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Abstract 

 
The relative signal strength of electrostriction-only (no thermal grating) laser-

induced thermal acoustics (LITA) in gas-phase air is reported as a function of 
temperature T and pressure P.  Measurements were made in the free stream of a variable 
Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach 
number is varied.  Using optical heterodyning, the measured signal amplitude (related to 
the optical reflectivity of the acoustic grating) was averaged for each of 11 flow 
conditions and compared to the expected theoretical dependence of a pure-
electrostriction LITA process, where the signal is proportional to the square root of 
[P*P /( T*T*T)].
 

 

 

Introduction 

 
Laser-induced thermal acoustics (LITA), elsewhere called laser-induced thermal 

grating spectroscopy (LITGS) or transient grating spectroscopy (TGS), is actively being 
developed [1-8] for flow measurement [9-13] including combustion applications [5, 14, 
15].  Because the signals are strong, a majority of LITA efforts [5-10, 14, 15] utilize 
thermal gratings that are dominated by temperature gradients.  Other studies [1-4, 11-13] 
use pure electrostriction gratings (i.e., pure acoustic waves without a thermal grating) in 
spite of the weaker signals.  The electrostrictive approach makes the LITA technique 
more universal since it is a nonresonant process and does not require an absorption 
transition within the gas species of interest.  The global collection of wind tunnels uses a 
variety of different working fluids, so the non-thermal-grating approach makes the use of 
a single instrument possible for many different flow facilities.  As part of the LITA 
development effort at NASA Langley Research Center (LaRC), off-body flow velocity, 
temperature and pressure measurements were recently demonstrated [13] in a variable 
Mach number supersonic wind tunnel.  In addition to the primary goal of proof-of-
concept of LITA as a supersonic flow diagnostic, the work of [13] also makes possible 
the present study of the LITA signal amplitude dependence on gas density. 
 
 The signal level S of many light scattering techniques typically has either a linear 
or a quadratic density dependence (i.e., S  P/T or P2/T2 respectively) for pressure P and 
temperature T.  In contrast electrostriction-based LITA is expected [1, 16-18] to have a 
dependence of S  P2/T3.  Furthermore an optically-heterodyned variation of the 
technique [4, 7], that mixes a local oscillator with the raw LITA signal, produces a final 
signal Sh that varies as Sh  (P2/T3)1/2 = P/T3/2.  In LITA, T is readily derived from the 
frequency of the signal oscillations, while P is difficult to derive simultaneously from the 
signal decay rate at typical pressures of ~ 1 atm or smaller.  Note that at larger pressures 
(i.e., P >> 1 atm), pressure can be derived from the decay rate as shown as shown in [15].  
One potential application for amplitude measurements is to use them for an indirect 
pressure measurement for lower-pressure conditions.  Confident knowledge of the P2/T3 
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relation is first necessary to infer pressure from measurements of T and S when P is not 
easily measured from the decay rate. 
 

Grating time decay [8, 15, 19] and pressure dependence of LITA signal 
amplitudes [1, 15 20] have been studied in some detail, but there are few studies of the 
pure temperature dependence.  One study [16] that reports a temperature dependence of 
T3 uses raw data that has roughly a factor-of-three noise superimposed on the temperature 
trend.  This naturally leads to a desire for better data to confirm this temperature 
dependence with better accuracy.  The lack of other studies investigating the temperature 
dependence motivated the present effort in this report to compare the previously-
measured LITA signal variation with theory.  The work of Reference 13 was originally 
intended to measure only Mach number and temperature of the wind tunnel flow, but 
after publication of Reference 16, it was natural to ask how the signal amplitudes of [13] 
vary with P and T, since the noise of [13] was less than the noise of [16]. 
 

In this report, the theoretical dependence on pressure P and temperature T is 
compared to data previously [13] obtained in the NASA Langley Unitary Plan Wind 
Tunnel (UPWT).  Ideally, P and T would be varied independently as in [1, 16, 20] to 
check the P and T dependencies.  However in the UPWT, P and T cannot be varied 
independently because they were forced to vary simultaneously as the wind tunnel Mach 
number M was changed by varying the nozzle expansion ratio.  Thus instead of looking 
for a pure T3 dependence at constant P in the current work, the dependence of the LITA 
signal is studied when changing P and T simultaneously.  Fortunately the flow conditions 
P and T are both known with confidence [21]. 
 
Method and Apparatus 

Two common-path versions of optical-heterodyne LITA, from LaRC, were 
described for subsonic (VF < VS) [4] and supersonic (VF > VS) [13] fluid motion at 
velocity VF and sound speed VS = VS.  Two crossed beams from a single 10-nsec 
pulsed laser (pump) electrostrictively create two counter propagating 1-sec duration 
acoustic plane wave packets in the medium volume defined by the beam crossing (30 Hz 
repetition rate).  The volume of the ellipsoidal overlap region is about 1 cm by 200 m by 
200 m.  For stationary or subsonic gas, illumination of these traveling wave packets 
(i.e., density gratings) with a second laser beam (probe) at frequency L that crosses the 
initial density-grating ellipsoid and generates a Bragg-diffracted signal laser beam that 
consists of two copropagating components that are spectrally distinct.  These two 
components are distinguished by their different Doppler shifts   determined by the 
counter propagating geometry of the two acoustic wave packets.  The beating of the two 
separate components, at frequencies L  , produces a modulation of this Bragg-
diffracted signal beam at frequency 2 .  If the sound wave reciprocal wavelength is k 
(i.e., wave vector difference of the two pump beams), the two Doppler shifts are  = k 
 (VS), where VS are the velocities of the two counter propagating wave packets and 
VS = the speed of sound (bold-faced quantities denote vectors). 
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Measurement of the beat frequency 2 , with the known grating wavelength 
1/k, yields the sound speed.  If the mass composition of the fluid is known, translational 
temperature is determined since T  VS

2.  Any non-zero bulk fluid motion at velocity VF 
is also readily obtained from LITA with a heterodyne [10-12] approach.  A local 
oscillator beam at the probe frequency L is introduced onto the detector.  The local 
oscillator mixes nonlinearly with the original signal, and the detected signal then shows 
modulation at three frequencies: 2  and   (k  VF).  VF is derived from the 
measured frequency difference, 2 , of the two new components, where  = k  
VF.  The signal is digitized, and the frequencies can be extracted by a variety of methods 
to determine the velocity and temperature of the fluid.  The fluid pressure can also be 
determined with LITA from decay rates of either thermal [15] or electrostriction [13] 
grating signals. 

For supersonic gas flow, the subsonic setup was modified by offsetting the probe 
beam Xo  0.25 mm downstream of the crossed pumps to optimize collection of the 
reflected light signals from the two acoustic Bragg gratings as they are swept 
downstream.  (Note that this present estimate of Xo  0.25 mm is more accurate than the 
previous estimate of Xo  0.5 mm given in Reference 13, which was specified only to 
describe the experimental setup.  The value 0.5 mm was not used in Reference 13 to 
derive the relative pressures reported in that work, but the value 0.25 mm is used in the 
present work to calculate the absorption of the acoustic wave packets.)  A schematic of 
the supersonic version of LITA is shown in Figure 1.  Measurements were made in the 
UPWT, a large-scale (1.3 by 1.3-meter test section) closed-circuit supersonic facility that 
has been widely used for 50 years [21].  Mach number was varied over 11 values from 
1.47 to 2.16 to give 11 different combinations of P and T. 

 Offsetting the probe laser beam downstream relative to the crossed pumps slightly 
changes the temporal profile of the LITA signal.  A fast acoustic wave packet travels at 
Mach number M+1 and a slower packet travels at M-1 in the detector reference frame.  
For each laser pulse the diffracted signal consists of two components (one from each 
grating) that are separated in time by about 500 ns.  Each of the two components exhibits 
a different characteristic frequency due to distinct Doppler shifts.  In the analysis 
presented here, the total LITA signal S is taken as the sum of these two sequential 
signals.  Each single-pulse waveform was first Fourier transformed to frequency domain.  
Then about 500 spectra were averaged.  In this analysis, the raw amplitudes are corrected 
for transit time and absorption effects.  Finally the amplitudes of the two separate signals 
(from the fast and slow acoustic wave packets) were added together to generate the final 
initial signal amplitude Sh for each different P and T combination. 
 
Results 

 
 Writing the non-heterodyned LITA signal as S  g(P, T) where g is a function of 
P and T, four choices of g are considered: g  P/T, g  P2/T2, g  P4/T4, and g  P2/T3, 
which correspond to linear, quadratic, and quartic density dependences, and the expected 
LITA dependence respectively.  For g = f2 and heterodyned LITA signals Sh, these 
dependences become Sh  f  (P/T)1/2, f  P/T, and f  (P/T)2 and f  P/T3/2 
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respectively.  Figure 2 shows calculated results for the reduction of the heterodyned 
signal as a function of Mach number (i.e., P and T are both decreasing with increasing M) 
for the four different choices of function f.  The present measured fractional changes in 
signal amplitudes dSh/Sh are also shown by individual filled-circle symbols.  These 15 
measurements covering 11 Mach numbers are from the same 15 runs presented in 
Reference 13, where M, P and T were reported (but the signal amplitudes were not 
reported).  Two flow conditions were repeated and the precision of the amplitude Sh of 
each point is estimated to be about + 30% from these limited repetitions. 
 

The same data as shown in Figure 2 are plotted in a different manner in Figure 3, 
where the fractional theoretical signal is plotted versus the fractional change in observed 
signal.  One expects an equality df/f = dSh/Sh (i.e., linear relation with slope = 1), for the 
correct theoretical dependence on P and T.  The expected equality is shown with the solid 
line in each plot. 
 

Results of linear fitting to the four comparisons of Figure 3 are shown in Table 1, 
where all uncertainties are 68% confidence (i.e. + 1).  Note that the fitted lines through 
the data sets are not shown in Figure 3.  The results of the linear fitting are shown only in 
Table 1.  The solid lines of Figure 3 are not fits; they simply show the equality df/f = 
dSh/Sh .  At face value, the slope for f  P/T (i.e. S  P2/T2 which is quadratic with 
density) is closest to unity and the only slope consistent with unity at 68% confidence.  
The other three options are also ruled out at 95% confidence (+ 2). 

 
Discussion and Summary 

 
 First the spread in the data of the present work is about +30%, much less than the 
factor-of-three spread in the data of Reference 16.  Unfortunately, the changes in P and T 
for the present work are less than the factor-of-three change in temperature used in 
Reference 16.  Thus the sensitivity to temperature of the current study in is probably not 
better than the sensitivity of Reference 16. 
 

Since optical heterodyne detection was used in the work of [13], f  P/T3/2 is the 
expectation for a physical process like LITA with a straightforward, non-heterodyned 
dependence S  P2/T3.  However, in Figure 2, the function f  P/T best matches the data 
compared to the other options.  Also, in Figure 3 and Table 1, the same function is also 
the best match to the equality between df/f and dSh/Sh, with a unity slope.  Because of the 
significant spread in the data and the uncertainties in the fitted slopes, the function f  
P/T3/2 is also plausibly consistent with the data, but on face value, comes in second place 
to the best match, f  P/T.  The two functions f  (P/T)1/2 and f  P2/T2 are not consistent 
with the data to 95% confidence. 
 
 The bottom line is that, in this work, f  P/T provides a better match than f  
P/T3/2 for the UPWT data set.  Theoretically [1, 18], S  P2/T3 (i.e., Sh  f  P/T3/2) is 
expected.  The first possible conclusion is that LITA signals vary as S  P2/T2, i.e. 
density squared, and not as P2/T3 as reported in the literature.  This conclusion is difficult 
to accept based on the literature, including the 1/T3 measurement result of Reference 16.  

4



 

Note that the heat capacity ratio and the Gladstone-Dale coefficient are both required to 
be temperature independent to get the P2/T3 result.  But these assumptions should be 
relatively good approximations for the pressures and temperatures of this work.  A 
second possible conclusion is that there is an error in the present analysis.  Note that 
Reference 17 reports a decay of electrostriction gratings faster than 1/T3 (i.e., 1/T4.25) and 
discusses possible effects from turbulent convection, beam steering, and averaging with 
non-linear effects.  In the present work, the observed decay is slower than 1/T3.  Other 
possibilities for errors in the present work are related to the pump-probe laser beam 
separation Xo and imperfect beam alignments.  Finally an incorrect result may be due to 
systematic errors in the absorption estimate (between the time of formation and the time 
of measurement of the density gratings) in the data analysis. 

 
On the other hand, the absorption calculation is the same one that allowed the 

correct determinations of the wind tunnel free-stream relative pressures to within +4% in 
Reference 13.  This argues that the absorption calculation is likely to be reasonable and 
that there may be other unknown systematic errors in the present analysis.  Because of the 
potential errors in the present experiment and the 1/T3 result of Reference 16, it is 
reasonable to continue to assume that S  P2/T3 is correct.  With respect to the pressure 
measurement method proposed above in the introduction, significantly better data than 
those used in [13] or [16] must be obtained before the amplitude dependence on 
temperature can be confirmed accurately enough to provide confidence in future 
measurements of S to be used as an indirect pressure probe in gas samples, with pressures 
near atmospheric or below. 
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      Table 1        

 
Function  g Function  f  Slope   Intercept  R2   
 
P4/T4  P2/T2   2.7 + 0.35  0.015 + 0.13  0.82 
 
P2/T2  P/T   1.01 + 0.12  0.028 + 0.05  0.83 

 
P2/T3  P/T3/2   0.65 + 0.08  0.02 + 0.03  0.83 

 
P/T  (P/T)1/2   0.44 + 0.05  0.017 + 0.02  0.84 
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Figure 1.  Schematic of (A) pump beam crossing geometry at the grating formation time 
to and (B) a short time later t-, after the two gratings (thick vertical lines) have propagated 
downstream and the slower grating is reflecting a fraction (i.e. signal A-) of the probe 
beam (dashed lines) into the detector [probe beam and detector are omitted from part (A) 
for clarity]. 
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Figure 2.  Relative decrease in heterodyned LITA signal Sh as a function of increasing 
Mach number for four different functional dependences f of pressure P and temperature T 
and the measurements from the UPWT [13]. 
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Figure 3.  Fractional change in theoretical df/f versus the fractional change in observed 
heterodyned signal dSh /Sh for the four different P and T dependences denoted on each 
panel. 
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