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Abstract we analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray
image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three
wedges: two 19° wedges (one north and one south) 13-32° off the terminator toward the dark side and
one wedge 38° wide centered on the antisolar direction. The radial profiles of both the north and the south
wedges show significant limb brightening that is absent in the 38° wide antisolar wedge. An analysis of the
soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent
with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on
lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray
imaging thus can independently infer the total lunar limb column density including all species, a property
that before now has not been measured, and provide a large-scale picture of the solar wind-lunar
interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar
wind implantation, this technique can also determine how the exosphere varies with solar wind conditions.
Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has
been observed.

1. Introduction

The notion that the Moon produces observable X-rays predates the Apollo era. The proposed generation
mechanisms in this early work were magnetospheric or solar wind electrons. For example, Haymes and
Juday [1965] used the existence of bremsstrahlung X-rays from precipitating electrons in the auroral zone to
predict that the full moon, that is, the Moon in the magnetotail, will have an X-ray surface brightness compa-
rable to the high-latitude atmosphere during aurora. They also discussed X-ray generation from solar wind
electrons as well as the possibility of X-rays generated by lunar traversals of Earth’s plasma sheet.

On the observational side, Giacconi et al. [1962] attempted to, but did not, observe fluorescence X-rays
produced on the lunar surface from solar X-rays. However, it was not until 29 June 1990 that the Rontgen
satellite (ROSAT) X-ray telescope [Triimper, 1993] made the first soft X-ray image of the Moon [Schmitt et al.,
1991]. Surprisingly, soft X-rays were observed even on the nightside of the Moon where their presence could
not be ascribed to scattered solar X-rays, the scattering process being too inefficient on the nightside. At the
time, the ROSAT observations of soft X-rays on the dark side of the Moon were believed to be due to contin-
uum emission from solar wind electrons with energies of a few hundred electron volts impacting the lunar
surface and depositing their energy in the outermost lunar regolith producing bremsstrahlung continuum
soft X-ray emission in the process.

Many years later, however, ROSAT observed another solar system object, a comet, with surprising results.
This 20 ks observation, made in late March of 1996, was of comet Hyakutake, and it showed that the comet
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emitted a copious flux of soft X-rays [Lisse et al., 1996]. This was a mystery at that time because comets

are not associated with hot plasma, very energetic particles, or optically thick material that could scatter
X-rays from an external source, e.g., the Sun. The original interpretation of the comet Hyakutake observa-
tion was that the emitted soft X-rays were associated with the comet’s interaction with the solar wind, likely
continuum emission from electron bremsstrahlung.

Shortly thereafter, Cravens [1997] proposed that the soft X-ray emission was in fact line emission due to
charge exchange between heavy solar wind ions and cometary neutrals. In this mechanism, known as SWCX
(pronounced “swicks”) for solar wind charge exchange, a heavy highly charged solar wind ion (e.g., 07*)
captures an electron from a neutral atom or molecule. The heavy ion is left in an excited state and emits a
photon in the extreme ultraviolet or soft X-ray energy range (~1 keV). Although the high charge state heavy
ion component of the solar wind is about 0.1% by number density, the solar wind flux is tremendously high
(~ 3 x 108/cm?/s) so that the heavy ion flux in the solar wind is considerable.

Since the original observations of comet Hyakutake, SWCX soft X-ray emission has been observed at other
comets [e.g., Krasnopolsky et al., 2004; Cravens, 2002] and other solar system bodies including Mars and
Venus [Gunell et al., 2004; Dennerl, 2002, 2008; Dennerl et al., 2002; Holmstrém and Kallio, 2004; Holmstrém
et al., 2001; Bhardwaj et al., 2007], as well as from larger-scale heliospheric structures such as the helium
focusing cone [Koutroumpa et al., 2009]. In particular, SWCX between the shocked solar wind plasma in the
magnetosheath and the terrestrial exosphere produces soft X-ray emission observable on scientifically rel-
evant timescales [Cravens et al., 2001; Collier et al., 2010] through the same charge exchange mechanism
that has allowed imaging of magnetopause motion using energetic neutral atoms [e.g., Collier et al., 2005a;
Taguchi et al., 2005; Robertson et al., 2006; Hosokawa et al., 2008].

This aspect of SWCX soft X-ray emission, viz., near-Earth emission, became particularly clear after multiple
observations of the Hubble Deep Field-North by XMM-Newton taken over a 2 week period from late May
to early June 2001 reported by Snowden et al. [2004]. Three of the observations were spectrally statistically
identical and consistent with the cosmic background. The fourth observation, taken by chance when the
solar wind flux observed near Earth was about an order of magnitude higher than nominal (up to about
30 x 108/cm?/s), showed clear lines associated with high charge state oxygen, neon, and magnesium,
indicative of SWCX soft X-ray emission in the Earth’s vicinity.

In 2001, two sets of observations of the Moon were made by the Chandra X-Ray Observatory which detected
time-variable soft X-ray emission that consisted primarily of lines from 0*% and O*” when viewing the opti-
cally dark side [Wargelin et al., 2004]. The Chandra observations coupled with simultaneous solar wind
measurements showed that SWCX was in fact the soft X-ray emission mechanism responsible for the dark
side flux observed by Chandra and therefore ROSAT. In particular, it was shown that the predicted geocoro-
nal emission matched the Chandra observations extremely well so that the majority of the emission was in
fact solar wind charge exchange with the terrestrial exosphere occurring between the Earth and the Moon
(the Moon is at about 60 Earth radii)

However, it is expected that not all of the (nonscattered) soft X-ray emission detected when observing the
Moon is due to solar wind charge exchange with the terrestrial exosphere. This is, in part, because the Moon
itself has a tenuous atmosphere, strictly speaking an exosphere, which (although predicted prior to, e.g.,
Gott and Potter [1970]) was first observed by Apollo program instrumentation [Stern, 1999]. To date, only He,
Ar®0, K, Na, and Rn??2 have been firmly identified in the lunar exosphere where they arise from the solar wind
(He), the lunar regolith (K and Na), and the lunar interior (Ar*® and Rn?22). However, upper limits have been
set for a large number of other species. The highest densities observed have been from He and Ar [see Stern,
1999, Table 1], both of which show a large variation with solar zenith angle with helium peaking on the
nightside at a density of about 4 x 10* cm~3 and argon peaking near the terminator at a density ~10° cm™3,

The longitudinal behavior of the helium concentration results from the particles in the lunar exosphere that
are not adsorbed onto the surface spending more time on the cold nightside than on the warmer dayside
because the lateral extent of their ballistic trajectories is proportional to temperature [e.g., Hodges, 1973,
1975]. Conversely, the longitudinal behavior of the argon concentration results from a surface interaction,
an excess of adsorption over desorption on the nightside as the lunar surface cools [Hodges, 1977]. NASA’s
recently launched Lunar Atmosphere and Dust Environment Explorer (LADEE) mission will help to further
determine the constituents of the lunar atmosphere [Elphic et al., 2011; Mahaffy et al., 2009].
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Figure 1. This figure shows the geometry between ROSAT,
Earth, the Moon, and the Sun during the observation on 29 June
1990. (top) The view looking toward the GSE -z direction. ROSAT

is in low Earth orbit and hence near the origin. The Moon is at Here we report an analysis of the 29 June 1990

about 60 Earth radii along the positive GSE y axis. The Sun is to .
the right in this figure. (bottom) The view from ROSAT looking ROSAT observation of the Moon. There was an

at the Moon with Earth behind the satellite. Note that any point additional, shorter, ROSAT observation of the
on the lunar circumference in this view defines a look direction ~ Moon on 9 March 1991 that was primarily an

path from ROSAT that is tangential to the lunar surface. The “x” occultation experiment [Predehl et al., 1992],
in thIS. pan.el |.s approxmately 13° from t.he termlnator and indi- so there is a high energy source in the data.
cates in this view the axis of the ROSAT line of sight that extends | did his ob .

in and out of the page. The position of IMP-8 at the time of the Consequently, we did not uset this observation.
ROSAT observation, just a few tens of R; from the Moon, isalso [N the 29 June 1990 observation, we find the

indicated on the plot. expected signatures of lunar exospheric SWCX

emission manifest as limb brightening in the
ROSAT soft X-ray image of the Moon. The intensity of the emission is consistent with models of the lunar
exosphere and simulations of solar wind heavy ion access into the lunar nightside.

2. ROSAT Observations

Figure 1 shows the relationship between ROSAT, the Earth, and the Moon during the period of the obser-
vation. The observed flux is comprised of four distinct emission components. Scattered solar X-rays provide
the strong enhancement of the sunlit side of the Moon. Exospheric soft X-ray emission resulting from solar
wind charge exchange with the terrestrial exosphere covers the entire field with a relatively uniform flux
and is the dominant emission component in the direction of the dark Moon. The cosmic soft X-ray diffuse
background covers the entire field except where shadowed by the Moon and dominates the off-Moon flux.
The emission that is the subject of this paper, namely, solar wind charge exchange with the tenuous lunar
atmosphere, appears as a faint limb brightening on the edge of the Moon in the dark side direction from
the terminator.

The data analyzed are from the ROSAT Position Sensitive Proportional Counter (PSPC), a circular detector

8 cm in diameter with a 2° field of view. The effective area of the mirror is 220 cm? at 0.28 keV [Snowden et al.,
1997], and the ROSAT Moon observation itself lasted about 2500 s. However, the PSPC was collecting data
for only about 1900 s of that period. In addition, as the Moon moved through ROSAT's field of view, part

of the exposure of the Moon occurred when it was off axis. The X-ray telescope’s sensitivity is not uniform
over the field of view (known as “vignetting”), and this effect was corrected for in the calculations. Conse-
quently, the effective exposure time, correcting to the effective area at the optical axis and including the
effect of the window support structure, was about 1400 s. The data analyzed here (weighted by the instru-
mental response) are for the C-band (1/4 keV), where most of the solar wind charge exchange soft X-ray
emission is expected to lie.
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Figure 2. The Moon in soft X-rays as observed by the ROSAT PSPC. (a) All data and the wedges used in the analysis in
this paper. (b) The counts appearing in each of the three wedges. Note that the scales are different for Figures 2a and 2b.
The yellow circle is at one lunar radius.

The ROSAT image of the Moon has better counting statistics but lower spectral resolution than the Chanda
images taken in July and September of 2001 [Wargelin et al., 2004]. So it would not be possible to perform
an analysis similar to the one described here on the Chandra images.

Figure 2a shows the ROSAT observations of the Moon analyzed in this paper. The pixels are color coded
according to the color scale below the image according to the number of photons observed within each
pixel. As is the case for optical images, the bright region in the upper right quadrant is the subsolar point
with the brightness due to scattered solar X-rays. The yellow circle is one lunar radius, and the concentric
green circles are at intervals of 0.1 lunar radii. During this observation in the 1/4 keV band on the dark side of
the Moon, ROSAT observed 4195 counts/s/sr, which are attributable to SWCX with the terrestrial exosphere.

Three wedges are identified in Figure 2a (as well as Figure 2b). There are two wedges, a north and a south
wedge, starting from 13° off the terminator. Figure 2b shows only the counts observed in these wedges
with the color bar adjusted accordingly. Because we cannot differentiate between scattered solar X-rays
and charge exchange X-rays with the spectral capabilities of the PSPC, we are limited to considering data
that originate in shadow to avoid scattered solar X-rays. This angle, 13°, was picked mainly based on a visual
examination of the image to assess how far behind the terminator one needs to go to avoid scattered solar
X-rays while staying close enough to the terminator to assure solar wind access to this region. We have ver-
ified that this distance is sufficiently beyond the terminator to avoid scattered solar X-rays by examining
wedges slightly farther beyond the terminator and determining that there is very little difference in the
results when using these wedges.

Scattered solar X-rays from the sunlit lunar surface are an exceptionally bright diffuse source. Because of
the ROSAT observation geometry, the Moon slid into the field of view and was therefore sampled with a
point-spread function that varied from 10 arc sec to several arc minutes. This has the effect of overwhelming
any signal from charge exchange from the lunar exosphere on the sunlit side for at least 0.2 lunar radii.

The antisolar wedge serves as a control wedge from which we expect very little SWCX emission because of
the low solar wind flux there. The width, 38°, was chosen as the sum of the widths of the north and south
wedges for ease of comparison assuming the expected symmetry around the subsolar point.

3. Interplanetary Solar Wind Conditions and Observations on the Dark Side

Here we discuss the solar wind conditions at the time of the ROSAT observations on 29 June 1990 from

02:10:52 to 03:05:43 UT. We compare the expected soft X-ray emission from the dark side of the Moon, that
is, the emission from the magnetosheath as opposed to the lunar exosphere, to that expected on the basis
on SWCX models. Note that, strictly speaking, due to the natural variability of the heavy ion component in
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Figure 3. IMP-8 observations of the solar wind proton density,
speed, and thermal speed during the first 6 h of 29 June 1990
(day 180) including the time of the ROSAT observation of the
Moon. The time of the actual observation falls between the two
vertical lines from 02:10:52 to 03:05:43 UT.

the solar wind, this comparison constitutes pri-
marily a consistency check. However, because
there is a reasonable correlation between the
heavy ion flux and the proton flux in the solar
wind [e.g., Neugebauer et al., 2000, Figure 3],

in practice this comparison tends to prove
quite reliable.

Figure 3 shows Interplanetary Monitoring
Platform-8 (IMP-8) observations of the solar
wind proton density, speed, and thermal speed
during the first 6 h of 29 June 1990. The two
vertical lines indicate the period of the ROSAT
observation. Note that over the period of
observation, the solar wind flux was close to

3 x 108/cm?/s, about an average solar wind flux
[Rucinski et al., 1996]. Over this time period, the
interplanetary magnetic field was about 8 nT
with a GSE x component of about —4 nT and y
and z components of about 5 nT each.

There are frequently phase fronts oriented

at various angles that can dramatically affect
when solar wind structures are observed [e.g.,
Collier et al., 1998; Richardson and Paularena,
2001; Collier et al., 2005b]. At the time of the
ROSAT observation of the Moon, the IMP-8
spacecraft was at approximately a GSE posi-
tion of (25, 20, and 12) R;. Also at this time,
the Moon was at about GSEy = 60 R, so
given solar wind scale lengths that are typi-
cally ~ 10s of R (e.g., references in Table 1 of
Collier et al., 2000), the solar wind observations
should be reliably representative of conditions
at the Moon. Note that 20 to 30 min after the
end of the ROSAT observation period, the solar
wind flux increased to about 7 x 10%/cm?/s.
Given the highly structured nature of the solar
wind flow and the fact that the Moon and
IMP-8 are separated by about 40 R in the direc-
tion perpendicular to the solar wind flow, it is
possible given this spatial separation that the
density enhancement IMP-8 observes 20 to

30 min after the ROSAT observation had already
reached the Moon at the time of the observa-
tion. If this should be the case, then some or all
of the ROSAT observation corresponds to this
higher solar wind flux which would raise the
expected soft X-ray emission from solar wind
charge exchange by about a factor of 2.

Before discussing the limb brightening from
the solar wind’s interaction with the lunar
exosphere, we will look at the soft X-ray flux

observed by ROSAT on the dark side of the Moon'’s disk. These soft X-ray photons are produced by the solar
wind'’s interaction with Earth’s exosphere between the magnetopause and the Moon in the same way that
solar wind charge exchange between solar wind protons and the terrestrial exosphere produces neutral
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solar wind [e.g., Collier et al., 2001]. Although the terrestrial exospheric density drops off rapidly with dis-
tance from Earth, at the nominal position of the magnetopause, there is still a substantial density (~10/cm?3)
of exospheric hydrogen with which the solar wind can charge exchange [e.g., Hodges, 1994; @stgaard et al.,
2003] at (and beyond) the nominal magnetopause location. It is this emission that is observed when looking
toward the dark side of the Moon's disk.

The SWCX emission originating in the magnetosheath is strongest on the dayside at the subsolar point

of the magnetopause where the exospheric density is highest and the increase in solar wind density and
temperature caused by the shock conspire to maximize emissions [Carter and Sembay, 2008]. ROSAT, how-
ever, because it always observes approximately perpendicular to the Sun-Earth line, is looking through the
flank of the magnetosphere where SWCX emissions from the magnetosheath are much lower. Yet, as will be
discussed, ROSAT clearly observes this magnetosheath signal.

Comparison of the off-Moon surface brightness of this observation with the cleaned ROSAT All-Sky Survey
(RASS) surface brightness [Snowden et al., 1997, 1998] in this direction indicates that the lunar observa-
tion has excess emission above the level of the soft X-ray background. This excess is a close match to the
surface brightness observed from the dark side of the Moon and therefore originates in the near-Earth
region, with charge exchange emission from the magnetosheath and exosphere being the only known
source. Specifically, during the lunar observation, ROSAT detected 4195 counts/s/sr (where 1 count/s/sr

~ 0.145 ergs/cm?/s/st) in the 1/4 keV band toward the dark side of the Moon. The off-Moon rate was
13,350 counts/s/sr, yielding a difference between the on and off-Moon observations of 13,350 — 4195 =
9155 counts/s/sr, which can be attributed to the cosmic X-ray background. The 1/4 keV band cleaned RASS
rate in the direction of the lunar observation (« = 179.5°, § = —2.35°) was 9450 counts/s/sr, only ~3%
higher than the 9155 counts/s/sr inferred above. This provides a strong consistency check showing that the
dark side emission originates foreground to the Moon and is not associated with the Moon.

Thus, with high confidence, we can conclude that the local emission between the Earth and the Moon due
to solar wind charge exchange in the magnetosheath is about 4050 counts/s/sr, an average between the
4195 counts/s/sr inferred at the time of the observation and 13,350 — 9450 = 3900 counts/s/sr inferred from
the RASS observations. To convert this to an equivalent ROSAT LTE rate (count rate integrated over the entire
detector) [Cravens et al., 2001], we divide this number by 1753 (scaling from steradians to the PSPC field of
view and then correcting for vignetting, the nonuniform sensitivity over the field of view), yielding 2.3 cts/s.
Based on IMP-8 correlations with the observed ROSAT Long-Term Enhancement (LTE) rates, a ROSAT LTE rate
of 0.36 cts/s corresponds to a solar wind flux of 108/cm?/s so that 2.3 cts/s corresponds to a solar wind flux
of 6.4 x 108/cm?/s [e.g., see Cravens et al., 2001]. This is higher, by about a factor of 2, than the observed
solar wind flux over the observation time period. However, as discussed above, the solar wind flux did jump
to about this level shortly after the observation which, although unlikely, could in principle be the source of
the factor of 2 difference because the solar wind is so highly structured on these length scales. Considering
this and the natural variability of the heavy ion component in the solar wind mentioned above, these results
demonstrate consistency with expectations for the magnitude of the terrestrial exospheric component of
the solar wind charge exchange soft X-ray emission. Note that it is not unusual for the observed SWCX soft
X-ray emission to be higher than expected, particularly based on models [e.g., Ishikawa et al., 2013].

Consequently, we turn our attention to an analysis of that component of the ROSAT soft X-ray observation of
the Moon which is attributable to solar wind charge exchange with the lunar exosphere (as opposed to with
the terrestrial exosphere). This component, because it results from an interaction with the lunar exosphere,
manifests as limb brightening.

4. Quantitative Evaluation of Soft X-ray Flux as Limb Brightening

Figure 4 shows the observed ROSAT PSPC surface brightness in units of 10® counts/s/arc min? versus dis-
tance from the center of the Moon for the three wedges shown in Figure 2. Because the surface brightness
is a measure of the intensity of the emission per solid angle, the plot naturally takes into account that the
wedge area increases with radial distance and represents an average emission over the wedge segment.

The data reduction shown in Figure 4 and subsequent figures follows the general procedure described in
Snowden et al. [1994]. However, the procedure was modified to create an image in a coordinate system
fixed with respect to the Moon. Each photon ROSAT observed was first placed into a lunar-centric
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The flux in each wedge was then determined by taking the summed counts (C), subtracting the modeled
particle background counts (B), dividing by an exposure time (E), and finally multiplying by a scale factor
that converts the results to physical units. The uncertainty in the modeled particle background is small com-
pared to the statistical uncertainty in the observed counts, so the uncertainty in the flux is proportional

to \/E Because the number of counts in each averaging bin does not change dramatically, neither do the
statistical uncertainties, so, for legibility, we only show their typical value at the bottom of the plot.

Given the separation into north and south wedges, Figure 4 illustrates that both the north and south
wedges show a dramatic increase in intensity relative to the antisolar wedge right on the limb of the Moon
that decays over about 0.2 lunar radii. Outside of this radius on the edge of the Moon, the north, south, and
back wedges show the same general trend in behavior. Thus, all three wedges show similar low intensities
on the lunar disk attributed to SWCX near Earth and similar intensities attributed to the sum of this emission
and the soft X-ray background well off the disk. However, the north and south wedges show an excess just
beyond one lunar radius due to SWCX with the lunar exosphere.

Figure 5 shows the ROSAT data for the C-band (1/4 keV), where most of the solar wind charge exchange
soft X-ray emission is expected to lie, with the north and south wedges combined to improve the con-
trast in the limb brightening. The limb brightening is indeed more obvious here and appears to be about
800 x 107° counts/s/arc min? (9450 counts/s/sr).

In principle, converting this limb-brightening enhancement of 9450 counts/s/sr into a flux in keV/cm?/s/sr
for comparison to the models requires knowing the soft X-ray spectrum and then folding that spectrum
through the instrument response. However, in this case, the statistics do not allow such an approach. Instead
we take 250 eV as an average-detected X-ray energy and use the instrument effective area of 220 cm? at
250 eV. With these assumptions, we get

1 count/s/sr = Tcount/s/sr - 1.6 x 10~ 2ergs/eV - 250 eV/count /220 cm? 0
= 1.82 x 10 "2ergs/cm?/sr/s .

Because the excess emission at the wedge segment closest to the Moon is about 9450 counts/s/sr, this yields
a flux of 1.72 x 1078 ergs/cm?/s/sr or about 11 keV/cm?/s/s.
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Figure 5. Same as Figure 4 but combining the north and south wedges vation of the Moon, is comparable to

for improved statistics. Here the typical uncertainty is shown on one the soft X-ray background even when
point for clarity. Also, the Earth exospheric SWCX and soft X-ray back- observing, like ROSAT, on the flank of
ground (SXRB) levels are shown along with the excess above these levels  the magnetosheath where emissions
due to the limb brightening. Note that even though ROSAT is observing 31 much less intense than near the

through the flank of the magnetosheath, the exospheric contribution is

still a substantial fraction of the SXRB. nose [e.g,, Collier et al,, 2010]. As will

be discussed later, no SWCX emission

from the lunar exosphere contributes
to the emission in the antisolar wedge because a negligible flux of solar wind makes it back there. Note
that the on-disk emission 13° behind the terminator in Figure 5 is always higher than that in the antiso-
lar wedge suggesting some contribution (< 50%) in these wedges due to SWCX with the lunar exosphere.
Considering the detailed maps of the soft X-ray background generated by ROSAT during the all-sky survey,
the sizeable SWCX emission from the magnetosheath apparent in Figure 5 even when observing through
the flank clearly demonstrates the ability of a wide field-of-view imager to perform soft X-ray imaging
of the magnetosheath.

5. lon Access Beyond the Lunar Terminator—Observations

To compare this soft X-ray flux to that expected from solar wind charge exchange with the lunar exosphere,
we need to determine the fraction of the solar wind that penetrates beyond 13° behind the terminator. That
is, the solar wind flux, @, that we need to consider here is not the nominal 3 x 108/cm?/s but rather the flux
that arrives on the nightside 13° (and farther) behind the terminator.

Observationally, it is very clear that there is solar wind access beyond the terminator and even precipita-
tion onto the surface. Freeman and Ibrahim [1975] report Apollo Lunar Surface Experiment Package (ALSEP)
Suprathermal lon Detector Experiment (SIDE) observations of ions having energies slightly lower than that
of the solar wind occurring most frequently several days before local sunrise and several days after sun-
set. For example, the December 1969 observations started about 4.7 days (or 57.3°) before sunrise at the
Apollo 12 ALSEP site [Freeman, 1972]. Because the mass analyzer data show that these ions have mass per
unit charge lower than 10 amu/q, in contrast to events involving ions of lunar origin which have larger mass
per unit charge values, they interpret the observations as due to singly ionized lighter ions or multiply ion-
ized heavier ions. Thus, the logical candidate is solar wind ions that have been diverted to the nightside of
the Moon. The observed ion events were bursty in character likely because the SIDE instruments have very
narrow, 6° X 6°, fields of view, and as observations from both the Apollo 12 and Apollo 14 SIDE instruments
show, the ion fluxes were directional [Freeman, 1972]. The observed flux is about 1% that of the solar wind
[Schneider and Freeman, 1975].

SIDE sits on the lunar surface and so measures the flux of solar wind precipitating onto the surface. Because
1 day represents about 12.2° on the lunar surface, we assume based on the SIDE results that our north and
south wedges in the ROSAT images which lie 13° off the terminator experience a precipitating solar wind
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flux that is about 1072 that of the nominal solar wind flux or @, = 3 x 108/cm?/s. It is important to note
that the flux of solar wind that contributes to charge exchange soft X-ray emission 13° off the terminator is
significantly higher than this, because solar wind need not precipitate onto the surface to create soft X-rays
but can be flowing away from the Moon.

Among more recent observations, the Japanese spacecraft SELENE (aka Kaguya) [Kato et al., 2008; Saito

et al., 2010] has shown that, at 100 km altitude, solar wind protons can access regions as far antisunward

as 150° solar zenith angle, that is, 60° beyond the terminator through a mechanism called “Type-| Entry”
[Nishino et al., 2009al. In this process, the solar wind protons are accelerated by the charge separation elec-
tric field around the wake boundary. They enter the near-Moon wake perpendicular to the IMF as a result of
their gyromotion.

Kaguya has also found solar wind proton entry into the deepest parts of the near-Moon wake via the “Type-I|
Entry.” In this process, solar wind protons are scattered at the lunar dayside surface, picked up by the solar
wind convection electric field, and transported into the deep wake region [Nishino et al., 2009b].

Futaana et al. [2010] provided general confirmation of the Kaguya results. They also reported significant
proton fluxes with energies slightly higher than the solar wind proton energy 50° behind the terminator
entering the lunar wake parallel to the interplanetary magnetic field at an altitude of 100 km.

6. lon Access Beyond the Lunar Terminator—Hybrid Model Results

The physics of solar wind ion and electron penetration into the lunar wake is at least qualitatively straight-
forward. The wake creates a downstream void in the solar wind flow. However, the electrons with a faster
thermal speed than the protons lead the protons into the wake. This creates a charge separation, setting
up a potential difference between the solar wind and the central wake [e.g., Halekas et al., 2005]. In short,
the larger thermal speed of the electrons allows them past the lunar limb to lead the slower ions into the
wake. This, in turn, produces a charge separation which creates an electric field that slows the electrons but
accelerates the ions into the wake [e.g., Fatemi et al., 2012].

This process has been simulated by Farrell et al. [2008] who modeled solar wind filling in of the void region
using a one-dimensional particle-in-cell code that does not require that the electron and ion densities be
equal, that is, does not enforce charge neutrality.

However, analytically, the access of solar wind into the wake frequently is tackled with a fluid approach
assuming isothermal electrons and cold ions and charge neutrality. Halekas et al. [2005] developed an ana-
lytic approach to ion filling of the lunar wake based on the work of Samir et al. [1983] which, given solar wind
parameters such as electron temperature [Newbury, 1996], provides the proton density at various points in
the wake. By assuming that the heavy ions are a small enough fraction of the overall solar wind that their
presence does not affect quasi-neutrality (so that the proton density equals the electron density), the model
can be expanded to include high charge heavy ions by invoking another fluid that must satisfy momen-
tum and continuity in the presence of the electrostatic potential established by the protons and electrons.
In the solar wind, the heavy ions have a mass to charge ratio of somewhere between about 2 and 10 [e.g.,
Von Steiger and Zurbuchen, 2006; Galvin et al., 2009] with O*® a major contributor to soft X-ray emission from
SWCX because oxygen is fairly abundant in the solar wind [Collier et al., 1996].

These analytic models, of course, are fluid treatments and ignore gyroradius effects that will be more impor-
tant at larger mass per charges. Furthermore, one expects that models that ignore the magnetic field will be
most applicable when the interplanetary magnetic field is at 90° with respect to the solar wind flow vector,
that is, for flow along the field line.

However, simulations [e.g., Nakagawa, 2013] have shown that ions can enter the near-wake void along
the magnetic field faster than predicted by analytical models. Furthermore, our three-dimensional hybrid
simulations show that ions also can access the near-wake void perpendicular to the IMF because of
their gyromotion.

Using a three-dimensional hybrid model [Holmstrém et al., 2012; Fatemi et al., 2012, 2013], we simulated
the solar wind interaction with the Moon and, in particular, solar wind access into the void region given the
measured solar wind conditions at the time of the ROSAT observations. Because the simulation treats ions
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Figure 6. Results from the three-dimensional lunar hybrid in this simulation is the suprathermal part of
model run with the solar wind parameters on 29 June 1990

during the time of the ROSAT observation. The four curves the solar wind distribution le.g,, Collier, 1993]
show the solar wind flux at various distances along a line of which has easier access to the near lunar deep
sight (see large arrow in Figure 1) that is tangent to the Moon ~ wake because of their larger gyroradii [Dhanya
at the terminator, 13° behind the terminator, 32° behind the etal,2013].

terminator, and at the antisolar point. The position in kilome-

ters along the line of sight is shown on the x axis of the plot ~ The asymmetry in the antisolar line of sight

measured from the tangent point of the Moon (at 0 km where  solar wind flux levels far from the Moon, about
the arrow in Figure 1 hits the Moon). 2.2 x 108/cm?/s at negative y and about

1.6 X 108/cm?/s at positive y likely results from
the orientation of the interplanetary magnetic field during the time of the ROSAT observation, approxi-
mately in the x-y plane along the nominal Parker spiral direction. Particles, because of their gyromotion,
more easily fill void regions by moving along the field lines than by moving across the field lines. Conse-
quently, the Parker-like IMF configuration allows more rapid filling on the negative GSE-y side which can be
immediately accessed by upstream protons moving in the negative GSE-x direction.

It is important to note that the solar wind flux close to the surface (as shown simulated in Figure 6) is sub-
stantially higher than the flux that precipitates onto the surface. Precipitating flux must have a velocity
toward the lunar surface, and the 1% of the solar wind flux SIDE measured [Schneider and Freeman, 1975]
on the nightside within a few days of the dawn and dusk terminators represents the precipitating flux
because SIDE sits on the lunar surface. The hybrid simulations show a flux onto the lunar surface of about
10~3-10"" the ambient solar wind flux depending on angle behind the terminator, roughly consistent with
the SIDE observations as well as the two-dimensional simulations of ambipolar expansion presented in
Farrell et al. [2008].

As a general comment on the simulation results, during conditions when the IMF is perpendicular to the
solar wind flow, protons access the void region more readily because their higher charge to mass ratio allows
the electric field to accelerate them more effectively into the void region. Although the hybrid simulation
enforces charge neutrality explicitly [Holmstrém et al., 2012; Fatemi et al., 2012, 2013], the charge separation
electric field manifests as an ambipolar electric field driven by the pressure gradient that produces the same
physical effect. In contrast, during periods when the IMF is parallel to the solar wind flow, the simulations
show that the ion gyroradius is the dominant factor with the heavier ions entering the void region more
easily than the protons because they have larger gyroradii.

Using the three-dimensional hybrid model under conditions when the IMF is precisely parallel to the solar
wind flow as well as approximately perpendicular to the solar wind flow, the solar wind appears to penetrate
at least as far as 30° beyond the terminator in either IMF configuration. Indeed, such a conclusion appears to
be supported by the (two-dimensional) simulations of Nakagawa [2013, see, e.g., Figure 1] as well.
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Strong lunar magnetic anomalies near the ROSAT line of sight could effectively deflect solar wind ions
shielding the regions close to the lunar surface where exospheric densities are greatest and lowering the
expected soft X-ray emission [e.g., Mitchell et al., 2008]. However, there do not appear to be any significant
anomalies in the relevant regions.

Also, note that the simulation confirms that the antisolar wedge is a good control line of sight because no
detectable solar wind flux arrives directly behind and tangent to the Moon on this line of sight so there is
no predicted emission from SWCX here. This is not unexpected [see, for example, Holmstrém et al., 2012,
Figure 8; Fatemi et al., 2012].

In summary, although 13°-32° beyond the terminator the solar wind flux within 100 km of the lunar sur-
face is somewhat lower than that in the undisturbed solar wind, a significant flux can access this region,
~108/cm?/s based on the hybrid model results. This is in contrast to the flux of precipitating solar wind
which is much lower, ~108/cm?/s.

7. Soft X-rays From Surface Impact

In principle, heavy high charge state solar wind ions that hit the lunar surface will charge exchange with
surface constituents resulting in soft X-ray and EUV emission [e.g., Kallio et al., 2008]. Both the pronounced
limb brightening and the calculation above showing that the observed emission on the disk is consistent
with solar wind charge exchange with the terrestrial exosphere suggest that this is not a significant effect
for our purposes here.

However, here we attempt to estimate based on available data the soft X-ray flux generated from solar
wind heavy ions precipitating onto the lunar surface into the 19° wedge of radial extent 0.1 Ry, located
13° behind the terminator where we observe the limb brightening. We will then compare this flux to the
observed limb brightening to determine the degree to which this process contributes to the soft X-ray
emission from this region.

We assume, as discussed in the previous section, that 1% of the solar wind flux precipitates 13° behind the
terminator so that

) =0.01-3x108/cm?/s,

=3x%x10%/cm?/s,

sw wake

and that 0.1% of this flux is solar wind heavy ions or

=1073.3x10%/cm?/s,
=3x10%/cm?/s .

CDheavy wake

(3)
We are observing on the surface of the Moon a 0.1 Ry, by 19° angular segment. Therefore, the angular
range, 6, on the lunar surface covered by the 0.1 Ry, Projected distance is given by

0.1 Rygon = 1 Ryoon * (1 —cos ), (4)

or 6 = 25.8°. Thus, we are observing approximately

dQ =19 —2— . 25.8° ——
180 180 (5)
=0.15sr,

of the 47 sr lunar surface. The area, A, thus observed is

2
A=R dQ, ©
=45x10"cm?.

This means that the rate, R, of solar wind heavy ion impingement onto the surface here is

R=3x10%/cm?/s-4.5x 10" cm?,
=14x10"s7".
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Based on Ninomiya et al. [1998, Figure 1], which is for Ar impinging on an amorphous carbon target with
velocities from 0.9 keV/nucleon (415 km/s) to 3.3 keV/nucleon (795 km/s), standard solar wind speeds, and
using the Ar charge states in the solar wind of 8-10, somewhere around 5 x 107> soft X-ray photons per ion
are created. Assuming that this is typical of the solar wind heavy ion soft X-ray production that results from
hitting the lunar regolith, the photons created per second, R,, in this 0.1 Ry, by 19° region is

R, =1.4x10"/s-5x107° photons,

8)
=7 x 10" photons/s.

ROSAT is observing at Earth at a distance of 60 R, so this appears as a point source with the area flux
decreasing inversely with the square of the radius at which the emission is observed. Also, the emission from
the lunar surface is assumed to occur uniformly over a half sphere or 2z steradians. Consequently, the total
photon area flux, F, observed at Earth is

F =7 x 10" photons/s/2x /(60 - 6371 x 10° cm)?,

9
= 7.6 x 1078 photons/s/cm?.

Because these photons are observed coming from a 19°x 0.1 Ry, Segment of the lunar disk, and a lunar
radius is about 0.25° on the sky, the total solid angle the Moon covers on the sky is about 6 x 107> sr

(= 7(0.25° - ©/180°)?). The observed wedge has an area relative to the lunar disk of 19°/360° - (12 — 0.9?) =
0.01 so that the solid angle of the wedge is 0.01 - 6 X 107> sr = 6 X 1077 sr.

Therefore, the observed photon intensity, @, is

®, = 7.6 x 107® photons/s/cm® /6 x 1077 sr,

, (10
= 0.13 photons/s/cm” /sr.

If we take each photon to be 250 eV, a conservative assumption, the predicted soft X-ray intensity, ®, due to

high charge state solar wind heavy ions hitting the surface is about
® = 0.25 keV - 0.13/s/cm? /sr, an
= 3.2 x 1072 keV/s/cm?/sr,

so the observed limb brightening is about 2 orders of magnitude greater than the expected soft X-ray flux
due to solar wind heavy ions hitting the lunar surface.

8. Exospheric Density Estimate From ROSAT Soft X-ray Observations on the Limb

With some assumptions, we can use the observed limb-brightening soft X-ray flux to estimate the associated
lunar exospheric surface density. In an approach similar to that of Collier and Stubbs [2009], we assume we
are viewing the Moon from the side and take a to be the radius of the Moon, 1738 km. We wish to evaluate

the column density, C,
C=/n-dl, (12)

where [ is the distance along the line of sight measured from the tangent point. We assume that the exo-
spheric density drops off exponentially with scale height A such thatn = n, e~"/* where n, is the surface
density and h is the height above the surface. Thus,

h=vVa2+/?2-a. (13)

Typically, the exosphere scale height is much less than a lunar radius, a = 1738 km. Consequently, the /
values contributing significantly to the integral C above will also be much less than a lunar radius. Therefore,
we take | < a and approximate

h=a-v1+1/a?-a,
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Thus, we can approximate the integral as

+o0
/n-dl:/ nye "4 dl,

+o0 )
~ / nge~"/24dl.

0

Noting that the expression for a normalized one-dimensional Gaussian is

.l +o00 ) )
/ e X /2" dx =1, (16)

2n0 J -

and identifying 62 with a4, the expression (15) becomes

+o0
/n .dl = / nge /2% g,
oo (17)

=nyV2raa.
So the limb viewing enhances the column density scaling estimate of ny 4 by a factor of 1/27a/A which for
a=1738kmand A = 100 kmis ~10.

The expected X-ray intensity @ due to solar wind charge exchange along a given line of sight is given by
470 = a0, / nd, (18)

where @, is the solar wind flux and « is a factor that represents the possible transitions and their
weighted cross sections [e.g., Robertson et al., 2009; Robertson et al., 2006]. The value of a that we will
use here is 6 x 107® eV cm? which corresponds to a target species of most gases [Pepino et al., 2004;
Greenwood et al., 2000].

Using expression (17), equation (18) becomes
47 ® = ad,,ny\ 2zaA. (19)

As discussed earlier, we take @, to be 2 x 108/cm?/s. Using the observed limb brightened increase in the
soft X-ray emission of 11 keV/cm?/s/sr and a nominal A = 100 km, we can estimate the density as

ho= _A1®
ad,, \/2rai
_ 47 sr- 11 keV/ecm?/s/sr (20)
6 x 1019 keV cm? - 2 x 108/cm? /s - v/2x - 1738 x 105 cm - 100 X 105 cm

10* cm™3.

This is a reasonable lunar exospheric density [e.g., Stern, 1999] and suggests that not only the qualitative
character, that is, limb brightening, but also the quantitative character of this signal is consistent with being
due to solar wind charge exchange with the lunar exosphere.

9. Comparison With Models

These ROSAT observations of SWCX with the lunar exosphere can be compared to predictions using lunar
exospheric models. Among these are the Lunar Exosphere Simulator model [Hodges, 2011] which will use
the upcoming Lunar Atmosphere and Dust Environment Explorer (LADEE) data to calibrate its surface
physics parameters [Elphic et al., 2011] and the model of Sarantos et al. [2012].

The Sarantos et al. [2012] model simulated the production and loss of exospheric O, Si, and other metallic
species assuming that the operative loss processes for the lunar exosphere are ballistic escape, photoioniza-
tion, and recycling at the surface. The model was an extension of an earlier model [Sarantos et al., 2010] of
exospheric particle transport that successfully described the lunar Na atmosphere and was based on analyt-
ically computing the phase space distribution function of ejecta in gravity fields [Hartle, 1971]. That model
tracked the ballistic trajectories until particles escaped or returned to the surface. Atoms returning to the
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Figure 7. The column densities (i.e,, the line integral of the den-
sity: / ndl) for various species in the lunar exosphere using the
model of Sarantos et al. [2012] extended to include volatiles.
Plotted on the x axis is the tangent point altitude so that 0 km
shows the effect of limb brightening. (top) The column densities
relevant to the ROSAT observations, i.e., 13° behind the termi-
nator and (bottom) the column densities along the antisolar line
of sight (for comparison). Because a negligible flux of solar wind
penetrates this far behind the Moon, very little SWCX soft X-ray
emission occurs due to the lunar exosphere along this line of
sight. In both plots the solid line is the total column abundance.
Note the difference in scale on the y axis of the two plots.

surface were assumed to be adsorbed and were
not rereleased so that the primary loss mech-
anisms were ballistic escape and hitting the
surface. The assumption of perfect sticking is
valid for refractories. Thus, the model as pub-
lished considered only regolith-derived atoms
in the lunar exosphere, that is, those originat-
ing from solar photons, solar wind ions, and
micrometeoroids hitting the lunar surface.
However, here we compare to an extension of
the published model that includes volatiles.

Volatiles are not adsorbed when they recy-
cle. Therefore, to simulate the concentration
and local time distribution of key volatile con-
stituents, we used a test particle Monte Carlo
approach [e.g., Killen et al., 2012]. We assumed
that test particles representing H,, He, and Ne
thermally desorb from the soil and accommo-
date to the local surface temperature upon
return to the surface (H is only a weak con-
tributor). These three species do not stick
even at the coldest temperatures of the lunar
nightside surface. By reintroducing these par-
ticles into the simulation and counting them
until photodissociation and photoionization
eliminate them, much higher exospheric den-
sities are achieved. As in Sarantos et al. [2010,
2012], the model requires an estimate of pro-
duction flux of particles of a given species

to evaluate densities. For this simulation, the
subsolar production rates were assumed to
be 7.5 x 107 H, atoms/cm?/s, 9 x 10° He
atoms/cm?/s, and 6 x 103 Ne atoms/cm?/s.
These rates correspond to the solar wind influx
of 3 x 108 protons/cm?/s for this interval and
assume 50% conversion of the incident solar
wind to H, in the lunar soil, 3% abundance of
He in the solar wind, and a thousand times less
Ne than He in the solar wind.

Figure 7 shows the column density for H,, He,
and Ne in the lunar exosphere using the Monte
Carlo model for lines of sight 13° behind the

terminator (Figure 7, top) and toward the antisolar direction (Figure 7, bottom). The plot is for the north, but
the model is symmetric with respect to the subsolar point, so the results for the south are identical. Plotted
on the y axis is the integrated density, the column abundance, for each species in cm=2. Plotted on the x axis
in each panel is the tangent point of the line of sight so that, for example, the peak at 0 km corresponds to
limb brightening. In the wedge 13° behind the terminator, the predicted column abundance at the limb is
~ 1.2 10'2/cm? from these three species which is to be contrasted with the total column density of

5% 10'%/cm? from the refractories studied by Sarantos et al. [2012]. The antisolar region model predictions
are slightly higher at the limb but drop off faster with tangent height because of the shorter scale heights
of neutrals in this region. Therefore, the wedges observed by ROSAT behind the terminator are dominated
by H,, He, and Ne, and potentially by Ar, which was not modeled. Note that the magnitude of the dropoff
from the peak on the limb is an indicator of the mass of the dominant species in the exosphere at this
subsolar longitude.
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Figure 8. A comparison between the excess surface brightness in the 13° wedge over that in the antisolar wedge, the
SWCX component, and the modeled total column abundance from the Sarantos et al. [2012] model extended to include
volatiles as a function of distance from the lunar center. The enhancement profile is roughly consistent with that pre-
dicted by the Sarantos et al. model, and noting that the solar wind flux is relatively constant with distance from the
Moon at this location, is also consistent with the expected contribution of SWCX soft X-ray emission from the solar wind
interaction with the lunar exosphere.

The total column density, / n - di, predicted by the model in the wake 13° behind the terminator is about
1.2 x 10"2 cm~2. Using the relationship

47:<I>=a<I>SW/ndl, (21)

with @ = 6 X 107" eV cm? and @, = 2 x 108 /cm?/s based on the 3-D hybrid code results, we get

6x107"%eV cm? - 2 x 108 /cm?/s - 1.2 X 10'2 cm™2
@ =
47 sr (22)

= 11 keV/cm?/s/sr.

Thus, the flux predicted by the models is ~ 11 keV/cm?/s/sr which is also the flux observed by ROSAT.

The observed and modeled values are in reasonable agreement considering the uncertainty in the H, col-
umn abundance as well as the uncertainty in the appropriate value of @, ; for example, if the solar wind flux
is actually 7 x 108/cm?/s as discussed in section 3, then the predicted flux more than doubles. Additionally,
it is not unusual for models to underestimate the observed SWCX emission [e.g., Koutroumpa et al., 2009].

Figure 8 compares the difference between the surface brightness observed by ROSAT in the wedges 13°
back from the terminator and that observed in the antisolar wedge, as shown in Figure 5 (open circles and
dashed line) with the predictions of the Sarantos model shown in Figure 7 (solid circles and solid lines). It

is expected that the solar wind flux, based on hybrid model results shown in Figure 6, remains reasonably
close to its undisturbed flux level so that one can directly compare the observed excess soft X-ray surface
brightness to the modeled total column abundance. Although the uncertainties for the ROSAT observations
are relatively large, excess surface brightness above that observed in the antisolar wedge exists up to about
1.3 lunar radii. Furthermore, the observed excess surface brightness profile is consistent with the predictions
of the Sarantos model shown in Figure 8 on the right hand y axis.

Note that, with regard to both Figures 7 and 8, it is the case that the line of sight at x = —170 km (0.9 lunar
radii) is occulted by the surface of the Moon, so the length of the line of sight and the corresponding soft
X-ray intensity drop off significantly. Because the models do provide predictions at this location, we have
included line-of-sight tangent points below 0 km on these plots.
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B0 4—L e The magnitude of the dropoff from the peak
=15.7 keV/cm? e ; ; . . P
250y = 157 ke "“":s’s' < 13" behind terminator on the limb is an indicator of the mass of
2 =1.3keV/cm“/s/sr . .o
25 antisolar the dominant species in the exosphere at

this subsolar longitude. So observations with
less uncertainty (e.g., taken over a longer

r period) would also provide a diagnostic of
exospheric composition.

2.0

1.5 It is possible that the gradual soft X-ray flux

dropoff seen in Figure 5 may also be due
L to the presence of reflected neutral atoms

off the lunar surface. Wieser et al. [2009]

using measurements from the Sub-keV Atom
057 Reflecting Analyzer instrument on the Indian
nﬂr(/_é 6\\\11 Chandrayaan-1 spacecraft in lunar orbit found
00 = L ety that up to 20% of the solar wind protons that
-400 -2000 o 2000 4000 hit the lunar surface are reflected back off
position along line-of-sight .

(parallel to large arrow - see Figure 1 - km) the regolith as neutral hydrogen atoms. The
observed reflected hydrogen has a wide energy
distribution with roughly half the energy of
the impinging solar wind, so they are escaping

1.0 1

soft X-ray flux (keV/cm?/s/sr)

tangent to lunar surface

Figure 9. A convolution of the hybrid model results shown in
Figure 6 and the Sarantos model densities along the line of
sight. The y axis indicates the soft X-ray flux in keV/cm?2/s/sr that
originates in a path length of 346 km centered on each point for ~atoms on ballistic trajectories. Consequently,
a line of sight 13° behind the terminator (solid line and solid cir-  these atoms will form a neutral population

cles). The sum of the contribution at each point along the line of  around the Moon with very large scale lengths

sight is the total soft X-ray flux. The total for the line of sight 13° with which the incoming solar wind will charge
behind the terminator is 15.7 keV/cm?2/s/sr while the total for
exchange. Note also that because the neu-

the antisolar line of sight is 1.3 keV/cm?2/s/sr. This is consistent o ) ;
with the observed ROSAT soft X-ray flux of 11 keV/cm?/s/s. tral density increases in proportion to the
solar wind density, the soft X-ray flux from this

“self-emission” process in which the solar wind charge exchanges with itself will increase nonlinearly, with
the square of the solar wind density.

Although the above calculation serves as a good estimate of the predicted emission from the solar wind
hybrid and lunar exosphere models, in actuality, the results of Figure 6 should be multiplied by the density
at each point along the line of sight and integrated along the entire line of sight to calculate the expected
emission. So Figure 9 shows at each point along the line of sight 13° behind the terminator and antisolar
the soft X-ray flux from that point, a/4z - @, - n - Al, in keV/cm?/s/sr where as discussed earlier @ = 6 x
1071° keV cm? while @, and n are the solar wind flux and exospheric density, respectively, at a given point
along the line of sight. The value of Al is determined by the spacing of the points, Al = 346 x 10° cm. The
sum of all the data points is the total emission along the line of sight.

As indicated in Figure 9 (top, left), the sum of the intensity along the line of sight 13° behind the terminator
is 15.7 keV/cm?/s/sr, close to the estimated value of 11 keV/cm?/s/sr given by equation (22) and observed by
ROSAT. As expected, the estimate for the front of the wedge, 13° behind the terminator, is higher than the
value inferred by using a typical solar wind flux across the wedge, as was done in equation (22). Conversely,
the sum of the intensity along the antisolar line of sight is 1.3 keV/cm?/s/st, less than a tenth of the predicted
emission 13° behind the terminator and consistent with the ROSAT observation in Figure 5 that shows no
observable limb brightening in the antisolar wedge.

10. Discussion

As is apparent from the results presented here, soft X-ray imaging off the limb of the Moon can provide
diagnostics about the source and properties of the lunar exosphere. For example, the dominant contribu-
tors to the exospheric column density, H,, He, and Ne, are species known to be controlled by the solar wind
influx. Recently, the relationship between the solar wind flux and the lunar exosphere was observed directly.
The Lyman Alpha Mapping Project (LAMP) ultraviolet spectrograph on NASA’s Lunar Reconnaissance
Orbiter (LRO) Mission made observations between 29 December 2011 and 26 January 2012 of the lunar
helium exosphere which originates from solar wind ions that become neutralized and thermalized through
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interaction with the lunar surface [Feldman et al., 2012]. LRO/LAMP found that the surface He density exhib-
ited day-to-day variations responding to variations in the solar wind alpha particle flux. Thus, the X-ray
technique can be used to monitor the fluctuation of the lunar exosphere with variations in the solar wind
flux on a continual basis.

However, the Moon is only in the solar wind about two thirds or so of the time; the remainder it spends in
the terrestrial magnetotail where it is largely shielded from the solar wind. There are high charge state solar
wind ions in the magnetotail in its plasma sheet [e.g., Christon et al., 1994; Kremser et al., 1987]. However, the
plasma sheet occupies a relatively small portion of the overall magnetotail cross section, which consists of
mostly the very low density lobes, and the densities of plasma sheet solar wind ions are significantly lower
than those in the solar wind [e.g., Lui, 1987]. So the expected SWCX soft X-ray emission would also be corre-
spondingly lower. Consequently, another method to study the behavior of the lunar exosphere is to examine
the modulation of the soft X-ray signal as the Moon moves in and out of the terrestrial magnetotail. This
approach would be similar to that used by Potter et al. [2000] who measured sodium emission [e.g., Tenishev
et al., 2013] above the lunar equator and showed that the passage of the Moon through the Earth’s magne-
totail caused the sodium density to fall. This suggested that the solar wind plays a role in the production of
lunar sodium.

In the case of SWCX soft X-ray emission, observations of the Moon from low Earth orbit while the Moon is
in the magnetotail would be overwhelmed by scattered solar X-rays from the lunar surface. This is because
full moon periods correspond to times when the Moon is in the magnetotail. Consequently, this type of
measurement would be best made on a mission that has a large enough apogee to at least exit the mag-
netosphere [e.g., Branduardi-Raymont et al., 2012; Sembay et al., 2012], and wide field-of-view soft X-ray
cameras for this and similar applications have been developed [e.g., Collier et al., 2012]. Of course, such a
mission would also image the much stronger magnetosheath soft X-ray emission [e.g., Collier et al., 2010].

11. Conclusions

The ROSAT remote observations of solar wind charge exchange soft X-ray emission with the lunar exo-
sphere provide substantial experimental input for models of the lunar exosphere and of solar wind access
into the near-Moon wake. Although certain species in the lunar exosphere, notably Na, may be observed
remotely, the relative insensitivity of the charge exchange mechanism to the target species means that soft
X-ray emission provides a diagnostic for the total exospheric density and not just the density of a particular
species. For example, using this type of measurement, we could constrain polar cold trapping efficiencies
over the lunar north and south poles. Of course, the capability to make these lunar measurements remotely,
from even low Earth orbit, reduces both cost and complexity while providing a larger-scale picture than is
possible with in situ measurements.

Clearly, a dedicated lunar soft X-ray SWCX mission, rather than a single observation from an astrophysics
telescope, would provide much needed data on the properties of the solar wind-lunar interaction and the
lunar exosphere.
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