

National Aeronautics and

Space Administration

Ames Research Center
Moffett Field, CA 94035-1000

 UAS-NAS

Live Virtual Constructive
Distributed Environment

(LVC)

LVC Gateway, Gateway Toolbox,

Gateway Data Logger (GDL), SaaProc

Software Design Description

 LVC SWDD-03

 Rev B

 Release Date: April 20, 2015

LVC SWDD-03 Rev B April 20, 2015

iii | P a g e

Revision Log

Version

Date Change # Page

Author Description

Baseline May 1, 2013 0 All Srba Jovic Initial Release of Document

Rev A Feb 19, 2014 All Srba Jovic Revision to support the IHITL
development phase.

Rev B Apr 20, 2015 All Srba Jovic Revision to support the FT3
development phase.

LVC SWDD-03 Rev B April 20, 2015

iv | P a g e

Table of Contents
1.0 Introduction ..1

1.1 Scope and Overview ...4
2.0 Reference Documents ...5

3.0 Software Design and Development Considerations ..6
3.1 Programming languages ..6
3.2 LVC Software ...6
3.3 LVC Source Code Management ...6

4.0 System Architecture Design ..7

5.0 LVC Gateway Design ..7
5.1 LVC Gateway Class Diagram ...8
5.2 Data Flow ..11
5.3 Sequence Diagram ..15

6.0 LVC Gateway Data Logger Design ...28
7.0 LVC Gateway Toolbox Design ...29

7.1 LVC Gateway Toolbox Class Diagram ..29
8.0 Sense and Avoid Processor (SaaProc) Design ...30

8.1 SaaProc Class Diagram ...31
9.0 Software Requirements Traceability and Implementation ..35
Appendix A – Acronyms ...36

LVC SWDD-03 Rev B April 20, 2015

1 | P a g e

1.0 Introduction

The desire for a capability to fly government and commercial Unmanned Aircraft Systems

(UAS) in the National Airspace System (NAS) is of increasing urgency. The application of

unmanned aircraft to perform national security, defense, scientific, and emergency management

functions are driving the critical need for less restrictive access by UAS to the NAS. UAS

represent a new capability that will provide a variety of services in the government (public) and

commercial (civil) aviation sectors. The growth of this potential industry has not yet been

realized due to the lack of a common understanding of what is required to safely operate UAS in

the NAS.

NASA’s UAS Integration into the NAS Project is conducting research in the areas of Sense and

Avoid/Separation Assurance Interoperability (SAA), Human Systems Integration,

Communication, and Certification to support reducing the barriers of UAS access to the NAS.

To accomplish this task, the Project will conduct a series of Integrated Human-in-the-Loop

(IHITL) and Flight Test activities that integrate key concepts, technologies and/or procedures in

a relevant air traffic environment. Each of the integrated events will build on the technical

achievements, fidelity and complexity of the previous tests and technical simulations, resulting in

a body of evidence that supports the development of regulations governing the access of UAS

into the NAS.

The Flight Test 3 (FT3) has three distinct test configurations, each focusing on a separate aspect
of the acceptability of the SAA algorithms. These test setups can be traced back to the two test
configurations shown in Figures 1 and 2. Within the test setups, there are common LVC
components required for a complete integrated test environment.
Figure 1 provides a high-level diagram of FT3 System Configuration 1. System Configuration 1
is designed to support pairwise encounters of the low speed ownship - Ikhana with an intruder
for the set of designed scenarios. The aircraft will be flying at Armstrong Flight Research Center
(AFRC). LVC subsystems such as Conflict Prediction and Display System (CPDS), Vigilant
Spirit Control Station (VSCS) with Research Ground Control Station (RGCS), SaaProc/JADEM,
and Stratway+ will interface with LVC Gateway research critical messages.

The FT3 System Configuration 2, showed in Figure 2, supports the Full Mission experiment. The
Vehicle Specific Module (VSM) is the subsystem that provides the data interfaces defined by the
LVC ICD-03 between the live Surrogate UA and the LVC environment as presented in Figure 2.

The framework for the simulation environment is provided by the LVC via the High Level
Architecture (HLA) messaging infrastructure. HLA is an industry standard that provides a well-
defined set of messages, message formats defined by the Federation Object Model (FOM)
specified for the given project and application programming interface (API) for conducting air
traffic simulations. The virtual UAS simulator, VSCS, is be integrated into a Research Ground
Control Station at used to present SAA advisories to the pilot as well as to transmit Command
and Control messages with the Surrogate UA. LVC Gateway is another core component of LVC
distributed test environment. The components send and receive data to other LVC components

LVC SWDD-03 Rev B April 20, 2015

2 | P a g e

through LVC Gateway connected to the HLA network. The constructive aircraft and ATC
workstations will be co-located on the same network that communicates with other components
via the HLA through their respective HLA Toolboxes. Constructive aircraft provide the required
background traffic to create a realistic NAS environment. Flight simulators at Ames are
connected to the LVC via HLA utilizing HLA Toolboxes. As part of FT3, the LVC’s capability
to provide a realistic and relevant environment, including the timeliness (e.g., synchronicity and
latency) of the data and the maturity of the ATC and GCS emulation will be evaluated.

Figure 1. System Configuration 1A

LVC system components rely on the core LVC components, identified in light blue in Figures 1,
2, and 3 to exchange shared information with each other. All participating system components
are integrated either through a High Level Architecture (HLA) Toolbox interface, or through the
LVC Gateway. The existing HLA distributed environment has the capability to integrate
constructive air traffic that is generated by the Multi-Aircraft Control System (MACS), which
also contains a robust Air Traffic Control and pseudo pilot capability. In addition, MACS has
the capability to publish and subscribe to all required messages (Flight Plan, Flight State, and
Delete) through an HLA Toolbox. The LVC Gateway will integrate participating components
that do not have the capability to connect directly to HLA into the LVC. The LVC interfaces
with HLA as a server to the LVC Gateway Toolbox.

Figure 1 shows the architecture in support of pairwise encounters with the low speed Ikhana
UAV as the Ownship. The CPDS with the I/O Server is used as the interface for receiving the

LVC SWDD-03 Rev B April 20, 2015

3 | P a g e

live aircraft data and passing on to the LVC environment.

Figure 2. System Configuration 1B

Figure 2 shows the architecture in support of pairwise encounters with the high speed S3 as the
Ownship. The VSM interface is used as the interface for receiving the live aircraft data and
passing on to the LVC environment.

LVC SWDD-03 Rev B April 20, 2015

4 | P a g e

Figure 3. System Configuration 2

Figure 3 shows a high-level diagram of the FT3 System Configuration 2. As with System
Configuration 1, System Configuration 2 is designed to provide connectivity among a virtual
UAS GCS, constructive manned traffic generators, and virtual ATC. In this case these virtual
and constructive components will be provided via facilities at NASA Langley. In addition, a
flight simulator with TCAS II version 7.0 running at NASA Ames and connected via HLA will
provide the primary intruder aircraft during testing. The UAS GCS at NASA Langley will
contain a combined Virtual Simulator, the CDTI, and the SAA algorithm for testing.

Note that this SWDD traces implementation to the new or revised LVC SWRD-02 Rev C
requirements for FT3 as follows. (See Section 9)

1.1 Scope and Overview

This document provides the software design description for the two core software components,
the LVC Gateway, the LVC Gateway Toolbox, and two participants—the LVC Gateway Data
Logger and the SAA Processor (SaaProc).

LVC SWDD-03 Rev B April 20, 2015

5 | P a g e

2.0 Reference Documents

Document Title Description

APR-7150.2 Ames Software Engineering Requirements

IT&E-CMP-001 IT&E Configuration Management Plan

IT&E PP-01 IT&E Project Plan

IT&E RMP-01 UAS-NAS Risk Management Plan

IT&E SAP-01 IT&E Software Assurance Plan

IT&E ORD-01 Objectives and Requirements Document (ORD)

LVC SRD-01 System Requirements Document

LVC-SWRD-02 Software Requirements Document

IT&E SDMP-01 Software Development & Management Plan

LVC V&VP-01 LVC Verification & Validation Test Plan

LVC Gateway ICD-03 LVC Gateway Message Interface Control Documents

LVC SWDD-03 Rev B April 20, 2015

6 | P a g e

3.0 Software Design and Development Considerations

3.1 Programming languages

The LVC Gateway software development will use C++ programming language and Object
Oriented Design methodology enabled by the language paradigm. The Object Oriented
abstraction concept will be utilized for communication classes to capture specifics of different
clients’ interfaces as well as for configuring socket types as a TCP client or server. The design
can accommodate other protocols such as UDP, Multicast or Loopback sockets. Some of the
hardware interfaces and libraries are best integrated using the C++ language due to the
timeframe in which these libraries were created.

3.2 LVC Software

The LVC is a complex system designed and developed by the combined NASA/ARC and
NASA/DFRC IT&E teams to integrate with other Government off-the-shelf (GOTS) software.
The processes and procedures for software development and management are described in the
LVC SDMP-01 software development and management plan and the IT&E configuration
management process is defined in the IT&E CM Plan. This includes the typical Configuration
Change Board (CCB) and CM processes followed at SimLabs at ARC.

3.3 LVC Source Code Management

Version control for the LVC software is maintained using the Concurrent Versions System
(CVS). Each revision of the source code will be checked into the source code configuration
management repository using CVS, providing complete traceability of all software changes for
each application build and executable.

The LVC Gateway, LVC Gateway Data Logger, LVC Gateway Toolbox, and SaaProc software
have been determined to be class D software as defined in APR 7150.2.

LVC SWDD-03 Rev B April 20, 2015

7 | P a g e

4.0 System Architecture Design

The LVC Gateway functional diagram is shown in Figure 3. The LVC Gateway will integrate
participating components that do not have the capability to connect directly to the LVC
environment through the HLA. The LVC Gateway, and LVC Gateway Data Logger have been
modified to handle connectivity and messaging associated with SaaProc, and Vigilant Spirit
Control Station (VSCS).

Figure 4. LVC System Architecture for One of the FT3 Configurations.

5.0 LVC Gateway Design

HLA Middleware (COTS) and the LVC Gateway constitute the core components of the LVC
system. The HLA LVC Gateway Toolbox will interface with the LVC Gateway as a client. Test
participants and simulation components will connect as clients to the LVC Gateway’s socket
server. The LVC Gateway ICD-03 Rev-B provides data structures definitions in support of the
project requirements. In addition to the data structures that supported IHITL experiment, the ICD
has been updated to include SAA Omni Band and Stratway Bands messages in order to meet
system requirements for VSCS capabilities. Upon initial network connection, each client will
send a handshake message to the Gateway defining the message types to which the client will
publish and subscribe.

LVC SWDD-03 Rev B April 20, 2015

8 | P a g e

The ICD specifies details for data exchange between the LVC Gateway and the following
clients:

- Vigilant Spirit Control Station (VSCS)
- SaaProc/JADEM
- CPDS/IOServer
- LVC I/O (VSM)
- LVC Gateway Data Logger
- LVC Data Collector
- Stratway+/DADELIS/ADRS
- LVC Gateway Toolbox

The first six clients listed above will connect to the LVC Gateway using MPI interface type on
the LVC Gateway server’s TCP socket. The client will be required to map its native data
structure to the MPI interface.

The LVC Gateway connects to the Stratway+ interface as a client using the ADRS interface type.
The ADRS client has different interface requirements. The LVC Gateway will send a periodic
heartbeat message to each client to check the health of the connection. If the socket connection
does not reply in a timely manner due to a client process crash, process disconnect (voluntary or
involuntary) or socket failure, the LVC Gateway will send the delete message out to the LVC
system for tracks associated with that client.

5.1 LVC Gateway Class Diagram

The Unified Modeling Language (UML) class diagram of the LVC Gateway design is shown in
Figure 5. The figure depicts the software architecture representing the relationship between the
classes of the LVC Gateway.

The Extensible Markup Language (XML) input configuration file is used to define the LVC
Gateway configuration in term of interface types, interface socket types, and data structures that
are transmitted by the LVC Gateway.

The GW Client Manager class is responsible for the instantiation of all LVC Gateway
components in the initialization phase of the code based on the XML configuration file. The GW
Client Manager contains a collection of GW Client objects. In addition, it utilizes the
observer/observable pattern. Using this paradigm, the observable is associated with clients that
publish messages defined in the ICD while the observer is associated with clients that subscribe
to those messages.

The GW Client class is an abstract class that instantiates as the MPI or ADRS interface types as
defined by the XML configuration file. Each GW Client can have many TCP and/or UDP
sockets of the client and/or the server type. Each interface on the LVC Gateway side will receive
the legacy data messages such as Flight State, Flight Plan, Trajectory Intent, SAA and Trial

LVC SWDD-03 Rev B April 20, 2015

9 | P a g e

Planning data from respective participants in MPI data format. In addition to the legacy
messages, two new messages are added for FT3, Saa Omni Band and Stratway Bands messages,
in support of the new FT3 requirements. All messages are time stamped, buffered and then
passed to the subscribing clients.

LVC SWDD-03 Rev B April 20, 2015

10 | P a g e

Figure 5. LVC Gateway Class Diagram

GW Client Manager

w Attach(observer);

w NotifySubscribers()

{ foreach(observer)

observer->update() }

Aggregate

Aggregate

GW Client(s)

base superclass

w register()

w update()

MPI

Client

UASRP

Client

Inherited

SocketInstance

base superclass

Tcp

Server

Tcp

Client
UDP

Server

UDP

Client
scalable

new other

(derived sub-clas)

SocketInstance *x[a]=new TcpServer

SocketInstance *x[b]=new UDPClient

Inherited

CNetSpecs
(Singleton

design pattern)

Sim Data

data buffering container

Trajectory

intent(s)

data

Aggregate

Flight

Plan(s)

data

ADRS

Client

Flight

State

data

SAA

data:
ReRoute

Maneuver

FlightState

Threat

Release

TrialPlanning

data:
TrialTrajectory

AcceptTrajectory

NavMode

(concrete derived sub-classes)

GWClient *x[a]= new GW_UASRP_Client;

GWClient *x[b]= new GW_MPI_Client;

GWClient *x[b]= new GW_ADRS_Client;

XML config file

publish criteria

subscribe criteria

socket criteria

finite state

machine

(design pattern)

LVC SWDD-03 Rev B April 20, 2015

11 | P a g e

5.2 Data Flow

The LVC Gateway will exchange air traffic data and the set of Sense (Detect) And Avoid
(SAA/DAA) messages with live, virtual and constructive participants, as depicted in Figure 6.

The VSCS will provide Flight Plan, Flight State, Trajectory Intent and Navigation Mode data.
The initial Flight Plan is published as soon as the VSCS is launched while the Flight State
message is published periodically at the rate of 10Hz once the simulation begins operating. The
Navigation Mode message is event driven and is sent every time the pilot changes the ownship’s
navigation mode between Flight Plan, Autopilot, Override and Manual modes. The VSCS will
receive a subset of the ownship’s background traffic as determined by the ownship’s sensor
range filter via the SAA Flight State message depicted in Figure 6a, b, and c. In the current
design, the sensor range filter is an integral part of JADEM and Stratway+ GCS subsystems.

Constructive Flight Plan and Flight State data generated by MACS are provided through the
LVC Gateway HLA Toolbox, depicted in Figure 6c. The ownship’s Flight Plan, Flight State
messages will be sent to the LVC Gateway HLA Toolbox and on to MACS ATC displays.

The SaaProc/JADEM receives Flight State message updates for constructive background traffic
at 1Hz data rate. In addition, it receives all flight data including navigation mode data from
VSCS. The SaaProc also receives the Trial Trajectory Intent message published by the VSCS
during the trial planning operation at the nominal rate of 15Hz. SaaProc receives the VSCS
ownship Flight State message at the rate of 10Hz, then down-samples to a rate of 1Hz to match
the data rate of the MACS constructive traffic. The new SAA Flight State message is generated
by using a sensor range filter, applied to the state data of the constructive traffic, in order to
emulate a sensor proximal filter. The filtered background traffic is called “intruder traffic” while
the state of each intruder aircraft is defined by the SAA Flight State message. The intruder traffic
is published back to LVC Gateway for display on VSCS while detected intruders are also used
for conflict detection by SAA.

The SAA input is comprised of the following messages: SAA Flight State (intruders), down-
sampled ownship Flight State, ownship Trial Trajectory Intent and the ownship Navigation
Mode. The SAA algorithms calculate the following set of output SAA messages for intruders, as
shown in the Figure 6a, b, and c: SAA Threat results (Alerts), SAA Resolution Maneuvers, SAA
Resolution Reroute and SAA Trial Threat results. All messages are defined in the LVC ICD-03.

When Stratway+ GCS is configured with the system instead of SaaProc/JADEM, Stratway +
GCS receives Flight State message updates for constructive background traffic at 1Hz data rate.
Stratway+ GCS receives the VSCS ownship Flight State message at the rate of 10Hz (then
down-samples to a rate of 1Hz to match the data rate of the MACS constructive traffic). The new
SAA Flight State message is generated by using the same sensor range filter as JADEM. The
intruder traffic is published back to LVC Gateway for display on VSCS while intruders are used
for conflict detection using Stratway+ algorithm. The resulting Stratway Bands message are sent
to VSCS for display.

LVC SWDD-03 Rev B April 20, 2015

12 | P a g e

Figure 6a. Data Flow Diagram for Configuration 1A.

LVC SWDD-03 Rev B April 20, 2015

13 | P a g e

Figure 6b. Data Flow Diagram for Configuration 1B.

LVC SWDD-03 Rev B April 20, 2015

14 | P a g e

Figure 6c. Data Flow Diagram for Configuration 2.

LVC SWDD-03 Rev B April 20, 2015

15 | P a g e

5.3 Sequence Diagram
The total of six UML sequence diagrams associated with the message flow between the LVC
system components are shown for all three system configurations (two diagrams for each
configuration). The sequence diagram for the first use case for each configuration describes
SaaProc/JADEM use while the second sequence diagram shown use of Stratway+ GCS. The first
diagram for pairwise ownship/intruder and full mission encounter configurations are displayed in
Figure 7a, 7c and 7e shows time sequence of events during the concurrent auto-resolution conflict
detection, alert level, Omni Band detections and the trial planning. The second use case with
Stratway+ in the loop for pairwise and full mission encounters are shown in Figure 7b, 7e and 7f
showing event diagrams during the Stratway+ Bands conflict detection.

A list of the sequence of events for Configuration 1A using SaaProc/JADEM is shown below:

1. The surveillance system of the live aircraft (Ikhana) will send the state data update of the
ownship (Ikhana) and intruders in the range of the on-board sensors to the Ikhana GCS.

2. The CPDS/IOServer will receive the state data messages of the live traffic. Subsequently,
IOServer will map the corresponding state data fields into the MsgFlightState message
data structure for the ownship and intruders.

3. The CPDS/IOServer will send the MsgFlightState messages for the live traffic to the LVC
Gateway.

4. The LVC Gateway updates state data for the received traffic, including the ownship
MsgFlightState, and publishes them to SaaProc/JADEM (labeled as 1Hz Thread in the
diagram) at the rate of 1Hz.

5. The sensors model, which is an integral part of the SAA algorithm, determines a set of
intruders based on their 3D spatial distance from the ownship.

6. SaaProc publishes only intruders back to LVC Gateway and to VSCS for display utilizing
the MsgSaaFlightState message.

7. The SAA algorithm in JADEM calculates threat level for each intruder. The algorithm
detects a Self Separation (SS) threat between the ownship and intruders.

8. SaaProc sends the MsgSaaThreatResult message to the LVC Gateway containing an array
of data structures for each intruder. See ICD for details.

9. The LVC Gateway forwards MsgSaaThreatResults message to VSCS to display the
associated threat level for each intruder.

10. The SAA algorithm in JADEM calculates and sends to The LVC Gateway SS Omni
Bands for the heading and the altitude in the horizontal and vertical planes respectively.
The bands are color coded advising the fly/no-fly zones for the ownship.

11. The LVC Gateway sends SS Omni Bands to the VSCS display.

LVC SWDD-03 Rev B April 20, 2015

16 | P a g e

12. The pilot (operator) performs trial planning to resolve the SS conflict by selecting the end
of the heading vector attached to the ownship on the VSCS display. The pilot then rotates
the vector around the compass rose seeking conflict free options.

13. The VSCS publishes the Trial Trajectory message (MsgTrialTrajectoryIntent) at a
nominal rate of 15Hz to the LVC Gateway.

14. The LVC Gateway forwards the Trial Trajectory message to SaaProc at a rate of 15 Hz for
the conflict assessment by the SAA Trial Planning code thread (labeled “15Hz Thread” at
the top of the diagram).

Note: The two threads, SAA 1Hz and SAA 15Hz, run asynchronously performing conflict
detection calculations between each intruder and the ownship. See SaaProc section below
for details.

15. SaaProc sends the MsgSaaTrialThreatResults message to the LVC Gateway for each trial
trajectory. The message contains an array of data structures for each intruder.

16. The LVC Gateway forwards MsgSaaTrialThreatResults message to the VSCS to display
the associated threat level for each intruder.

17. The pilot selects a conflict-free heading of the trial vector for the given intruder and then
negotiates the heading change with ATC. Upon receiving approval from the ATC, the
pilot executes the heading maneuver by pressing the “Send” button in the VSCS UI.

18. VSCS sends the MsgNavMode message to the LVC Gateway.

19. The LVC Gateway forwards the MsgNavMode to both the SAA 1Hz and the SAA 15Hz
threads informing them that the ownship is now flying in the Autopilot mode vs. the Flight
Plan mode prior to this maneuver.

20. The process repeats from step 1 when the new traffic update arrives into SaaProc.

LVC SWDD-03 Rev B April 20, 2015

17 | P a g e

Figure 7a. UML Sequence Diagram: Conflict Detection using SaaProc/JADEM for Configuration 1A

LVC SWDD-03 Rev B April 20, 2015

18 | P a g e

Figure 7b. UML Sequence Diagram: Conflict Detection using Stratway+ for Configuration 1A

LVC SWDD-03 Rev B April 20, 2015

19 | P a g e

A list of the sequence of events for Configuration 1A using Stratway+ GCS is shown below:

1. The surveillance system of the live aircraft (Ikhana) will send the state data update of the
ownship (Ikhana) and intruders in the range of the on-board sensors to the Ikhana GCS.

2. The CPDS/IOServer will receive the state data messages of the live traffic. Subsequently,
IOServer will map the corresponding state data fields into the MsgFlightState message
data structure for the ownship and intruders.

3. The CPDS/IOServer will send the MsgFlightState messages for the live traffic to the LVC
Gateway.

4. The LVC Gateway updates state data for the received traffic, including the ownship
MsgFlightState, and publishes them to Stratway+ GCS at the rate of 1Hz.

5. The sensors model, which is an integral part of Stratway+, determines a set of intruders
based on their 3D spatial distance from the ownship.

6. The Stratway+ GCS publishes only the intruders back to the LVC Gateway and to the
VSCS for display utilizing the MsgSaaFlightState message.

7. The Stratway+ algorithm calculates no-fly bands and the threat level for each intruder.

8. Stratway+ GCS sends the MsgStratwayBands message to the LVC Gateway. See ICD for
details.

9. The LVC Gateway forwards the MsgStratwayBands message to the VSCS to display the
associated threat level for each intruder and Stratway+ bands. The VSCS displays four
types of bands; heading, altitude, true air speed and vertical speed bands.

10. The pilot selects a conflict-free heading of the vector for the given intruder and then
negotiates the heading change with ATC. Upon receiving approval from the ATC, the
pilot executes the heading maneuver by pressing the “Send” button in the VSCS UI.

11. The VSCS sends the MsgNavMode message to LVC Gateway.

12. The process repeats from step 1 when the Ikhana issues a new traffic update.

LVC SWDD-03 Rev B April 20, 2015

20 | P a g e

Figure 7c. UML Sequence Diagram: Conflict Detection using SaaProc/JADEM for Configuration 1B

LVC SWDD-03 Rev B April 20, 2015

21 | P a g e

A list of the sequence of events for Configuration 1B using SaaProc/JADEM is shown below:

1. The surveillance system of the live S-3 aircraft will send the state data update of the
ownship (S-3) and intruders in the range of the on-board sensors to the CNPC Ground
Station and onto the VSM LVC I/O subsystem.

2. The VSM LVC I/O will receive the state data messages of the live traffic. Subsequently,
the LVC I/O will map the corresponding state data fields into the MsgFlightState message
data structure for the ownship and intruders.

3. The LVC I/O will send MsgFlightState messages to the LVC Gateway.

4. Repeat Configuration 1A (when using SaaProc/JADEM) Steps 4-19, including the traffic
sensor range filtering, Alerting, Omni Bands, and Trial planning.

5. Concurrently and asynchronously, STANAG 4586 standard interface containing
Command and Control data is sent from the S-3 aircraft to CNPC GS and onto the
STANAG I/O.

6. The STANAG 4586 message is sent directly to the VSCS.

7. The pilot might issue a heading maneuver that will be encoded into the STANAG message
which will be uplinked S-3. The content of Command and Control message will be
presented to the S-3 pilots for their assessment and subsequent execution of the maneuver.

8. The process repeats from step 1 when the S-3 surveillance system issues a new state
update.

LVC SWDD-03 Rev B April 20, 2015

22 | P a g e

Figure 7d. UML Sequence Diagram: Conflict Detection using Stratway+ for Configuration 1B

sd Class Model

S-3

VSM STANAG IO VSCS LVC GW Stratway GCS

VSM receives live OS

and Intruder Flt

States from S-3 on-

board sensors

Intruders' FltState is

unconditionally

passed through the

filter of the sensor

models (ADS-B and

Radar)

VSM LVC IO

OS FltState

OS Flt State is excluded

OS and Intruder

FltStates are received

UAS GCS pilot selects

and uplinks the

maneuver to UA.

FT3 Configuration 1b:

 Pairwise, High Speed, S-3

 DAA: Stratway
SendAlerts()

Receiv eCommControl()

SendCommControl()

Receiv eCommControl()

Receiv eFltState()

SendCommControl()

SetManeuv er()

SendStratwayBands()

GetAlerts()

DisplayStratwayBands()

DisplaySaaFltState()

SendSaaFltState()

DisplayAlerts()

SendSaaFltState()

Receiv eFltState()

Receiv eFltState()

SendAlerts()

SendStratwayBands()

LVC SWDD-03 Rev B April 20, 2015

23 | P a g e

A list of the sequence of events for Configuration 1B having Stratway+ GCS in the loop is shown
below:

1. The surveillance system of the live S-3 aircraft will send the state data update of the
ownship (S-3) and intruders in the range of the on-board sensors to the CNPC Ground
Station and onto the VSM LVC I/O subsystem.

2. The VSM LVC I/O will receive the state data messages of the live traffic. Subsequently,
the LVC I/O will map the corresponding state data fields into the MsgFlightState message
data structure for the ownship and intruders.

3. The LVC I/O will send MsgFlightState messages to the LVC Gateway.

4. Repeat Configuration 1A (when using Stratway+ GCS) Steps 4-11, including the traffic
sensor range filtering, Stratway+ Bands, and Alerting.

5. Concurrently and asynchronously, the STANAG 4586 standard interface containing
Command and Control data is sent from the S-3 aircraft to CNPC GCS and onto the
STANAG I/O.

6. STANAG 4586 message is sent directly to VSCS.

7. The pilot might issue a heading maneuver that will be encoded into the STANAG message
which will be uplinked directly to the autopilot of S-3 which will be executed by the
airplane.

8. The process repeats from step 1 when the S-3 surveillance system issues a new state
update.

LVC SWDD-03 Rev B April 20, 2015

24 | P a g e

Figure 7e. UML Sequence Diagram: Conflict Detection Using SaaProc/JADEM for Configuration 2

LVC SWDD-03 Rev B April 20, 2015

25 | P a g e

A list of the sequence of events for Configuration 2 having SaaProc/JADEM in the loop is shown
below:

1. The surveillance system of the live Surrogate UAV aircraft will send the state data update
of the ownship (Surrogate UAV) and intruders in the range of the on-board sensors to the
CNPC Ground Station and onto the VSM LVC I/O subsystem.

2. The VSM LVC I/O will receive the state data messages of the live traffic. Subsequently,
LVC I/O will map the corresponding state data fields into the MsgFlightState message
data structure for the ownship and intruders.

3. LVC I/O will send MsgFlightState messages for the live traffic to LVC Gateway.

4. Repeat Configuration 1A (when using SaaProc/JADEM) Steps 4-19, including the traffic
sensor range filtering, Alerting, Omni Bands, Trial planning, and handling of the
STANAG message.

5. Concurrently and asynchronously, the simulated virtual traffic (in form of MsgFlightState)
by generated in the ARC SimLabs is published to LVC Gateway.

6. LVC Gateway receives state data for the live traffic, including the ownship, in the form of
MsgFlightState, and publishes them to SaaProc/JADEM (labeled as 1Hz Thread in the
diagram) at the rate of 1Hz.

7. The process repeats from step 1 when the S-3 surveillance system issues a new state
update.

LVC SWDD-03 Rev B April 20, 2015

26 | P a g e

Figure 7f. UML Sequence Diagram: Conflict Detection using Stratway+ for Configuration 2

LVC SWDD-03 Rev B April 20, 2015

27 | P a g e

A list of the sequence of events for Configuration 2 having Stratway+ GCS in the loop is shown
below:

1. The surveillance system of the live Surrogate UAV aircraft will send the state data update
of the ownship (Surrogate UAV) and intruders in the range of the on-board sensors to the
CNPC Ground Station and onto the VSM LVC I/O subsystem.

2. The VSM LVC I/O will receive the state data messages of the live traffic. Subsequently,
LVC I/O will map the corresponding state data fields into the MsgFlightState message
data structure for the ownship and intruders.

3. The LVC I/O will send MsgFlightState messages for the live traffic to LVC Gateway.

4. Repeat Configuration 1A (when using Stratway+ GCS) Steps 4-14, including the traffic
sensor range filtering, Stratway+ Bands, Alerting, and handling of the STANAG message.

5. Concurrently and asynchronously, the simulated virtual traffic (in form of MsgFlightState)
by generated in the ARC SimLabs is published to LVC Gateway.

6. LVC Gateway receives state data for the live traffic, including the ownship, in the form of
MsgFlightState, and publishes them to SaaProc/JADEM (labeled as 1Hz Thread in the
diagram) at the rate of 1Hz.

7. Next sequence event steps are identical to the steps from the step 5 through 14 including
the traffic sensor range filtering, Omni Bands, Trial planning and handling of STANAG
4586.

8. The process repeats from step 1 when the surveillance system issues a new state update.

LVC SWDD-03 Rev B April 20, 2015

28 | P a g e

6.0 LVC Gateway Data Logger Design

The LVC Gateway Data Logger (GDL) is designed as a client to the LVC Gateway using
TCP/IP client socket interface protocol. The GDL interface conforms to the LVC Gateway
ICD. The handshake message will specify that the GDL will subscribe to and record all
messages transmitted by the LVC Gateway (i.e., Flight Plan, Flight State, Flight Trajectory
Intent, SAA, Saa Omni Band, Stratway+ Bands, Trial Trajectory Intent and Aircraft Delete) in
the recording mode, while it will publish all messages when in the playback mode. Data
messages of every type will be recorded in an ASCII comma-delimited CSV data file. The UML
class high-level diagram of the LVC Gateway Data Logger design is shown in Figure 8.

Figure 8. UML Class Diagram of LVC Gateway Data Logger

CDataLogger

::WriteToFile()

Config XML file
publish criteria = x
subscribe criteria = ALL

socket criteria =CLIENT

disk

GW Client(s)

w ReceiveIncomingPackets()

w SendOutgoingPacket()

SocketInstance

Tcp

Server

Tcp

Client
UDP

Server

UDP

Client
scalable

new other

(derived sub-clas)
SocketInstance *x[a]=new TcpServer

SocketInstance *x[b]=new UDPClient

Inherited

MPI Client

LVC SWDD-03 Rev B April 20, 2015

29 | P a g e

7.0 LVC Gateway Toolbox Design

An HLA Toolbox is one of the core LVC components that enables fast and cost-effective
integration of participants into the distributed simulation test environment. HLA Toolboxes
provide a developer with a standard interface that encapsulates Run Time Infrastructure (RTI) to
the HLA Federation. Each Toolbox implements the unique requirements associated with a
simulation component (or federate) that the Toolbox interfaces with. A communication interface
to a federate utilizes standard Unix/Linux. The data that is transmitted to or from the HLA
Toolbox is controlled by the HLA Federation Object Model (FOM) Specification.

The FOM is parsed in the HLA Toolbox development process (compile/link) to create a standard
data structure that is used in the sockets interface between the HLA Toolbox and its mating
simulation component. The FOM also controls the toolbox’s access to simulation data and its
intent to publish simulation data into the HLA Federation.

7.1 LVC Gateway Toolbox Class Diagram

The UML class diagram of the LVC Gateway Toolbox design is shown in Figure 9. The figure
depicts the software architecture representing the relationship between the classes of the LVC
Gateway Toolbox.

The LVC Gateway Toolbox will be implemented as a server such that the LVC Gateway will
connect to it as a client. The input configuration file will be used to define the Toolbox
configuration in terms of the Toolbox IP address, port number, TCP/IP type server socket, the
LVC Gateway IP address, the port number, and the IP address of the HLA RTI Exec host.

The LVCMPIManager class is responsible for instantiating the LVCServer class of the MPI type
based on the configuration input file. Once instantiated, the LVC Server object will parse the
configuration file to obtain required parameters for the instantiation of the LVC Gateway
Toolbox components during the initialization. The LVCServer object will setup the TCP/IP
server socket interface with the predefined port number using InetPort and InetPortImpol classes.
Subsequently, it will define a handshake message that includes messages that will be published
and subscribed. This handshake message will be sent to the LVC Gateway, which will register
messages that it will receive and publish from the Toolbox.

When the LVC Gateway Toolbox is launched, it will connect with the HLA RTI Exec
infrastructure. The Toolbox’s periodic execution loop, which executes methods that
communicate with the LVC Gateway and the HLA RTI, will be launched to receive flight data
updates and transmit them between the two environments.

Two methods are responsible for transmitting flight data between participants connected to HLA
and the LVC Gateway. The method DownloadFromHlaAndSendToFederate() receives periodic
updates of flight data from HLA objects that are defined by the HLA FOM. The flight data are
subsequently mapped to the corresponding MPI data structure types defined by the ICD. After
the mapping is completed, the data structure is encoded to the MPI message and sent to the LVC

LVC SWDD-03 Rev B April 20, 2015

30 | P a g e

Gateway utilizing the TCP/IP server/client socket infrastructure.

Inversely, the method ReceiveFromFederateAndUploadToHla() receives periodic updates of
flight data from the federate (participant). The flight data are subsequently mapped to the
corresponding HLA FOM objects. After the mapping is completed, the HLA object is passed to
the RTI which delivers the flight data to the subscribing participants.

LVCMpiManager LVCMpiFederate

Server

(abstract)

LVCMpiAircraft LVCMpiServer

Config File

InetPort

(abstract)
NewInstance()

InetPortImpl

ReceiveFromFederateAndUploadToHla()

DownloadFromHlaAndSendToFederate()

ProcessDeletedAc()

Upload_ActiveAc()

Upload_ActiveFplan()

Download()

- Read Config File

- Get LVC Interface

SetupInetPort()

Receive()

Send()

Figure 9. UML Class Diagram of LVC Gateway Toolbox

The Toolbox execution loop also hosts ProcessDeletedAc() method that is responsible for
removing the HLA objects associated with the targets that are removed from the traffic scenario
during the run time.

The low level implementation of these methods is implemented in the LVCMpiAircraft class.

With the exception of a bug fix, the LVC Gateway Toolbox has not been modified from its
baseline configuration since the LVC Gateway Toolbox is not required to process SAA and Trial
Planning data.

8.0 Sense and Avoid Processor (SaaProc) Design

The SaaProc subsystem is an integral component of the UAS Ground Control Station (GCS)
under test, providing a framework for integrating multiple Sense and Avoid (SAA) algorithm and

LVC SWDD-03 Rev B April 20, 2015

31 | P a g e

traffic display combinations. The SaaProc communicates over a socket connection as a client
with the LVC Gateway. The internal IO data infrastructure supports the flow of inputs to the
SAA algorithm (ownship and intruder flight data), outputs from the SAA algorithm (SAA threats
and conflict resolutions) to the LVC Gateway. The SaaProc class diagram is shown in Figure 10.
SaaProc supports two conflict resolution functionalities: auto-resolution and trial planning.
Threat levels and resolutions produced by SAA during the auto-resolution conflict detection
phase as well as the results of trail planning are displayed graphically on VSCS. Sequence
diagrams for the six use cases are shown in Figure 7a through 7f from the LVC Gateway
perspective, while the sequence diagram in Figure 11 shows the internal sequence infrastructure
for the SaaProc subsystem.

Trial Planning is a process in which a UAS operator attempts to resolve conflicts identified by
the conflict detection function by manually exploring a new conflict-free trajectory using the trial
planning capabilities built into VSCS. The trial planning is activated by selecting the end of the
heading vector attached to the ownship on the VSCS display. The trial heading vector will
become brighter and the pilot can then rotate the vector around the compass rose. During this
process, the trial trajectory intent is dynamically modified and is sent to SaaProc/JADEM at a
high data rate for the prediction of trial conflict alerts.

A second altitude trial planning method is also available to the pilot, who can use a graphical
altitude strip to select climb/descend trial altitudes. The altitude strip is displayed in the VSCS
UI. These trial plan trajectories/ altitudes are sent to the SaaProc via the LVC Gateway at the
nominal 15Hz data rate to detect whether the proposed trajectories are conflict free. The resultant
conflict threat information corresponding to each trial plan trajectory is sent back to the VSCS.
Subsequently, appropriate visual alerts will be displayed in the VSCS display. A multithreaded
infrastructure is employed to handle different data rate requirements for data management as
well as handling asynchronous events associated with trial planning and JADEM’s conflict
detection.

An additional alerting capability is provided in the form of Omni Bands. The Omni Bands
algorithm is implemented in the JADEM environment together with the alerting and
Autoresolver algorithms. The Omni Bands are providing threat intervals for heading and altitude
as defined in the LVC ICD.

8.1 SaaProc Class Diagram

The UML class diagram of the SaaProc design is shown in Figure 10. The figure depicts the
software architecture representing the relationship between the classes of the SaaProc. Central to
the SaaProc operation is the SaaIOController class, which encapsulates the SAA algorithm
(SAA) implemented in the SenseAndAvoid class. The SaaIOController directs the flow of data
coming in from LVC Gateway and the data going out to LVC Gateway as a result of the SAA
computation. The input and output to and from the LVC Gateway are facilitated by the
NetworkCom class.

Employing a bridge pattern in the input structure, SaaProc can adapt to pairing up different client
input formats via the SaaInput abstract class with different data consumers via the

LVC SWDD-03 Rev B April 20, 2015

32 | P a g e

FlightDataInputAdaptor class. Likewise, the output structure can adapt to pairing up different
algorithm output formats via the SaaResultsAdaptor class with different output data protocols via
the SaaOutput abstract class. This design provides flexibility for the SaaProc to handle any
algorithm, given any type of input data format.

In order to maximize its performance, SaaProc utilizes three additional worker threads running
asynchronously, implemented by SaaInput, SaaOutput, SaaTrialPlanController. This allows the
input/output/SAA computation to operate independently at a 1Hz nominal rate while the trial
planner operates at a 15Hz rate. During the run time, these asynchronous objects communicate
with each other via four synchronized objects implemented by the FlightDataLocker,
ResultsLocker, TrialPlanDataLocker, and TrialPlanResultLocker.

Figure 10. UML Class Diagram of SaaProc

LVC SWDD-03 Rev B April 20, 2015

33 | P a g e

Figure 11. UML Sequence Diagram for Trial Planning in SaaProc

LVC SWDD-03 Rev B April 20, 2015

34 | P a g e

The sequence of steps that take place inside SaaProc when trial planning is invoked is as
follows:

1. The SaaInput object detects a trial planning message (SaaTrialTrajIntentMsg) coming in
from the LvcGateway. It decodes the message and deposits the trial plan trajectory data
along with current flight data into the TrialPlanDataLocker object while simultaneously
signaling that there is trial plan data ready and waiting.

2. The TrialPlanController continuously polls the TrialPlanDataLocker to see if any trial
plan has come in. When true, it fetches the data by calling
TrialPlanDataLocker.fetchOsTpFlightData().

3. The TrialPlanController then submits the trial plan request to JADEM with relevant data
by calling the SaaAlgorithm.trialPlan(). Currently three SAA algorithms are implemented
in JADEM, i.e. Alert levels, Autoresolver and Omni Band.

4. When trial plan results are computed, TrialPlanController deposits these results into the
TrialPlanResultsLocker. Immediately afterward, it sends a release signal to the
TrialPlanDataLocker so that the new input can be written into the locker.

5. The SaaOutput object continuously polls the TrialPlanResultsLocker to see if any trial
plan results are available. When true, it fetches the data, encodes it into the
SaaTrialPlanThreatRsultsMsg, and sends the message out to the LvcGateway via the
socket. At this point, the SaaOutput sends a release signal to the TrialPlanResultsLocker
so that new results can be written into the locker.

6. The process repeats indefinitely from step one.

Note that VSCS has developed integrated advanced display capabilities in support of Sense and
Avoid conflict detection function, including Self Separation Alerting, Resolution maneuvers,
Omni Bands and Trial Planning. VSCS will receive all SAA messages published by SaaProc as
presented in sections above and will be displayed according to the requirements in the VSCS
display. In addition to the regular conflict detection functionality, the infrastructure handling trial
planning for heading and altitude are also implemented.

Although VSCS adds a new capability to trial plan using heading, and altitude trial planning
than, the generated messages were designed to conform to the trial trajectory intent data structure
as defined in the LVC Gateway ICD. Therefore, the infrastructure that is already in place in LVC
Gateway and SaaProc is readily available to support heading and altitude trial planning for
VSCS. The heading trial planning trajectory intent message is constructed of three waypoints,
where the first waypoint is located upstream and the next two way points are located downstream
of the ownship position. The VSCS trial planning operation is initiated by a mouse click at the
tip of the trial vector on the display. The heading vector can then be rotated around the compass
rose centered on the ownship. During this operation, trial trajectory intent messages are
published at the rate of 15Hz. Corresponding threat messages will be received from SaaProc.

JADEM

LVC SWDD-03 Rev B April 20, 2015

35 | P a g e

Altitude trial planning messages are published at a rate of 5Hz for a duration of one second
followed by a one second break. A small pop-up window containing a list of buttons with preset
altitudes (+/- 500 and +/-1000) centered on the ownship’s current altitude is used for altitude trial
planning. The trial planning operation is initiated by the push of any of the altitude buttons
except the current altitude one. The VSCS trial operation is terminated by the selecting the
current (middle) altitude. When a Self Separation threat message is received, the altitude button
in the pop-up window changes to yellow, and is changed to red for Collision Avoidance threats.

9.0 Software Requirements Traceability and Implementation

The full set of software requirements is documented in the LVC SWRD-02 Rev C. All
requirements in the Rev B (IHITL) version of the SWRD have been implemented and verified.

This SWDD traces implementation to the new or revised LVC SWRD-02 Rev C requirements as
follows:

 SWRD Requirements Satisfied by Configuration 1A: LVC-20, GW-15, SWGW-36, 37, 38,

39, 40, 41, 42, 43, SWGW-44, 45

 SWRD Requirements Satisfied by Configuration 1B: LVC-20, GW-15, SWGW-36, 37, 38,

39, 40, 41, 42, 43, SWGW-44, 45

 SWRD Requirements Satisfied by Configuration 2: LVC-20, GW-15, SWGW-36, 37, 38, 39,

40, 41, 42, 43, SWGW-44, 45

Note: SWRD requirements can be traced to the system level requirements in the LVC SRD-01
Rev C which traces to the LVC Objectives and Requirements Document, IT&E ORD-01 Rev A.

LVC SWDD-03 Rev B April 20, 2015

36 | P a g e

Appendix A – Acronyms

ADS-B Automatic Dependent Surveillance-Broadcast

AFSRB Airworthiness and Flight Safety Review Board

ATC Air Traffic Control

ARC Ames Research Center

CCR Configuration Change Request

CDR Critical Design Review

CI Configuration Item

CM Configuration Management

CMP Configuration Management Plan

COTS Commercial Off The Shelf

CSD Cockpit Situation Display

CSCI Computer Software Configuration Item

CVS Concurrent Versions System

DCP Dryden Centerwide Process

AFRC Armstrong Flight Research Center

DHB Dryden Handbook

DOC Document

DOP Dryden Operational Procedure

DPR Dryden Procedural Requirement

DR Discrepancy Report

DSRL Distributed Simulation Research Laboratory

FAA Federal Aviation Administration

FMR Flight Media Release

FRR Flight Readiness Review

GB Guidebook

GCS Ground Control Station

GOTS Government off-the-shelf

HLA High Level Architecture

H.S.I. Human Systems Integration

ICD Interface Control Document

IRS Interface Requirements Specification

LVC SWDD-03 Rev B April 20, 2015

37 | P a g e

ISRP Integrated Systems Research Program

IT Information Technology

IT&E Integrated Test and Evaluation

IV&V Independent Verification and Validation

JADEM Java Architecture for DAA Extensibility and Modeling

LVC Live Virtual Constructive Distributed Environment

MACS Multi-Aircraft Control System

MOTS Modifiable off-the-shelf

MPI Multi-Purpose Interface

NASA National Aeronautics and Space Administration

NPR NASA Procedural Requirements

N/R Not Required

OFP Operational Flight Program

ORD Objectives and Requirements Document

PDR Preliminary Design Review

PCM Pulse Code Modulation

REV Revision

RFDP Research Flight Data Processor

RGCS Research Ground Control Station

RTCA Radio Technical Commission for Aeronautics

SAP Software Assurance Plan

SaaProc Sense And Avoid Processor

SBU Sensitive But Unclassified

SDA Software Design Agent

SDD Software Design Description

SDP Software Development Plan

SRD System Requirements Document

SWRD Software Requirements Document

SRR System Requirements Review

STD Standard

STR System (or Software) Test Report

SWDF Software Development Folder

LVC SWDD-03 Rev B April 20, 2015

38 | P a g e

TBD To Be Determined

TOC Table of Contents

TRR Test Readiness Review

UI User Interface

UML Unified Modeling Language

V&V Verification and Validation

V&VTP Verification and Validation Test Plan

V&VTPR Verification and Validation Test Procedure

VDD Version Description Document

XML Extensible Markup Language

