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ABSTRACT 

Simple methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size 
of the delamination, since the heat diffuses in the plane parallel to the surface. The result is a temperature 
profile over the delamination which is larger than the delamination size. A variational approach is presented for 
reducing the thermographic data to produce an estimated size for a flaw that is much closer to the true size of the 
delamination. The method is based on an estimate for the thermal response that is a convolution of a Gaussian 
kernel with the shape of the flaw. The size is determined from both the temporal and spatial thermal response 
of the exterior surface above the delamination and constraints on the length of the contour surrounding the 
delamination. Examples of the application of the technique to simulation and experimental data are presented 
to investigate the limitations of the technique. 
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1. INTRODUCTION 

Flash thermography is an effective method of rapid inspection of large carbon fiber reinforced polymer (CFRP) 
composite structures. With the increased utilization of composites in commercial and military aircraft a need 
arises for viable inspection techniques to ensure aircraft safety and reliability. Thermography has been shown to 
be an effective for detection of fatigue and impact damage in CFRP composites.1-6 A variety of data reduction 
techniques have been shown to improve flaw detection.7•8 To assess the consequence of the damage, it is often 
essential to be able to characterize the location and size of the damage. Previous efforts have determined the 
depth of the damage. 7• 9• 10 Since the heat diffuses in a direction parallel to the surface as the thermal disturbance 
from a flaw diffuses to the surface, the size of the thermal response is larger than the size of the flaw. Methods for 
obtaining the correct flaw size from the thermal response have included estimating the size from the time evolution 
of the shape of the thermal response, 11• 12 from the gradient of the thermal response13 and a deconvolution of 
the point spread function of the thermal response.14• 15 

The "de blurring" of the thermal response to compensate for the diffusion in the plane parallel to the surface is 
similar to the deblurring problem in image processing. An effective technique for deblurring in image processing 
is a variational approach, where a blurred estimation for the true image is compared to the measured image. 
The variational method for image processing is well developed. 16• 17 The direct application of image processing 
de blurring techniques to de blurring of thermographic images is somewhat limited since the desired flaw shapes 
are binary images (ie. either a flaw exists at a particular location or it does not), rather than gray or color images 
as is the case for image processing. This paper therefore examines a variational approach where the thermal 
response is a "blurred" image of a binary image. The method is formulated in a manner similar to the image 
segmentation technique developed by Chan and Vese. 18 

A flat bottom hole is a simple method for fabricating a flaw that is easy to characterize. While it does not 
accurately represent a delamination, a flat bottom hole specimen does provide a good specimen for testing data 
reduction techniques. The solution of the variational problem requires iterative solutions to a partial differential 
equation. The variational method is easy to formulate if the blurring function is a Gaussian, therefore a simple 
model for the thermal response of a flat bottom hole based on the convolution of a Gaussian kernal is presented 
and compared to a finite element simulation of the thermal response in the following section. 
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Figure 1. Comparison of the approximate convoluti.cm solutiOll to finite elemeD.t results for slots 0.2 em, 0.4 em and 2.0 em 
wide and 0.05 em below the surface. Compared profiles are for 0.5 seconds following the .i.ustantaueous surface heatiDg. 
The approximate convolution solution based Oil Eq.2 is labeled as ACS and the fiDite element solutiOll is labeled as FEM. 
The nominal solution has been subtracted from the total solution leaving only the response due to the slot. 

2. THERMAL RESPONSE OF FLAT BOTTOM HOLE 

2.1 Approximate Analytical Solution for Flat Bottom Hole 

The thermal response to an instantaneous flux at one surface of a single layer is well known. The first two terms 
of the series solution of early time response biU!ed. on image sources are 

F..jii ,:a 
T(t) = K1r,fi(l + 2e-i<i) (1) 

where K is the thermal conductivity, tt is the thermal diffusivity, l is the thickness of the layer and F is the 
instantaneous flux applied to the front surface. A p08sible approximate solution for a flat bottom hole response 
can be found by placing two sources, one below and one above the front surface, at a clistance equal to twice the 
depth of the top of the flat bottom hole with the shapes of the flat bottom hole. The thermal response at the 
front surface is then given by 

T(t) = --(1+2e- .. •-- u(x',y')e a... dz1dy') 
F ..jii J! 1 L _,,_.,,)Ztcv-¥'>2 

K trVt 4trttt n 
(2) 

where u(x', y') is the shape of the top surface of the flat bottom hole. If u(x', y') is a plane (that is u(x', y') = 1 ), 
then 

(3) 

and Eq.2 reduces to Eq.l the solution for a layer with a thickness equal to the depth of the flat bottom hole top. 

To assess the accuracy of this approximation, the thermal response as calculated from Eq.2 was compared 
to the results of a. finite element calculation for a long slot in a. layer. The material properties of the layer were 
a thermal conductivity of 0.97 W fmrK, specific heat of 1200 JfkgrK and a density of 1600 kgfm3 . These 
are values commonly used for the surface normal thermal properties of a composite. A comparison of the finite 
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Figure 4. Computed tomography and thermal respoDBe of composite specimen. a. Representation of the x-ray computed 
tomography data acquired on composite flat bottom hole specimen. b. The measured thermal response from specimen 
acquired 0.25 seconds after the flash heating. 
Table 1. Size and Depth of Holes in Composite Flat Bottom Hole Specimen Based on the Computed Tomography Data 

Hole Number Depth from Percent thickness Diameter 
front surface above hole 

1 0.154 ± 0.003 em 73% 0.32 ± 0.01 em 
2 0.156 ± 0.003 em 74% 0.64 ± 0.01 em 
3 0.148 ± 0.005 em 70% 1.28 ± 0.01 em 
4 0.105 ± 0.008 em 50% 0.32 ± 0.01 em 
5 0.109 ± 0.004 em 51% 0.64 ± 0.01 em 
6 0.097 ± 0.008 em 46% 1.29 ± 0.01 em 
7 0.051 ± 0.019 em 24% 0.32 ± 0.01 em 
8 0.053 ± 0.001 em 25% 0.64 ± 0.01 em 
9 0.027 ± 0.014 em 13% 1.28 ± 0.01 em 

5. COMPOSITE FLAT BOTTOM HOLE SPECIMEN 

The composite specimen was approximately 10 em x 10 em with a thickness of 0.212 em. Nine approximate 
fiat bottom holes were drilled in from the back side of the specimen with depths of approximately one fourth, 
one half and three fourths of the thickness, and diameters of approximately 1.27 em, 0.63 em and 0.32 em. A 
more accurate measurements of the depth and diameters were determined from x-ray computed tomography 
data shown in Fig.4 and are given in Table 1. For comparison, an early time thermal response is shown in the 
same figure. 

As can be seen from the computed tomography data in Fig.4, the top of the flat bottom holes are not quite 
fiat. From an examination of the standard deviations of the depth, the holes with a diameter of approximately 
0.64 em have the flattest tops and the largest holes have the least fiat tops. The deeper the hole was drilled the 
less flat the top of the hole. This lack of flatness is reflected in the thermal response shown as Fig.4. In the 
thermal image it is clear that the slight increase in material at the center of the largest hole results in a slightly 
cooler location at the center of the hole response. Meagurements at later times have this same cool spot at the 
center of all the largest holes, however, it is not as significant for the shallower the holes. 
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Figure 6. Comparison of measured and calculated thermal response of composite specimen. a. Thermal response at 1.0 
second of flat bottom hole with a diameter of 0.319 em, 0.99 em below the front surface. b. Estimation of the shape of 
the top of the flat bottom hole based on variational method. c. Thermal response calculated based on shape estimated 
of the top of the flat bottom hole. d. Difference between the calculated thermal response and measured response. 
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Figure 7. The variational method estimation of the diameter of the flat bottom holes with tops approximately 0.1 em 
beneath the surface based on the reduction of images acquired at different times. A dashed line indicates the nominal 
diameter of the hole. 

diameter that is in excellent agreement with the computed tomography estimate, while the deepest hole is in 
agreement, but has very large error bars. 

After estimating the shape of the flaw, it is possible to substitute that shape into Eq.8 to solve for the 
amplitude of the response(A(l, T)) at each time step. As can be seen from Eq.9 for early times, the amplitude of 
flaw response depends only on the depth of the top of the fiat bottom hole(l) and time. The time dependence of 
the amplitudes for the three flaws with diameters of approximately 0.64 em are shown in Fig.S. Also shown in 
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