Adapting Guidance Methodologies for Trajectory Generation in Entry Shape Optimization

Dr. Sarah D’Souza
Aerospace Flight Systems Engineer
Systems Analysis Office
NASA Ames Research Center

May 21, 2015
Motivation

Flight Feasible Trajectories will Model **Realistic In-Flight Thermal States:**

- Allow for increased accuracy in Thermal Protection System sizing (potential mass savings)
- Reduce the number of design cycles required to close an entry spacecraft design (potential cost savings)
Novel Research Objective

Develop a planetary guidance algorithm that is adaptable to:
- Mission Profiles
- Vehicle Shapes
for integration into vehicle optimization.
Sample Concept of Spaceflight Operations

* Adapted graphic from NASA Johnson Space Center

Launch to:
- Earth Orbit
- Planetary Body

Exploration:
Vehicle completes mission over several day or weeks

De-Orbit

Separation

Atmospheric Entry

Descent

EDL

Landing
Planetary Entry Spacecraft Design (cont’d)

Mid - Low L/D Spacecraft

σ – variable bank angle
α – fixed angle of attack

High L/D Spacecraft

σ – variable bank angle
α – variable angle of attack

* Orion Capsule
 Prakash et al., NASA JPL

* MSL Capsule
 AIAA 2006-659

* Ellipsled
 Garcia et al., AIAA Conf. Paper

* Space Shuttle
 AIAA 2006-8013

* HL-20
 AIAA 2006-239

* NASP
 AIAA 2006-659

www.nasa.gov
Multi-Disciplinary Design, Analysis, and Optimization (MDAO)

Vehicle Optimization
- Computer Generated Spacecraft Models
- Available Descent Technologies
- Un/manned
- Planetary Models
- Mission Profile

Entry Trajectory Modeling
- **Coupled**

Thermal Protection System (TPS) Sizing
- Decoupled Iterations

Structures
- Decoupled Iterations

Minimize:
- Heat Rate (Trajectory/Shape)
- Ballistic Coefficient (Shape)

Aerodynamic (C_D, C_L) & Aerothermodynamic (\dot{q}) Databases

Flight Feasible Trajectory Database
- *(replace Traj. Opt.)*

Guidance, Navigation, & Control

Mission Profile
Trajectory Optimization vs. Guidance

<table>
<thead>
<tr>
<th></th>
<th>Trajectory Optimization</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td>Multiple included</td>
<td>Minimal included</td>
</tr>
<tr>
<td>Objective</td>
<td>Any variable of interest</td>
<td>Target specific</td>
</tr>
<tr>
<td>Solution</td>
<td>Purely numerical</td>
<td>Combination of numerical and analytical</td>
</tr>
<tr>
<td>Time to Solution</td>
<td>Minutes to hours</td>
<td>Seconds</td>
</tr>
<tr>
<td>Guaranteed Solution</td>
<td>No</td>
<td>Must enforce that a solution is found</td>
</tr>
<tr>
<td>Parameter Changes</td>
<td>Handles large parameter changes</td>
<td>Handles parameter changes that are relatively small</td>
</tr>
<tr>
<td>Result</td>
<td>Nominal Trajectory – not always realistic control</td>
<td>Flight Feasible Trajectory with realistic controls</td>
</tr>
</tbody>
</table>
Guidance Development Trade-Offs

Adaptability
Numerical formulation for adaptability to different vehicles and missions without significant changes

Rapid Trajectory Generation
Analytical driving function keep time to a solution low

Minimize Range Error & Heatload
Optimal Control theory to introduce heat load as an additional objective
Guidance Development Criteria

Guidance Specific (In-Flight)

- Determine flight feasible control vectors (control rate/acceleration constraints)
- Be highly robust to dispersions and perturbations
- Include a minimal number of mission dependent guidance parameters

Vehicle Design Specific

- Be applicable to multiple mission scenarios and vehicle dispersions
- Manage the entry heat load in addition to achieving a precision landing
Types of Guidance Techniques

Reference Tracking Only – follow a pre-defined track

In-flight Reference Generation & Tracking – Generate a real-time reference trajectory and follow that track

In-flight Controls Search – One dimensional search, usually solving equations of motion numerically

In-flight Optimal Control – Requires numerical methods to meet some cost function
Types of Guidance Formulations

<table>
<thead>
<tr>
<th></th>
<th>Analytical Guidance</th>
<th>Numerical Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>• Simple to Implement</td>
<td>• Accurate trajectory solutions</td>
</tr>
<tr>
<td></td>
<td>• Computation time minimal</td>
<td>• No simplifying assumptions (possibility of multiple entry cases to be simulated with few modifications)</td>
</tr>
<tr>
<td></td>
<td>• Solution Guaranteed</td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>• Simplifications reduce accuracy of the trajectory solution</td>
<td>• Convergence is not assured</td>
</tr>
<tr>
<td></td>
<td>• Formulation tied to a specific entry case</td>
<td>• Convergence is not timely</td>
</tr>
</tbody>
</table>
Novel Approach to Guidance for MDAO

Real-Time Trajectory Generation and Tracking

Adaptability
- Numerically solve entry equations of motion
- Use generalized analytical functions to represent the reference

Rapid Trajectory Generation
- Use analytical driving function to keep time to a solution low
- Use Single Optimal Control Point with Blending

Minimize Range Error & Heatload
- Optimal Control theory used to introduce heat load objective

- Adaptation of Shuttle Entry Guidance Techniques
- Adaptation of Energy State Approximation Techniques
Skip Entry Critical Points

Test Case: Orion Capsule, L/D 0.4

Control: Bank Angle only

Begin with 1st Entry portion of the trajectory and gradually includes remaining phases.
Trajectory Simulation Validation

Truth Model

Simulation of Rocket Trajectories (SORT)

Developed by NASA Johnson Space Center for Space Shuttle Launch/Entry Simulations

![Graph showing the comparison of simulation outputs with different methods and time measurements.](image)
Flight Dynamics

- \(\phi \) - latitude
- \(\gamma \) - flight path angle
- \(\psi \) - azimuth
- \(\sigma \) - bank angle
- \(b \) - body fixed coordinate
- \(\theta \) - longitude

ECF – Earth Centered Fixed
Trajectory Modeling

\[
\begin{align*}
\dot{r} &= V \sin \gamma \\
\dot{\theta} &= \frac{V \cos \gamma \sin \psi}{r \cos \phi} \\
\dot{\phi} &= \frac{V \cos \gamma \cos \psi}{r}
\end{align*}
\]

\[
\begin{align*}
\dot{V} &= -D - g \sin \gamma + \Omega^2 r \cos \phi (\sin \gamma \cos \phi - \cos \gamma \sin \phi \cos \psi) \\
\dot{\gamma} &= \frac{1}{V} \left[L \cos \sigma + \cos \gamma \left(\frac{V^2}{r} - g \right) + 2 \Omega V \cos \phi \sin \psi + \Omega^2 r \cos \phi (\cos \gamma \cos \phi + \sin \gamma \cos \psi \sin \phi) \right] \\
\dot{\psi} &= \frac{1}{V} \left[L \sin \sigma \cos \gamma + \frac{V^2}{r} \cos \gamma \sin \psi \tan \phi - 2 \Omega V (\tan \gamma \cos \psi \cos \phi - \sin \phi) + \frac{r \Omega^2}{\cos \gamma} \sin \psi \sin \phi \cos \phi \right]
\end{align*}
\]

State Variables
- \(r\) - radial distance
- \(V\) - relative velocity
- \(\theta\) - longitude
- \(\phi\) - latitude
- \(\gamma\) - flight path angle
- \(\psi\) - azimuth

Control Variables
- \(\sigma\) - bank angle
- \(\alpha\) - angle of attack

Vehicle and Planet Variables
- \(L, D\) - Lift, Drag Acceleration
- \(g\) - gravity
- \(\Omega\) - Earth’s Rotation
- \(\rho\) - atmospheric density
General Entry Guidance Block Diagram

Trajectory Solver

Reference Trajectory: Analytical functions adapted from Shuttle Entry Guidance

Bank Schedule Solution: $\tilde{\sigma}_{cmd}$

Range Prediction: numerically solve equations of motion, range calculation

Dispersed State: \tilde{y}_{disp}

- Send $\tilde{\sigma}_{cmd}$ to flight simulation
- $R_{err} \approx 0$
- Yes
- $\tilde{\sigma}_{new}$
- No

Targeting Algorithm

Solver: Single Point Optimal Control

Solution from Energy State Approximation

Purpose: Targeting for precision landing and minimizing heatload
Control Solution: Shuttle Entry Guidance Adaptation

Shuttle Entry Guidance (SEG) Concept: Temperature Phase

- Reference Tracking Algorithm, Closed Form Solution

\[
\frac{d}{dt} \left(D = \frac{\rho V_r^2 C_D A}{2m} \right)
\]

\[
\dot{\rho} = \frac{d}{dt} \left(\rho_o e^{-\frac{h}{h_s}} \right) \Rightarrow \frac{\dot{\rho}}{\rho} = -\frac{\dot{h}}{h_s}
\]

\[
D_{\text{ref}} = C_2 V^2 + C_1 V + C_0
\]

\[
\gamma_{\text{ref}} = \text{constant}
\]
Control Solution: Shuttle Entry Guidance Adaptation

Improvements on Shuttle Entry Guidance “Drag Based Approach”

- Increase # of segments
- Increase order of polynomial
- Change Atmospheric Model representation
- Modify flight path angle representation

Challenges with Drag Based Approach

- Discontinuities between segments
- Increasing # of coefficients for storage with increasing segments and/or order
- Effect of small flight path angle assumption unknown
- Formulations are derived from 2DOF Longitudinal EOMs
Control Module: Shuttle Entry Guidance Adaptation

Sensitivity to atmospheric non-linearity is significant during initial and final segments. **Need an Alternative Analytical Equation!**
Automated Selection of Transition Events

Framework:
- Allows for adaptability
- Automated generation of Reference Trajectory
- Open loop

Study Objective: Define bank profile for trajectory phases

<table>
<thead>
<tr>
<th>Phase</th>
<th>Bank Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Interface to Guidance Start</td>
<td>Constant Bank</td>
</tr>
<tr>
<td>Guidance Start to Guidance End</td>
<td>Trajectory Solver</td>
</tr>
<tr>
<td>Guidance End to Exit</td>
<td>Linear Transition to Meet 2nd Entry Bank</td>
</tr>
<tr>
<td>Exit to 2nd Entry</td>
<td>Attitude Hold</td>
</tr>
</tbody>
</table>
Automated Selection of Transition Events

- Metric to determine best trajectory: lowest range error, lowest heat load from EI to 2nd Entry, and bank transitions
Automated Selection of Transition Events

Study Results:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Bank Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Interface to Guidance Start</td>
<td>Constant Bank = (57.95^\circ)</td>
</tr>
<tr>
<td>Guidance Start to Guidance End</td>
<td>Trajectory Solver ({0.12 \quad 0.11} \text{ G'} \text{' s})</td>
</tr>
<tr>
<td>Guidance End to Exit</td>
<td>Linear Transition to Meet 2(^{nd}) Entry Bank</td>
</tr>
<tr>
<td></td>
<td>Linear Transition Velocity: (23,784.65 \text{ ft/s})</td>
</tr>
<tr>
<td>Exit to 2(^{nd}) Entry</td>
<td>Bank Attitude Hold = (70^\circ)</td>
</tr>
</tbody>
</table>

![Diagram showing flight path and transition events](image)

- **Guidance Start**: Entry Interface to Guidance Start
- **Guidance End**: Exit to 2\(^{nd}\) Entry
- **2\(^{nd}\) Entry Bank**: Transition events marked with red points.
General Entry Guidance Block Diagram

Trajectory Solver

Reference Trajectory: Analytical functions adapted from Shuttle Entry Guidance

Bank Schedule Solution: $\vec{\sigma}_{cmd}$

Range Prediction: numerically solve equations of motion, range calculation

Dispersed State: \vec{y}_{disp}

Send $\vec{\sigma}_{cmd}$ to flight simulation

Yes

$R_{err} \approx 0$

No

Targeting Algorithm

Solver: Single Point Optimal Control Solution from Energy State Approximation

Purpose: Targeting for precision landing and minimizing heatload
Targeting Algorithm Development

When is Targeting Activated?

1. Overshoot – Vehicle is predicted to fly way past target
2. Undershoot – Vehicle is predicted to fly short of the target

How to find a set of controls to Correct Over/Underhoot?

Adapt Energy State Approximation Methods:
Optimal control method that replaces altitude and velocity with specific energy height \(e \)

\[
e = \frac{V_r^2}{2g_o} + h
\]

Advantages: Allows for a compact set of analytical equations
Add heat load to the range error objective function

Disadvantage: Optimal control formulations may not converge to a solution

Solution: Derive a localized optimal control point instead and blend back reference trajectory
Targeting Algorithm Development

Must Relate Euler-Lagrange Equation

\[\bar{\lambda} = \frac{\lambda_\psi}{\lambda_\gamma} = \tan \sigma^* \cos \gamma \]

\[\lambda_\gamma \leq 0 \]

To Reference Trajectory Variables

\[\frac{L}{D_{total}} \cos \sigma = \frac{1}{\rho \Phi_{ref}} \left[V_r \dot{\gamma}_{ref} - \cos \gamma \left(\frac{V_r^2}{r} - g \right) - C_\gamma (y) \right] \]

Using trigonometry and other manipulations, the control equation is found

\[\frac{L}{D_{total}} \sqrt{1+ \left(\frac{\lambda_\gamma}{\cos \gamma} \right)^2} = \frac{\left[V \gamma_{ref} - \cos \gamma \left(\frac{V_r^2}{r} - g \right) - 2\Omega V \cos \phi \sin \psi - \Omega^2 r \cos \phi (\cos \gamma \cos \phi + \sin \gamma \cos \psi \sin \phi) \right]}{D_{approx}} \]
Targeting Algorithm Development

\[\Phi_{\text{ref}} = \frac{C_D A}{2m} \left| V_r^2 \right| \]

Least Squares Curve Fitting:
3 Interpolation Points

\[\Phi_{\text{blnd}} = Bb_2 V^2 + Bb_1 V + Bb_0 \]
Targeting Algorithm Development

Targeting Technique 1 – Design Space Interrogation

\[C_\Phi \] - drag/density ratio coefficient

\[d\lambda \] - change in Lagrange multiplier

\[dV \] - change in relative velocity at next point

Targeting Technique 2 – Design Space Interrogation

\[d\lambda \] - change in Lagrange multiplier

\[dV_1 \] - change in relative velocity halfway to curve fit end point

\[\Delta(dE) \] - second order change in energy
Targeting Algorithm Development

Targeting Technique 1 – Design Space Interrogation

<table>
<thead>
<tr>
<th>Case</th>
<th>Dispersion</th>
<th>Target Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Increase Entry Flight Path Angle</td>
<td>Undershoot</td>
</tr>
<tr>
<td>2</td>
<td>Decrease Entry Flight Path Angle</td>
<td>Overshoot</td>
</tr>
<tr>
<td>3</td>
<td>L/D Dispersion</td>
<td>Overshoot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Incr.</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_Φ</td>
<td>0</td>
<td>1</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>$d\lambda$</td>
<td>0</td>
<td>1</td>
<td>0.01</td>
<td>ND</td>
</tr>
<tr>
<td>dV</td>
<td>100</td>
<td>1000</td>
<td>100</td>
<td>ft/s</td>
</tr>
</tbody>
</table>

Undershoot Trajectory Correction, ESA Quadratic (blue line), $dV = 500$ ft/s
Targeting Algorithm Development

FPA Dispersion - Undershoot
Targeting Algorithm Development

FPA Dispersion - Overshoot
Targeting Algorithm Development

Aerodynamic Dispersion - Overshoot
Shape Optimization Analog

Current Guidance Algorithms – Robust to ~20% aerodynamic dispersions

Must exceed 20% to demonstrate potential for integration into MDAO

ANALOG: Changing angle of attack disperses C_L and C_D
Targeting Algorithm Development

Guidance Algorithm for Comparison – Apollo Derived Final Phase Guidance

Reference Tracking to a stored trajectory database, function of relative velocity

Performance Results – Threshold Miss Distance, 1 nmi
Targeting Algorithm Development

Targeting Technique 1 – Targeting Procedure

1. Guess a value for $d\lambda$
2. Iterate on dV using secant method to converge on a zero range error trajectory
3. If no solution is found, $d\lambda$ is incremented and the iteration is repeated
4. Solution is then flown in flight simulation
Targeting Algorithm Development

Targeting Implementation, 1st and 2nd Phase - Results

\[
\begin{align*}
\alpha &= 152^\circ, \quad L/D = 0.418 \\
\alpha &= 153^\circ, \quad L/D = 0.402 \\
\alpha &= 154^\circ, \quad L/D = 0.386 \\
\alpha &= 155^\circ, \quad L/D = 0.371 \\
\alpha &= 156^\circ, \quad L/D = 0.357 \\
\alpha &= 157^\circ, \quad L/D = 0.343 \\
\alpha &= 158^\circ, \quad L/D = 0.328 \\
\alpha &= 159^\circ, \quad L/D = 0.313 \\
\alpha &= 160^\circ, \quad L/D = 0.299
\end{align*}
\]
Targeting Algorithm Development

Targeting Technique 2

Use Energy Height \(e = \frac{V^2}{2g_o} + h \) to determine Control Point \([V_{new}, \Phi_{new}]\)

Undershoot \(\rightarrow\) energy dissipating \((de/dt)\) too fast

Overshoot \(\rightarrow\) energy dissipating \((de/dt)\) too slow

Since Velocity is an independent variable
and a pseudo control \(de/dV\) is examined
Targeting Algorithm Development

Targeting Technique 2

Recall the equation for the ratio of drag acceleration to density: \(\frac{D}{\rho} = \frac{C_D A V_r^2}{2m} \)

-Extract altitude and velocity from \([dV_1, \Delta(dE)]\) to find \(\Phi_{\text{new}}\)
Targeting Algorithm Development

Targeting Technique 2 – Design Space Interrogation

<table>
<thead>
<tr>
<th></th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Incr.</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d\lambda$</td>
<td>0</td>
<td>$d\lambda_{\text{limit}}$</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>dV_1</td>
<td>0</td>
<td>1524</td>
<td>Predict</td>
<td>m/s</td>
</tr>
<tr>
<td>$\Delta(dE)$</td>
<td>0</td>
<td>$\Delta(dE)_{\text{limit}}$</td>
<td>Predict</td>
<td>m</td>
</tr>
</tbody>
</table>

Limit are trajectory dependent and control system dependent

$$\lambda_{\text{min/max}} = \tan \sigma_{\text{min/max}} \cos \gamma_i$$

$$d\lambda_{\text{limit}} = \mp (\bar{\lambda}_{\text{min/max}} - \bar{\lambda}_{\text{old}})$$

Dispersion Cases:

<table>
<thead>
<tr>
<th>α [deg]</th>
<th>L/D Dispersion</th>
<th>Target Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Phase Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>0.4 (0%)</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>0.42 (+5%)</td>
<td>Undershoot</td>
</tr>
<tr>
<td>162</td>
<td>0.28 (-30%)</td>
<td>Overshoot</td>
</tr>
<tr>
<td>165</td>
<td>0.23 (-43%)</td>
<td>Overshoot</td>
</tr>
<tr>
<td>167</td>
<td>0.2 (-50%)</td>
<td>Undershoot</td>
</tr>
</tbody>
</table>
Targeting Algorithm Development

Design Space Interrogation, Results: Range Error [%]

\(\alpha = 152^\circ, \text{ Undershoot} \)

\(\alpha = 162^\circ, \text{ Overshoot} \)

\(\alpha = 165^\circ, \text{ Overshoot} \)

\(\alpha = 167^\circ, \text{ Undershoot} \)
Targeting Algorithm Development

Design Space Interrogation, Results: Heatload [J/cm^2]

\(\alpha = 152^\circ, \text{ Undershoot} \)

\(\alpha = 162^\circ, \text{ Overshoot} \)

\(\alpha = 165^\circ, \text{ Overshoot} \)

\(\alpha = 167^\circ, \text{ Undershoot} \)
Targeting Algorithm Development

Design Space Interrogation, Results: Bank Rate $[\text{deg/s}]$

$\alpha = 152^\circ$, Undershoot

$\alpha = 162^\circ$, Overshoot

$\alpha = 165^\circ$, Overshoot

$\alpha = 167^\circ$, Undershoot
Targeting Algorithm Development Results

Dispersions –
Apollo Derived Guidance = -20% dispersion
MDAO Algorithm = -43% dispersion

Managing heatload may be a challenge for dispersions greater than 20%
Conclusions

Guidance Specific (In-Flight)
- Determine flight feasible control vectors (control rate/acceleration constraints)
 - Be highly robust to dispersions and perturbations
- Include a minimal number of mission dependent guidance parameters

Vehicle Design Specific
- Be applicable to multiple mission scenarios
 - vehicle dispersions
- Manage the entry heat load in addition to achieving a precision landing
Acknowledgements

University of California, Davis

Dr. Nesrin Sarigul-Klijn
Dissertation Chair

Dr. Dean Karnopp
Dissertation Committee Member

UC Davis Mechanical and Aerospace Engineering Faculty

UC Davis Mechanical and Aerospace Engineering Staff

NASA Ames Research Center

Dr. Dave Kinney
Dissertation Committee Member

Mary Livingston
Supervisor

Colleagues in Systems Analysis Office

Thank You !!!
Questions?
Additional Slides
(optional)
Overview

<table>
<thead>
<tr>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background & Motivation</td>
<td>Elements of Spacecraft Design</td>
</tr>
<tr>
<td></td>
<td>Introduction to Planetary Entry Guidance</td>
</tr>
<tr>
<td></td>
<td>Dissertation Research Plan and Status</td>
</tr>
<tr>
<td>MAPGUID Development</td>
<td>MAPGUID Proposed Approach</td>
</tr>
<tr>
<td></td>
<td>Key Results #1</td>
</tr>
<tr>
<td></td>
<td>Key Results #2</td>
</tr>
<tr>
<td></td>
<td>Key Results #3</td>
</tr>
<tr>
<td></td>
<td>Key Results #4</td>
</tr>
<tr>
<td>Aerothermal Management</td>
<td>Proposed Approach</td>
</tr>
<tr>
<td>During Guidance</td>
<td>Key Results #1</td>
</tr>
<tr>
<td></td>
<td>Key Results #2</td>
</tr>
<tr>
<td>Guidance/COBRA Integration</td>
<td>Proposed Approach</td>
</tr>
<tr>
<td></td>
<td>Key Results #1</td>
</tr>
<tr>
<td></td>
<td>Key Results #2</td>
</tr>
<tr>
<td></td>
<td>Key Results #3</td>
</tr>
<tr>
<td>Closing Remarks</td>
<td>Dissertation Findings and Status</td>
</tr>
</tbody>
</table>
Big Picture:
Spacecraft Design Process
Vehicle Optimization and TPS Sizing

Example Objective Function: \(\dot{q}_{\text{conv}} = 1.83 \times 10^{-4} \sqrt{\rho R_n(1 - h_W/H_s)} V^3 \)

Results

What is Flight Feasible?

- Reaches Target @ Landing Speeds
- Control does not exceed system limits

- Used for all geometries within optimization to find heat rate

- Some studies use new trajectories, but there is no accounting for bank constraints or target accuracy

- None of these studies incorporated flight feasible trajectories
Proposed Approach to MDAO for Spacecraft Design

- Vehicle Optimization
- Planetary Entry Guidance
- Thermal Protection System (TPS) Sizing
- Structures

- Aerodynamic (C_d, C_L) & Aerothermodynamic (\dot{q}) Databases
- Flight Feasible Trajectory Database
- Guidance, Navigation, & Control

Key Components:
- Computer Generated Spacecraft Models
- Available Descent Technologies
- Un/manned Planetary Models
- Mission Profile

Coupled and Decoupled Iterations
Trajectory Modeling for Design vs. In-Flight Trajectory Modeling
Planetary Entry Guidance Literature Review

• **High L/D, Earth**: Space Shuttle, X-33, X40A
 • Most Robust: In Flight Trajectory Shaping with Reference Tracking
 • Least Robust: Reference Tracking Only
• **Low L/D, Earth**: Apollo, Orion
 • Most Robust: In-Flight Controls Search
 • Least Robust: Reference Tracking Only
• **Other Planetary Entry Vehicles**: MSR, MSL, Biconic
 • Flight Tested algorithms preferred
Planetary Entry Guidance Literature Review (cont’d)

Key Results

Modern guidance algorithms: optimal control is potential framework, but
Robust guidance algorithms: combination of numerical and analytical approaches
Least robust algorithms: purely analytical solutions
Adaptability of guidance algorithms: very limited among all algorithms
Heat load management: not included
Convergence still an issue
Trajectory Optimization Literature Review

Trajectory Optimization

Traj - Nonlinear constrained optimization

Mission - Sequential Quadratic Programming

Energy State Method – Reduced Order Modeling, one dimensional parameter search

Pseudospectral Methods – Combination indirect and direct method, mapping and discretization of domain
Trajectory Optimization Literature Review (cont’d)

Key Results

- Convergence time increases with dimensionality.
- Fidelity of modeling may be compromised.
Introduction to Planetary Entry Guidance
Guidance Development Process

Trajectory Design
- Trajectory Optimization
 - classical optimization
 - genetic optimization
- Bank Profile Scan
 - Determine constraint boundaries to identify flight corridors

Reference Trajectory Found
- Constant Bank
- Modulated Bank
 - linear ramp, user-defined scans at each time step

Guidance Development
- Identify Target:
 - Orbit
 - Landing Site
 - Descent Device
 - Activation State
 - Multiple

Trajectory Modeling in Real-Time to Predict Target Acquisition:
- Profiles Stored in Tables
- Analytical Equations
- Numerical Integration of EOMs
- Hybrid Approach

Targeting Algorithm:
- Parameterization
- One-Dimensional Bank Search
- Optimal Control Formulation
- Analytical Equation Blending
- Search Family of Trajectories
- Hybrid Approach

Apply Dispersions

Guided Trajectories Found

*Guidance must be robust to many dispersions: (Atmospheric properties, Aerodynamics properties, Navigational Inputs, Entry Interface Conditions, Mass, Control System performance, and many others)
Baseline Vehicle & Mission
Case Study Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>Orion Capsule, L/D = 0.4</td>
</tr>
<tr>
<td>Trajectory</td>
<td>Skip Entry for Lunar Return</td>
</tr>
<tr>
<td>Control</td>
<td>Bank Angle only</td>
</tr>
<tr>
<td>Atmospheric Model</td>
<td>1976 Standard Atmosphere</td>
</tr>
<tr>
<td>Gravity Model</td>
<td>Central Force + Zonal Harmonics</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>C_L, C_D corresponding to Mach #</td>
</tr>
<tr>
<td></td>
<td>CBAERO Databases, function of Mach #, Dynamic Pressure, and Angle of Attack</td>
</tr>
<tr>
<td>Trajectory Simulation</td>
<td>MATLAB Simulation validated against SORT Trajectories</td>
</tr>
</tbody>
</table>
Trajectory Simulations Developed

Open Loop Numerical Predictor- Corrector (NPC) Simulation
Used to test guidance formulations

3DOF Rotating Spherical Planet

\[
\begin{align*}
\dot{r} &= V \sin \gamma \\
\dot{\theta} &= \frac{V \cos \gamma \sin \psi}{r \cos \phi} \\
\dot{\phi} &= \frac{V \cos \gamma \cos \psi}{r}
\end{align*}
\]

\[
\dot{V} = -D - g \sin \gamma + \Omega^2 r \cos \phi (\sin \gamma \cos \phi - \cos \gamma \sin \phi \cos \psi)
\]

\[
\dot{\psi} = \frac{1}{V} \left[L \cos \sigma + \cos \gamma \left(\frac{V^2}{r} - g \right) + 2\Omega V \cos \phi \sin \psi + \Omega^2 r \cos \phi (\cos \gamma \cos \phi + \sin \gamma \cos \psi \sin \phi) \right]
\]

\[
\dot{\psi} = \frac{1}{V} \left[\frac{L \sin \sigma}{\cos \gamma} + \frac{V^2}{r} \cos \gamma \sin \psi \tan \phi - 2\Omega V (\tan \gamma \cos \psi \cos \phi - \sin \phi) + \frac{r \Omega^2}{\cos \gamma} \sin \psi \sin \phi \cos \phi \right]
\]

Flight Simulation - Closed Loop Guidance Testing
Using equations derived from Newton’s 2nd Law, dynamics of relative motion, and Earth Centered Inertial (ECI) coordinate system
Trajectory Solver Development
Control Solution: Shuttle Entry Guidance Adaptation

Drag Curve Fit Accuracy

<table>
<thead>
<tr>
<th>Segments</th>
<th>Order</th>
<th># of stored coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (3)</td>
<td>Irrational</td>
<td>168</td>
</tr>
<tr>
<td>7 (5)</td>
<td>Irrational</td>
<td>105</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>21</td>
</tr>
</tbody>
</table>

\[D_{\text{ref}} = C_2 V^{x_2} + C_1 V^{x_1} + C_0 V^{x_0} \]
Control Solution: Shuttle Entry Guidance Adaptation

Would Cubic Spline Interpolation work?

\[h_s = \left(\frac{1}{P} \frac{dP}{dh} - \frac{1}{T} \frac{dT}{dh} \right)^{-1} \]
Targeting Algorithm Development
Targeting Algorithm Development

Targeting Technique 1 – Trajectory Behavior to Full Set of Aerodynamic Dispersion

Can Technique 1 find a trajectory that points toward correcting the range error?
General Conclusions
Targeting Algorithm Development

Pontryagin’s Principle in Optimal Control

Find Optimal Control \tilde{u}^*, $\sigma^*(t)$ and $V^*(t)$

for dynamic system $\dot{x} = f(x, \tilde{u}, t)$

The optimal control $\dot{e} = \frac{V}{g_0} + \frac{h_{geo}^2}{h^2} \dot{h}$

The original Euler-Lagrange Equation:

$$\left. \frac{\partial H}{\partial u} \right|_{u=u^*} = 0$$

$$\dot{\phi} = \frac{V \cos \gamma}{r}, \quad \lambda = \frac{\lambda_{\psi}}{\lambda_{\gamma}} = \tan \sigma^* \cos \gamma$$

$$\dot{\gamma} = \frac{1}{V} \left[L \cos \sigma + \cos \gamma \left(\frac{1}{r} - g \right) + 2\nu \nu \cos \phi \sin \psi + \Omega^2 r \cos \phi (\cos \gamma \cos \phi + \sin \gamma \cos \psi \sin \phi) \right]$$

$$\dot{\psi} = \frac{1}{V} \left[\frac{L \sin \sigma}{\cos \gamma} + \frac{V^2}{r} \cos \gamma \sin \psi \tan \phi - 2\Omega V (\tan \gamma \cos \psi \cos \phi - \sin \phi) + \frac{r \Omega^2}{\cos \gamma} \sin \psi \sin \phi \cos \phi \right]$$
Targeting Algorithm Development

Targeting Technique 1

\[\tilde{\lambda}_{new} = \tilde{\lambda}_{old} \pm d\lambda \]

Determines new bank angle at current time step

\[\dot{\gamma} = \frac{1}{V} \left[L \cos \sigma + \cos \gamma \left(\frac{V^2}{r} - g \right) + 2\Omega V \cos \phi \sin \psi
+ \Omega^2 r \cos \phi (\cos \gamma \cos \phi + \sin \gamma \cos \psi \sin \phi) \right] \]

Calibrated for Each Dispersed Case

Determines Blended Trajectory that nulls range error

\[\Phi_{new, bound} = \frac{\sqrt{1+\left(\frac{\dot{x}}{\cos \gamma} \right)^2 [V\dot{\gamma}_{ref} - \cos \gamma \left(\frac{V^2}{r} - g \right) - 2\Omega V \cos \phi \sin \psi - \Omega^2 r \cos \phi (\cos \gamma \cos \phi + \sin \gamma \cos \psi \sin \phi)]}}{\rho_{D_{total}}} \]

\[\Phi_{new} = \Phi_{old} \pm C_\Phi \Phi_{old} \Phi_{new, bound} \]

\[V_{initial} = V_{current} + 0.01 dV \]

\[V_{ref,f} = V_{current} - (1 - 0.01) dV \]
Targeting Algorithm Development
Targeting Technique 1 – Design Space Interrogation

• The blending technique exhibits potential to find new bank profiles that null the range error

• The design space is constrained by control system limitations

• There is a zero range error solution for each change in $d\lambda$
Targeting Algorithm Development

Targeting Technique 1 – Trajectory Behavior to Full Set of Aerodynamic Dispersion

Why did this not follow the Expected Behavior?

The reference bank profile over-corrects with respect to the dispersion of L/D
Targeting Algorithm Development

Targeting Technique 2

Now that the blended function is fully defined \(\Phi_{blnd} = Bb_2V^2 + Bb_1V + Bb_0 \)

The following equation can be used to solve for:

\[
\dot{\gamma}_{i,new} = \frac{1}{V_i} \left[\frac{L}{D}_{total,i} \sqrt{1 + \left(\frac{1}{\lambda \cos \gamma_i} \right)^2 \rho_i \Phi_{blnd,i} + 2\Omega V_i \cos \phi_i \sin \psi_i + \cos \gamma_i \left(\frac{V_i^2}{r_i} - g_i \right) + \Omega^2 r_i \cos \phi_i \left(\cos \gamma_i \cos \phi_i + \sin \gamma_i \cos \psi_i \sin \phi_i \right) } \right]
\]

The FPA rate table is shifted accordingly
Targeting Algorithm Development

Design Space Interrogation, Results: Bank Acceleration [deg/s^2]

\[\alpha = 152^\circ, \text{ Undershoot} \]

\[\alpha = 162^\circ, \text{ Overshoot} \]

\[\alpha = 165^\circ, \text{ Overshoot} \]

\[\alpha = 167^\circ, \text{ Undershoot} \]
Targeting Algorithm Development

Targeting Technique 1 – Targeting Implementation, 1st and 2nd Phase

1. Guess a value for $d\lambda$

2. Iterate on dV using secant method to converge on a zero range error trajectory

3. If no solution is found $d\lambda$ is incremented and the iteration is repeated

4. Solution is then flown in flight simulation

Performance Metric –

Compare range of aerodynamic dispersions this algorithm can handle to the range of aerodynamic dispersions a heritage algorithm can handle.
Trajectory Solver Research Questions

Can a simplification in the equations of motion be made without loss of accuracy?

Can a simplification on flight path angle be made without loss of accuracy?
Simplified Equations of Motion Study

3DOF Rotating, Spherical Earth (3RSP)

\[
\dot{\psi} = \frac{1}{V} \left[\frac{L \sin \sigma}{\cos \gamma} + \frac{V^2}{r} \cos \gamma \sin \psi \tan \phi - 2\Omega V (\tan \gamma \cos \psi \cos \phi - \sin \phi) + \frac{r\Omega^2}{\cos \gamma} \sin \psi \sin \phi \cos \phi \right]
\]

3DOF Non-Rotating Spherical Planet

\[
\dot{\psi} = \frac{1}{V} \left[\frac{L \sin \sigma}{\cos \gamma} + \frac{V^2}{r} \cos \gamma \sin \psi \tan \phi \right]
\]

3DOF Non-Rotating Flat Planet

\[
\dot{\psi} = \frac{1}{V} \left[\frac{L \sin \sigma}{\cos \gamma} \right]
\]

2DOF Longitudinal Equations (2LON)

\[
\begin{align*}
\dot{h} &= V \sin \gamma \\
\dot{s} &= V \cos \gamma \\
\dot{V} &= -D - g \sin \gamma \\
\dot{\gamma} &= \frac{1}{V} \left[L \cos \sigma + \cos \gamma \left(\frac{V^2}{r} - g \right) \right]
\end{align*}
\]
Simplified Equations of Motion Study (cont’d)
Simplified Equations of Motion Study (cont’d)

![Graph showing altitude vs. total range with specific ranges and values for SORT Nominal, 3RSP, and 2LON configurations.]
Trajectory Solver Research Questions

Can a simplification in the EOMs be made without loss of accuracy?
Not for a skip trajectory

Can a simplification on flight path angle be made without loss of accuracy?
Control Solution: Shuttle Entry Guidance Adaptation

\[\dot{h}_{ref} = -h_s \left[\frac{\dot{D}_{ref}}{D_{ref}} - \frac{2\dot{V}}{V} - \frac{\dot{C}_D}{C_D} \right] \]
Control Solution: Shuttle Entry Guidance Adaptation
Control Solution: Shuttle Entry Guidance Adaptation

\[P = \rho RT \]

\[\frac{\dot{\rho}}{\rho} = \frac{\dot{P}}{P} - \frac{\dot{T}}{T} \]

\[h_s = \left(\frac{1}{P \frac{dP}{dh}} - \frac{1}{T \frac{dT}{dh}} \right)^{-1} \]

Atmospheric Temperature Slope Changes

Approximation
Reference
Control Solution: Shuttle Entry Guidance Adaptation

Need to Resolve 1st Segment to Capture Atmospheric Non-Linearity

IDEA: Curve fit drag with Mach Number

\[D_{\text{ref}} = \sum_{i=1}^{n} C_i M^i \]
Control Solution: Shuttle Entry Guidance Adaptation

Check Altitude Acceleration Approximation
Trajectory Solver Research Questions

Can a simplification in the EOMs be made without loss of accuracy?
Not for a skip trajectory

Can a simplification on flight path angle be made without loss of accuracy?
Range Prediction Sensitivity to Flight Path Angle Assumption

• Apollo and Shuttle Entry guidance formulations approximate flight path angle (FPA) to be small:

\[\gamma \ll 1 \text{ rad} \quad \text{and/or} \quad \dot{\gamma} \ll 1 \text{ rad/s} \]

Why does this matter?

• If predicted range does not equal the range to landing site then targeting is erroneously active

• Are model reductions in the Trajectory Module and Control Module valid based on the nominal case?
Range Prediction Sensitivity to Flight Path Angle
Assumption

Case Studies:
A. Apply $\gamma < < 1 \text{ rad}$ to Trajectory Module only

B. Apply $\gamma < < 1 \text{ rad}$ to Controls Module only

C. Apply $\dot{\gamma} < < 1 \text{ rad} / s$ to bank equation only

\[
\frac{L}{D_{v,\text{ref}}} = \frac{1}{\rho \Phi_{\text{ref}}} \left[V_r \dot{\gamma}_{\text{ref}} - \cos \gamma \left(\frac{V_r^2}{r} - g \right) - C_\gamma(y) \right]
\]
Range Prediction Sensitivity to Flight Path Angle Assumption

Nominal 661.73 [nmi]

<table>
<thead>
<tr>
<th>Case</th>
<th>Total Range [nmi]</th>
<th>% Range Error</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>662.39</td>
<td>0.099%</td>
<td>Drag Limit</td>
</tr>
<tr>
<td>B</td>
<td>649.74</td>
<td>1.813%</td>
<td>Drag Limit</td>
</tr>
<tr>
<td>C</td>
<td>632.13</td>
<td>4.474%</td>
<td>Velocity Limit</td>
</tr>
</tbody>
</table>

Conclusion *FPA* approximation can be applied to the **trajectory module**, but not to the **control module**