random architecture

Figure 9 lllustrations of Multi-fiber Representative Unit Cells (RUCs)
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Table 4 Mean property values of all runs with 4, 9, 25, and 100 fibers within RUC: Slightly perturbed

# Fibers E1l vl2 vl3 E22 v23 E33 G23 G13 G12
1 88950 |0.3639|0.3639|4483.0|0.5082 | 4483.0| 1442.0|1730.0| 1730.0
4 88950 |0.3638|0.3638|4454.2|0.5107 | 4455.2| 1442.0| 1699.2 | 1696.2
9 88950 |0.3637|0.3638|4445.8|0.5114|4447.6|1442.0|1690.8|1685.1| GMC
25 88950 |0.3637|0.3637|4438.5|0.5123 | 4438.7 | 1442.0|1678.3| 1677.9
100 88950 |0.3637|0.3637|4433.2|0.5128 4433.2|1442.0|1671.5|1671.5

Vf=22%

88950 |0.3643|0.3643 | 4503.0| 0.5073 | 4503.0| 1460.0| 1872.0| 1872.0
88950 [0.3643|0.3643 |4493.9|0.5083 | 4493.7 | 1463.3 | 1874.1 | 1875.4
88950 |0.3643|0.3643 |4494.1|0.5081 | 4494.8| 1462.9| 1877.1| 1873.1 | HFGMC
25 88950 |0.3643|0.3643 | 4493.9|0.5082 | 4493.9| 1463.0| 1875.5 | 1875.3
100 88950 |0.3643|0.3643|4493.7 | 0.5083 | 4493.7 | 1463.1 | 1875.5| 1875.3

(&=

Table 5 Mean property values of all runs with 4, 9 and 25 fibers within RUC: Truly random

# Fibers E11l vl2 vl3 E22 v23 E33 G23 G13 G12
4 88881 |0.3637|0.3636]4429.1|0.5132|4428.1| 1441.9| 1669.6| 1671.8
9 88893 | 0.3635]|0.3636|4410.0|0.5147|4411.1| 1441.9| 1647.8| 1643.8| GMC
25 88912 |0.3634|0.3635]|4397.6|0.5159|4398.2| 1442.0| 1630.2| 1628.4

Vf=22%

4 88882 |0.3643]|0.3643|4477.5|0.5100| 4478.1| 1471.3] 1903.9] 1901.1
9 88895 |0.3643|0.3644|4475.3|0.5103|4476.1| 1473.6| 1917.6] 1910.9 | HFGMC
25 88914 | 0.3643] 0.3644|4476.8|0.5102]|4477.9| 1474.6| 1927.5]| 1919.8

As one might suspect, failure (in this case the transverse fatigue life, see Table 3) is greatly
influenced by microstructure [126% (case 2 vs. case 1) and 53% (case 3 vs. case 1) for GMC and 188%
and 185% for HFGMC, respectively] and micromechanics idealization [(56% (GMC casel vs. HFGMC
casel) and 23% (GMC case 2 vs. HFGMC case2) and 16%(GMC case 3 vs. HFGMC case3)] since failure is
driven by the local fields (here, because of the damage model being used, these are local, microscale
stress fields)®.

Classic S-N (applied stress vs. number of cycle to failure) curves are shown in Figure 10 and 11 for
unidirectional laminates loaded longitudinally [0] and transversely [90], as well as cross-ply [0/90];
laminates. Figure 11, merely illustrates a zoomed in view of the [0/90]; laminate case (two curves
labeled as "12x12" with additional points associated with disordered cases). Both GMC and HFGMC
simulations are given for ordered microstructures with a fiber volume fraction of 22%. As expected,
fatigue lives for [0] laminates are identical regardless of which micromechanics idealization is used, i.e.,
GMC or HFGMC. However, in the case of [90] or [0/90]s laminates, differences between GMC and
HFGMC are more pronounced; roughly a factor of 1.5 to 2 for both [90] and [0/90]s depending upon the
applied load level. This difference is well within the typical experimental scatter in fatigue. In Figure 11,

> Note since the largest difference between GMC and HFGMC idealizations occurred for the ordered case — to
determine the precise influence of microstructure disorder, in-situ properties in GMC should be adjusted so that
both GMC and HFGMC give the same results for the ordered case. This is reserved for a future study.
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one can see an averaged difference (approximately 60%) for all stress levels between GMC and HFGMC
predicted lives given an ordered microstructure, case 1; with HFGMC predicting shorter lives.

Now, considering the case of disordered microstructures a few sample cases have been included in
Figures 10 and 11; they are indicated by various lone symbols for both the [90] and [0/90] laminate
cases. Clearly, lives of the disordered composites are shorter than their ordered counterpart. GMC
predicts significantly shorter life than the corresponding GMC ordered case (see larger solid green circle
(Fig. 10) for the [90] laminate and the green X and orange diamond (Fig. 11) symbols in the case of
[0/90]s laminates). HFGMC also produces shorter lives, but to a lesser extent than the corresponding
ordered case (see purple solid circle (Fig. 10) and blue square and orange triangle (Fig. 11) symbol).
Note that in Fig. 11 two random disordered cases are examined for both GMC and HFGMC; in the case
of GMC they give the same lives but in the case of HFGMC they vary by roughly 72%. Consequently, the
sensitivity to disorder appears to be greater with HFGMC than it does with GMC. Since HFGMC has been
shown to have similar accuracy to FEA under static loading conditions (see Aboudi et al. (2013), Pineda
et al (2013)), this brings into question the ability to use GMC to predict fatigue lives for random
microstructures. This will be further addressed subsequently.
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Figure 10: S-N curve for unidirectional [0] and [90] and Cross-ply laminated [0/90] graphite/epoxy
composite system, volume fraction (Vi) = 22%.
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Figure 11: S-N curve for Cross-ply laminated [0/90] graphite/epoxy composite system, V;= 22%.

The additional sensitivity to disordered microstructures in the case of HFGMC as compared to GMC
can be attributed to the fact that disordered microstructures induce more local normal/shear coupling
and thus cause a higher fluctuation in local fields when compared to ordered microstructures (wherein
the spacing between fibers is uniform). Obviously, since the matrix fatigue damage is driven by the local
stress state and the local stress field (and therefore damage evolution) is highly dependent upon the
given disordered microstructure, shorter lives are clearly possible. This is consistent with previous FEA
investigations involving disorder and tensile strength calculations; see Wang et al. (2011) and Trias et al.
(2006). GMC is unable to capture these fluctuations in the local stress fields accurately due to the
known lack of normal and shear coupling. This lack of normal/shear coupling is magnified when fibers
are clustered, i.e., pockets of high volume fractions occur within an RUC. To investigate this potential
variation, 100 random perturbations (of a square packed microstructure) were constructed assuming a 4
fiber RUC (24x24 subcell). Note, an aspect ratio of one (between the horizontal and vertical subcell
dimensions) was always maintained in order to minimize any discretization dependence in the results.
The resulting life as a function of Monte Carlo run number is plotted in Figure 12, where a given run
number is associated with the same microstructure analyzed by both GMC and HFGMC. A
corresponding probability density function (PDF) is shown in Figure 13 for results coming from GMC and
HFGMC given a [90] laminate with a maximum applied load level of 40 MPa and an R ratio of 0.1.
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Figure 12 Final transverse fatigue lives as a function of run number for HFGMC (blue stars) and GMC (red
stars) at 40 MPa load level.
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Figure 13: Probability density function representing initial and final fatigue failures, given a 4 fiber 24 x 24 RUC.
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Many observations can be made from these results. The variation in lives is much tighter for GMC
than HFGMC, as the ratio of maximum to minimum lives is 1.8 for GMC and 2.88 for HFGMC. Further,
the corresponding ordered microstructure life is 157% longer than the mean of the disordered
microstructures in the case of GMC and only 22% different in the case of HFGMC. Interestingly, the
difference between the mean life calculated using HFGMC (i.e., 835K cycles) and that using GMC (i.e.,
617K cycles) is only 26%, whereas, for a given disordered realization, this difference is up to 230%. This
suggests that the far more efficient GMC (at least 1000 times faster than HFGMC) may still be useful to
estimate averaged fatigue lives of disordered microstructures even though its local field accuracy and
even effective properties are suspect in the case of a single disordered microstructure realization. This
is particularly true since GMC is on the conservative side with respect to HFGMC in the case of
disordered microstructures. This is opposite in the case of ordered microstructures, i.e., GMC predicts
longer lives than HFGMC.

Similar trends hold for other load levels as well, see the S-N curves in Figures 14 and 15, where the
results from the baseline ordered microstructure and results of the minimum and maximum life
disordered microstructures at various applied load levels are shown. Figure 14 shows that, for GMC, the
ordered case predicts a life outside the scatter range of the random disordered case, with a longer life
than even the highest life case, within the 100 cases examined. Conversely, Figure 15 indicates that, in
the case of HFGMC, the ordered microstructure falls within the scatter range of the various disordered
microstructure cases. Also in Figure 15, X marks the life of our previously examined disordered Case 2 —
which has even a longer life than any of the 100 disordered cases randomly generated. This indicates
that if more random microstructural cases were considered, the spread between maximum and
minimum would increase even further than that shown in Figures 12 and 13. The above results suggest
that micromechanics can be used to inform the manufacturing process as to which microstructures can
potentially provide maximum life for a given loading scenario. Whether or not such a microstructure
could practically and reliably be obtained is still an open question.
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Figure 14: Ordered, minimum, and maximum disordered microstructure S-N Curves produced using GMC for a
transversely loaded, unidirectional PMC laminate: R= 0.1 and V;= 22%.
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Figure 15: Ordered, minimum, and maximum disordered microstructure S-N Curves produced using HFGMC for a
transversely loaded, unidirectional PMC laminate: R= 0.1 and V;= 22%.

5. Conclusion

ICME is an integrated approach to the design of products and the materials that comprise them by
linking material models at multiple time and length scales. Manufacturing processes, which produce
internal material structures, that in turn influence material properties, allowables, and responses can be
tailored (engineered) to specific industrial applications. In this paper the statistical influence of
microstructure (both ordered and disordered) on the unidirectional and laminated composite effective
properties and fatigue life was investigated. In addition, the advantages/limitations of the
micromechanics idealization (GMC or HFGMC) available within the general, synergistic, multiscale-
modeling framework for composites (developed by the NASA Glenn Research Center (GRC) and known
as MAC/GMC and FEAMAC) when considering microstructural arrangement was discussed. The
important findings are summarized:

a) Accounting for spatial variations in composite microstructure within the RUC analyzed is
important, as these variations can account for observed statistical variations in both effective
properties and fatigue life.

b) Both micromechanics idealizations can be used to account for this variation; however, the more
computationally efficient Generalized Method of Cells (GMC) is significantly less sensitive to
microstructure variations than is the High Fidelity Generalized Method of Cells (HFGMC).

i.  HFGMC typically predicted higher effective properties and lower fatigue lives than did GMC
for order microstructures. Except for Arch ID=1, the difference in normal stiffness and
Poisson's ratios were less than 0.5%, while the differences in shear moduli were less than
10%. Arch ID=1 should not be used with HFGMC as both out of plane shear moduli and
fatigue lives can be significantly over estimated.
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ii. Predicted fatigue lives utilizing GMC with RUCs representing ordered microstructures are
higher and significantly outside the range of those with disordered microstructures;
whereas fatigue lives predicted with ordered RUCs using HFGMC are within the range of
those lives determined using disordered microstructures.

iii. Although the fatigue lives predicted by HFGMC vary significantly based on individual
microstructures (whereas GMC is relatively insensitive), the mean life value (i.e., averaged
over multiple microstructure realizations) for a given RUC discretization (e.g., 4 (12x12)
Fiber unit cells within the RUC) between HFGMC and GMC is relatively small (< 30%)
compared to lives produced using an ordered (single fiber with periodic boundary
conditions) microstructure. Note, that the actual percentage discrepancy, in the case of
disordered microstructures, is highly dependent upon volume fraction and property
mismatch between constituents.

Clearly, micromechanics can be effectively utilized to link the material microstructure (e.g., constituent
phase properties, volume fraction, fiber packing (ordered or disordered), etc.) to ply/laminate
properties (mesoscale) and finally to performance (at the macroscale), in an efficient and accurate
manner to enable "fit-for-purpose” tailoring of the composite material. The ability to localize and
homogenize efficiently between scales make MAC/GMC and FEAMAC ideal candidates for ICME
simulations in a multiscale environment in which the microstructure can be optimized spatially based on
the local loading and environmental history. Finally, extreme caution should be used when
adopting/utilizing input constituent (fiber/matrix) properties either from the literature or a given model,
as the fidelity of the given model used to obtain those “in-situ material properties” will impact the
predictive ability of another model with a different degree of fidelity and assumptions.
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