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Abstract—Software analysis tools and techniques often lever-
age structural code coverage information to reason about the
dynamic behavior of software. Existing techniques instrument
the code with the required structural obligations and then
monitor the execution of the compiled code to report cover-
age. Instrumentation based approaches often incur considerable
runtime overhead for complex structural coverage metrics such
as Modified Condition/Decision (MC/DC). Code instrumentation,
in general, has to be approached with great care to ensure it
does not modify the behavior of the original code. Furthermore,
instrumented code cannot be used in conjunction with other
analyses that reason about the structure and semantics of the
code under test.

In this work, we introduce a non-intrusive preprocessing
approach for computing structural coverage information. It uses
a static partial evaluation of the decisions in the source code
and a source-to-bytecode mapping to generate the information
necessary to efficiently track structural coverage metrics during
execution. Our technique is flexible; the results of the prepro-
cessing can be used by a variety of coverage-driven software
analysis tasks, including automated analyses that are not possible
for instrumented code. Experimental results in the context of
symbolic execution show the efficiency and flexibility of our non-
intrusive approach for computing code coverage information.

I. INTRODUCTION

Software analyses often leverage code coverage information
to reason about the dynamic behavior of software. Coverage
information describes structural elements in the source code,
such as paths, functions, statements and branches that have
been executed (covered). Coverage information is used to
assess test adequacy [24], perform test case selection and pri-
oritization [8], [25], and for test suite minimization [11], [26].
It has also been used for other software maintenance tasks such
as predicting fault likelihood [9] and fault localization [14].

Although structural code metrics are defined at the source
code level, they are measured during execution of the compiled
code, e.g., Java bytecode. Existing state-of-the-art techniques
compute code coverage by monitoring the execution of the
instrumented bytecode to determine which coverage obliga-
tions are satisfied. Instrumentation involves insertion of “trace”
statements at strategic locations in the bytecode depending
on the coverage metric. Then, as bytecode instructions are
executed, the instrumentation facilitates tracking the parts of
the corresponding source code that are executed (covered).

Instrumentation based techniques can incur considerable
overhead by adding a large number of conditional statements
to the original code, which in turn, can significantly increase
the program’s execution space. The problem becomes even
worse as the complexity of the coverage criterion increases,
both in terms of the number of coverage obligations and the
number of operators in each obligation. For metrics such as
Modified Condition/Decision Coverage (MC/DC) – a metric
widely used in the avionics software domain – the overhead
of the instrumentation can render the cost of computing the
metric prohibitive for programs of even modest size.

Another drawback of code instrumentation is that it may
interfere with other analyses, e.g., a change impact analysis,
because the instrumentation adds behaviors to the execution
space of the program. Without a clear delineation between the
original program behaviors and those arising from instrumen-
tation, it is not possible to combine complementary analyses.
Finally, there are often considerable risks associated with code
instrumentation and great care must be taken to ensure the
instrumentation does not modify the behavior of the original
code, e.g., due to extra evaluations of Boolean expressions
with side effects.

In this work, we introduce a novel preprocessing approach
based on static partial evaluation of the decisions in the
source code and a source-to-bytecode mapping procedure, to
generate the information necessary to efficiently track various
structural coverage metrics during execution without the need
for code instrumentation. Tracking of the coverage metrics
is accomplished by using any tool capable of monitoring the
instruction stream, such as an instrumented JVM or a software
verification tool such as Java PathFinder [36]. In this work, we
use the Symbolic PathFinder tool [22] to track the coverage
metrics, compute the set of covered obligations, and generate
test cases that cover the obligations.

Our approach offers substantial benefits for computing cov-
erage metrics such as MC/DC, condition decision, multiple
condition, weak mutation, and strong mutation by avoiding
the drawbacks of code instrumentation described above. There
are benefits of using our approach for metrics such as branch
or statement that do not require the same degree of instru-
mentation as MC/DC, however, the relative improvement is
not as dramatic. Our approach is efficient in that it does



not increase the amount of code that must be monitored in
order to compute the coverage metrics. It is also flexible,
enabling complementary automated program analyses which
do not have a mechanism to distinguish between the original
code and the instrumentation to leverage coverage information
to compute novel coverage metrics, e.g., structural coverage
metrics over code impacted by a set of changes. In this work,
we describe how the preprocessed coverage information can
be combined with change impact information computed by a
software analysis framework, Directed Incremental Symbolic
Execution (DiSE) [23], [28] to analyze evolving software.

To demonstrate the efficiency and flexibility of our ap-
proach, we perform an empirical evaluation focused on two
analyses, standard symbolic execution with instrumentation-
based coverage measurement [31] and DiSE [23], [28], as
applied to the problem of generating test suites that satisfy
MC/DC obligations. We also compute the overhead incurred
when using our approach with standard symbolic execution
relative to symbolic execution with no measurement. We
selected the MC/DC coverage criterion because we and other
researchers have found the measurement of MC/DC to be a
serious bottleneck when applying these analyses.

The results of our study indicate that the application of
our preprocessing approach results in significant speedups
in test input generation speed, up to 4x, relative to an
instrumentation based approach. Generally low overhead of
roughly 8% relative to standard symbolic execution when
applied to sufficiently large systems was also observed, and
the applicability of the approach to DiSE was confirmed.
This paper makes the following contributions:
• We present a novel idea for leveraging preprocessed in-

formation to track coverage obligations during execution
of the code under analysis to avoid the issues related to
code instrumentation.

• We present algorithms to preprocess the coverage condi-
tions and implement the preprocessing algorithms as an
Eclipse plugin to automatically collect the information
relevant to various structural coverage metrics.

• We present the algorithms for leveraging the preprocessed
coverage information for two MC/DC coverage based
applications built on Symbolic PathFinder [22]: (1) sym-
bolic execution for test case generation, and (2) DiSE for
regression analysis.

• We empirically evaluate our approach to show that the
preprocessed coverage information enables (1) efficient
coverage based analyses, and (2) novel analyses that were
not be possible with instrumented code.

II. BACKGROUND

In software testing, the need to determine the adequacy
of test suites has motivated the development of several test
coverage criteria [40]. One such class of criteria are structural
coverage criteria, which measure test suite adequacy in terms
of coverage over the structural elements of the system under
test. In the domain of critical systems — particularly in
avionics — demonstrating structural coverage is required for

if (TestGen.needsTest("MCDC=55_120")) {
TestGen.printCommentIf(a && (b || c),
"MCDC=55_120");

Verify.ignoreIf(true);
}
if (TestGen.needsTest("MCDC=56_120")) {
TestGen.printCommentIf(b && a,
"MCDC=56_120");

Verify.ignoreIf(true);
}
if (TestGen.needsTest("MCDC=57_120")) {
TestGen.printCommentIf(c && !(b) && a,
"MCDC=57_120");

Verify.ignoreIf(true);
}
if (TestGen.needsTest("MCDC=58_120")) {
TestGen.printCommentIf(!a,
"MCDC=58_120");

Verify.ignoreIf(true);
}
if (TestGen.needsTest("MCDC=59_120")) {
TestGen.printCommentIf(!b && !(c) && a,
"MCDC=59_120");

Verify.ignoreIf(true);
}
if (TestGen.needsTest("MCDC=60_120")) {
TestGen.printCommentIf(!c && !(b) && a,
"MCDC=60_120");

Verify.ignoreIf(true);
}
if (a && (b || c)) {
...

}

Fig. 1: Instrumentation required for: a and (b or c)

certification [27]. In recent years, there has been rapid progress
in the creation of tools for automatic directed test generation
for structural coverage criteria [20], [30], [31]; as well as tools
promising to improve coverage and reduce the cost associated
with test creation.

A. Motivating Example

The standard mechanism for generating test suites and/or
measuring the adequacy of test suites involves instrumenting
the code and monitoring the instrumentation output during
execution. However, for complex test metrics, the overhead
of measurement can be significant. To instrument for MC/DC,
for example, it is necessary to create two test obligations for
every condition (basic Boolean expression). To illustrate, we
use a small code snippet as a example:

if (a && (b || c)) { .. }

The instrumentation must track whether each test obligation,
i.e., specification of a structural component relevant to the cov-
erage metric, is satisfied. This leads to a substantial amount of
instrumentation code; for example, the instrumentation in [31]
generates the instrumented code in Figure 1 for the single line
of code shown in the snippet above. Our goal in showing
the instrumented code in Figure 1 is not for the reader to
fully understand mechanics of the instrumentation, it is rather
to illustrate how significant the instrumentation can be for a
seemingly simple expression. For programs with significant



amounts of Boolean logic, the size of the instrumented code
is often several times as large as the original code.

During execution of the instrumented program, the executed
annotations record the coverage obligations that have been
satisfied. The annotations, however, lead to additional branch
points that are not in the original program; this slows down
execution in a standard VM and further exacerbates the path
explosion problem when applying analyses such as symbolic
execution. Furthermore, code instrumentation obscures the
original code. In Figure 1, the instrumentation code is the
sequence of if statements preceding the code under analysis,
and would be indistinguishable from the code under analysis
without a priori knowledge of the naming conventions and
other details regarding how the instrumentation tool modifies
the source code.

B. Structural Coverage Metrics

While a wealth of different structural coverage metrics over
source code have been proposed, only a handful are commonly
used as adequacy criteria. For a test suite, the most common
criteria are defined as follows:
Statement Coverage: requires that each statement within the

program is executed at least once.
Branch Coverage: requires that each conditional branch

within the program (e.g. ‘if’ statement) evaluates to both
true and false at least once.

Decision Coverage: Decision coverage requires that each De-
cision evaluates to both true and false. We follow the
RTCA DO178B/C definition [12], in which decision cov-
erage requires that each stand-alone Boolean expression
(decision) that is not an immediate child of another
Boolean expression via a Boolean operator take on values
true and false (e.g.: X := A and B would require that
A and B take on both true/false values).

Modified Decision/Condition Coverage (MC/DC):
MC/DC requires that (1) each point of entry and
exit in the program has been invoked at least once, (2)
each condition (a Boolean expression containing no
Boolean operators) in a decision in the program has
taken on all possible outcomes at least once, and (3)
each condition has been shown to independently affect
the decision’s outcome

Each metric subsumes the metrics listed above it: any test
suite satisfying MC/DC satisfies Decision coverage, a suite
satisfying Decision coverage satisfies Branch coverage, etc.

In this paper we use the masking form of MC/DC [12]
to determine the independence of conditions. In masking
MC/DC, a basic condition is masked if changing its value
cannot affect the outcome of a decision. To better illustrate
the definition of masking MC/DC, consider the expression A
and B. To show the independence of B, we fix the value of A
to T and vary the value of B to see if the result of the condition
also changes with the value of B; note that we need to fix the
value of A otherwise varying B will not affect the outcome
of the expression. Independence of A is shown in a similar

TABLE I: Top row: test suites providing masking MC/DC
coverage for A and B and A or (B and C). Bottom row:
Short circuit MC/DC obligations for and, or.

A B A and B

T T T
T F F
F T F

A B C A and (B or C)

T T F T
T F T T
T F F F
F F T T

A B A and B

T T T
T F F
F ∗ F

A B A or B

T ∗ T
F T T
F F F

manner. The top row left element of Table I shows the test
suite required to satisfy MC/DC for the expression A and B.
When we consider decisions with multiple Boolean operators,
we must ensure that the test results for one operator are not
masked by the behavior of other operators. For example, given
A and (B or C) the tests for B or C will not affect the
outcome of the decision if A is F. The top row right element
of Table I shows a test suite that would satisfy MC/DC for
the expression A and (B or C).

In C/C++, Java, and most other imperative languages,
Boolean expressions are evaluated using short circuit evalu-
ation. In short circuit evaluation, the right-side subexpressions
of and or or expressions are not evaluated if the expression
is known to be F or T respectively, after evaluation of
the left-side subexpression. In such cases, since the right
side subexpression is not evaluated, the right-hand side value
becomes a ‘don’t care’ (denoted ‘*’), as shown in the bottom
row of Table I. Since we are analyzing imperative code, we
assume the short-circuit version of MC/DC in the remainder
of the paper.

III. PREPROCESSING

In this section, we describe our preprocessing approach
based on static partial evaluation of the decisions in the source
code to enable efficient tracking of MC/DC coverage informa-
tion at runtime. The preprocessing information gathered for
MC/DC can also be used to measure coverage for the other
coverage metrics from Section II, as described in Section III-D.

A. Example Demonstrating Independence and Masking

In Java, evaluation occurs in the left-to-right order of the
constituent conditions, so determining the independence of a
condition depends on the location of the condition within the
decision. Conditions on the right side of Boolean operators
may mask out the effect of left-side conditions but not vice-
versa. On the other hand, conditions on the left side of Boolean
operators may cause the evaluation of right side conditions to
be skipped entirely (short-circuited). For example, consider the
complex Boolean decision at the top of Figure 2. The decision
tree shown below the decision contains the corresponding Java
byte code and preprocessing annotations for each condition
(described in Section III-C). If a evaluates to false, then the
evaluation of (b || c) is skipped entirely. If c is evaluated,
then it must be the case that b evaluated to false and that a



evaluated to true. If c evaluates to false, then (b || c) must
evaluate to false, and the effect of a is masked out.

B. Marking Functions

Before we present the preprocessing algorithm, we first
provide intuition about the information needed by marking
functions during runtime to motivate the design of the static
partial evaluation. A marking function is required at runtime
to measure MC/DC coverage. In essence, a marking function
tracks whether each condition within a decision independently
affects the decision when the condition is assigned both true
and false values. A concrete example of a marking function
is shown in Section IV.

To represent the obligations that need to be covered, we use
triples: 〈di, cj , v〉, to record that a condition cj when assigned
the value v independently affects the decision di. There are two
possible values of v: true and false. We assign each decision
a unique index: di, and each condition within a decision an
index relative to the decision: cj (in Figure 2, the Decision
and Condition markings). We call the set of triples assigned
by a test suite the independence set.

A challenge is that when a condition is evaluated at runtime,
we do not necessarily know that it has an independent effect
on the decision, because its effect may be masked out by a
condition evaluated subsequently within the same decision.
Similarly, the evaluation of the current condition may mask
out the effect of earlier conditions within the same decision.
During evaluation of a decision at runtime, we need to main-
tain a temporary set (temp) of triples to record conditions that
are relevant but not yet known to have an independent effect.
The marking function performs three operations whenever a
condition is evaluated:

1) it adds the 〈di, cj , v〉 pair associated with the condition
and outcome to temp,

2) if the outcome of the condition leads to masking, it
removes elements associated with previous conditions
from temp, and

3) if the outcome of the condition causes the outcome
of the decision to be known, it unions temp into the
independence set.

In order to create a marking function, we need to know
for each condition (1) the index of the condition within the
decision to add to the temporary set, (2) the indices of all
conditions that the condition masks when it evaluates to true
or false to remove them from temp, and (3) whether the
condition terminates the decision, to know when to add the
contents of temp to the independence set. In Figure 2, these
are stored in the (1) Condition and Decision markings,
(2) the masks markings, and (3) the terminates markings,
respectively. We next present pseudocode for computing the
masking and termination information necessary for marking
functions.

0: iload_1       
1: ifeq 14        

&&

||a

c

b
4: iload_2       
5: ifne 12

 8: iload_3       
 9: ifeq 14

if (a && (b || c)) {(x)} else {(y)}

(x) (y)

Decision: 12
Condition: 1
masks: T: {} 
       F: {}
terminates: 
   T: false
   F: true

Decision: 12
Condition: 2
masks: T: {}
       F: {}
terminates: 
   T: true
   F: false

Decision: 12
Condition: 3
masks: T: {2}
       F: {1}
terminates: 
  T: true
  F: true

Fig. 2: Code snippet with complex decision and its translation
into bytecode

C. Static Partial Evaluation

The pseudocode shown in Figure 3 computes the masking
and termination information needed by the marking function in
order to measure MC/DC coverage. This pseudocode assumes
the existence of a simple abstract syntax tree (AST) for
decisions containing AndExpr, OrExpr, NotExpr, and Condi-
tionExpr (basic Boolean expression) classes with a handful
of helper methods: (1) hasParent , which returns true/false
depending on whether the expression is the child of another
expression within a decision, (2) getParent , which returns the
parent expression (if it exists), (3) side , which, assuming that
the expression has a parent, returns whether this expression is
the LEFT or RIGHT child of a binary expression, or the UNARY
child of a unary expression, (4) left and right , which return
the left and right children of a binary expression, respectively,
and (5) getIndexes , which returns the set of condition indices
for the tree rooted at the expression.

The preprocessing algorithm in Figure 3 consists of
three functions partialEval , setMask , and terminates . The
setMask method computes which preceding conditions in a
decision are masked out by a given condition. The terminates
method marks if a given condition terminates a decision for a
corresponding truth value. These methods use the partialEval
method to compute the required information. In order to
generate the preprocessed coverage obligations, we run the
setMask and terminates functions on each truth value
(true and false) of all leaf-level conditions in every decision
within the program. The masking and termination information
computed for our simple example is shown in Figure 2.



procedure partialEval(E, v)
1: if E.side() = RIGHT then
2: return v
3: else if (E.getParent() IsA AndExpr) and v = FF then
4: return FF
5: else if (E.getParent() IsA OrExpr) and v = TT then
6: return TT
7: else if (E.getParent() IsA NotExpr) and v = TT then
8: return FF
9: else if (E.getParent() IsA NotExpr) and v = FF then

10: return TT
11: else
12: return UNKNOWN

13:
procedure setMask(E,mask, v)
14: if v = UNKNOWN then
15: return mask
16: else
17: if E.hasParent() then
18: if E.side() = RIGHT and

((E IsA AndExpr and v = FF) or
(E IsA OrExpr and v = TT)) then

19: mask = mask ∪ E.getParent().left().allIndexes()
20: return setMask(E.getParent(),mask, partialEval(E, v))
21: else
22: return mask

23:
procedure terminates(E, v)
24: if v = UNKNOWN then
25: return F
26: else if not E.hasParent() then
27: return T
28: else
29: return terminates(E.getParent(), partialEval(E, v))

Fig. 3: Pseudocode for masking and terminates functions

The partialEval function in Figure 3 is a short-circuit
partial evaluator, which evaluates a Boolean expression given
the value v of one of its subexpressions E. Partial evaluation is
used to determine whether or not the decision is guaranteed to
complete given a valuation of one of its leaf-level expressions,
and also, as we will see, to determine the scope of masking.
The function is three-valued, returning true or false (TT or
FF) if the expression’s value can be definitely determined, or
UNKNOWN if it cannot.

To compute masking, recall that in short circuit MC/DC,
masking occurs when the right side of an and expression
evaluates to false or the right hand side of an or expression
evaluates to true (line 18). In these cases, we want to mask
out the affected left-side expressions (line 19). Note that in a
complex decision, a condition may be on both the left side of
one operator and the right side of another (for example, the
condition b in Figure 2). In this case, even if the condition
is on the left-hand side of its immediate parent, it may
mask out conditions further up the decision tree structure. We
recursively call the setMask function (line 20) until the value
of the current operator is UNKNOWN.

For termination, we check to see whether we can completely
determine the outcome of the decision via partial evaluation

starting from the assignment of a ‘leaf level’ condition. If the
outcome of partial evaluation is UNKNOWN, then the decision
cannot be determined and we return false (line 25 − 26).
Alternately, if we complete evaluation of the decision with
a T or F value, we return true (line 26− 27). Otherwise, we
continue partial evaluation of the decision.

After the masking and termination information is computed,
it is mapped to the bytecode generated by the Java compiler.
As demonstrated in Figure 2, the structure of the original
decision is translated into a block of bytecode with conditional
branch instructions for each condition, ordered sequentially
matching the left-to-right order of the conditions. We create
a mapping between information generated by static partial
evaluation to the conditional branch instructions in the Java
bytecode.

The pseudocode presented in Figure 3 is suitable for a
subset of Java. The preprocessing of full Java requires handling
conditional operator expressions (ternary operators); nested
decisions; and boolean relational operators such as boolean
equality, inequality and XOR. Note that our implemented al-
gorithm handles all these categories. For space considerations,
we only present a subset of the expressions in the paper.

D. Decision, Branch, and Statement Coverage
In this work we focus only on MC/DC coverage; however,

the preprocessing information computed can also be used
to measure decision coverage, and branch. While statement
coverage can be measured with minimal effort. For decision
coverage, rather than maintain a set of conditions, one instead
maintains a set of decisions; the masking information can
be ignored. Instead, we simply examine the value (v) of
conditions that terminate the decision: if true, a 〈di, v〉 value
is added to the set of decisions. To measure branch coverage
requires only a small additional bit of information (which
we have in our implemented preprocessing tool): we need
to know whether the decision is a ‘control’ decision that
determines the value of an IF, WHILE, or FOR statement; if
not, we do not record coverage information for it. Statement
coverage can be measured by measuring branch coverage, then
post-processing the control flow graph to determine which
statements are covered. The marking functions can also be
adapted appropriately for the other structural criteria.

IV. APPLICATIONS

Once the coverage information is computed by the prepro-
cessor, it can be used by any tool capable of monitoring the
instruction stream, such as a JVM that is instrumented, or
by utilizing processor debug instructions to trap the instruc-
tions in which a condition is evaluated. Software verification
frameworks that interpret bytecode, e.g., a model checker or
symbolic execution framework, can also be used to efficiently
compute the set of covered obligations on-the-fly.

A. Test case generation using Symbolic Execution
The algorithm in Figure 4 is an instance of a marking

function which illustrates how the preprocessed coverage



procedure initialize
1: ExploredConds := ∅, buffer := ∅, T := ∅
2: s0 :=getInitState()
3: depthFirstSearch(〈s0, true〉)
4:

procedure depthFirstSearch(〈s, π〉)
5: if error(s) or depth(s) or getSucc(s) = ∅ then
6: T := T ∪ generateTestInput(π); return
7: for each 〈si, πi〉 ∈ getSucc(s) do
8: updateObligations(si)
9: searchTree(〈si, πi〉)

10:
procedure updateObligations(s)
11: if isConditionalStmt(s) then
12: 〈di, cj〉 := getDecisionCondition(s)
13: v :=getConditionValue(s) /∗ v ∈ {T, F} ∗/
14: buffer := buffer ∪ {〈di, cj , v〉}
15: buffer := buffer\ getMaskedConds(〈di, cj , v〉)
16: if 〈cj , v〉 ∈ terminates(di) then
17: ExploredConds := ExploredConds ∪ buffer
18: buffer := ∅

Fig. 4: Tracking MC/DC obligations in symbolic execution

information can be used during symbolic execution to generate
test case inputs that cover MC/DC obligations. In symbolic
execution, symbolic values are used in lieu of concrete values
for program variables. A program state, s, consists of the
unique program location identifier and values for the program
variables, including heap locations. In symbolic execution the
program state also includes a path condition π, that contains
the constraints on the symbolic program variables in the
program. As constraints are added to the path condition during
execution, it is checked for satisfiability. A satisfiable path
condition represents a feasible execution path whereas an
unsatisfiable path condition represents an infeasible path.

In Figure 4, the initialize method initializes the set of
observed complex conditions, ExploredConds , the temporary
buffer buffer , and the set of test inputs T to empty. The
depthFirstSearch method is then invoked with the initial
program state s0 and the initial path condition (true).

The depthFirstSearch method in Figure 4 explores the
symbolic execution space until either (a) an error is encoun-
tered, (b) a user-defined depth bound is reached, or (c) the end
of the path is reached and there are no more successors to the
current state. Note that for programs with recursive methods
and loops that operate on symbolic variables, a user-specified
depth-bound is required for search termination.

The getSucc method takes as input a symbolic program
state and the current path condition to generate the set of
successor states. Here, we assume that the path conditions are
checked for satisfiability within the getSucc method. For each
successor state the updateObligations method is invoked and
then the search is recursively called on the successor state si.

The updateObligations method in Figure 4 updates the set
of observed test obligations. At line 11, there is a check to
determine whether the current program location corresponds to
a conditional branch statement in the object code. Recall that
the static partial evaluation maps each conditional branch state-

procedure initialize(P ′, ImpConds)
1: ExploredConds := ∅, buffer := ∅, T := ∅
2: s0 :=getInitState()
3: DiSE(〈s0, true〉)
4:

procedure DiSE(〈s, π〉)
5: if error(s) or depth(s) or getSucc(s) = ∅ then
6: T := T ∪ generateTestInput(π); return
7: for each 〈si, πi〉 ∈ getSucc(s) do
8: updateObligations(si)
9: if not prune(s) then

10: DiSE(〈si, πi〉)
11:
procedure prune(s)
12: if not isConditionalStmt(s) then return true
13: 〈di, cj〉 := getDecisionCondition(s)
14: v :=getConditionValue(s)
15: for each 〈d′, c′, v′〉 ∈ ImpConds ′ \ ExploredConds do
16: if isReachable(〈di, cj , v〉, 〈d′, c′, v′〉) then
17: return true
18: return false

Fig. 5: Pruning the search in DiSE based on coverage of
impacted MC/DC obligations in evolving programs

ment in the object code to a unique condition within a decision
in the program source. At line 12, the getDecisionCondition
method returns a tuple containing the decision di and condition
cj for a given conditional branch statement, and at line 13, we
get the value of the conditional branch statement: T indicates
that the branch will be taken and F indicates that the branch
will not be taken.

The buffer data structure in Figure 4 contains all the
unmasked conditions for the current decision being evaluated.
At line 14, the condition cj is added to the buffer, then at line
15 each condition in the buffer masked by cj is removed from
the buffer along with its corresponding value. At line 16, a
check is performed to determine if the search has reached a
condition whose value terminates a decision, and if so, adds
all of the conditions in the buffer to the ExploredCond set
and clears the buffer. Note that when the next decision in the
program is encountered, the buffer is empty.

At the end of symbolic execution, the set of ExploredConds
contains all of the MC/DC obligations covered during the
analysis, and the set T contains the set of test inputs
whose execution guarantees coverage of the obligations in the
ExploredCond set.

Similar algorithms could also be used with other search
techniques such as model checking and dynamic symbolic
execution, and for other analyses such as measuring test
adequacy.

B. Regression Analysis

There are several automated program analysis techniques
that leverage the structure of the code as well as the semantics
of the system under test to reason about it. These techniques,
however, cannot operate on instrumented code because of the
changes to the the structure and semantics of the program
caused by the instrumentation. One such analysis framework
is Directed Incremental Symbolic Execution (DiSE) platform



for analyzing evolving software programs [23], [28]. DiSE
leverages the differences between two related program ver-
sions to detect and characterize the differences in program
behaviors between the two versions. DiSE supports various
software maintenance tasks such as regression testing, regres-
sion verification, equivalence checking, and delta debugging,
among others.

The inputs to DiSE are two related program versions P
and P ′. A source-level Abstract Syntax Tree differencing
algorithm computes the set of syntactic changes to P resulting
in P ′. The changes are treated as slicing criteria, and standard
control- and data- dependence analyses are used in the slicing
algorithm to compute the set of program statements that may
be impacted by the changes. DiSE uses the set of impacted
locations to direct a symbolic search of the system under
analysis to generate path conditions that encode impacted
program behaviors.

In this work, we extend the DiSE framework to compute
a novel analysis which combines the existing change impact
analysis results with the preprocessed coverage information
to compute a set of test inputs that satisfy complex structural
coverage obligations, e.g., MC/DC, for program behaviors that
may be impacted by the differences between P and P ′.

At a high level, the modified DiSE algorithm, shown
in Figure 5, uses information from the static analysis to
determine for each impacted conditional branch statement at
the bytecode-level, the corresponding condition and decision.
The set ImpConds represent the set of tuples containing
condition, decision, and condition values for each impacted
conditional branch statement. The ImpConds set is provided
as input, along with the new program P ′ in Figure 5.

The search strategy and the helper method definitions
in Figure 5 are similar to those in Figure 4. The isReachable
function takes as input, two tuples of decision, condition, and
condition values, and checks whether the corresponding con-
ditional branch statement at the object-code level is reachable.
In order to check reachability, DiSE performs a conservative
check to determine if a path exists in the interprocedural
control flow graph from one program location to another.
When there are no unexplored decision condition tuples reach-
able from the current program location, the analysis prunes
the search and backtracks. Note that it is possible to prune
entire sub-trees reachable from the current program location
when the current path will not lead to any impacted coverage
obligations that have not already been covered.

V. EVALUATION

We empirically evaluate our non-intrusive approach for
computing with complex structural coverage metrics. Our
evaluation addresses the following three research questions:

RQ1: How does our approach for preprocessingMC/DC cov-
erage conditions improve the efficiency of test input
generation in Symbolic PathFinder when compared with
an existing state-of-the-art instrumentation based test gen-
eration technique [31]?

RQ2: How much overhead does symbolic execution incur
when leveraging the coverage condition information com-
puted by our preprocessor?

RQ3: Does a regression analysis technique based on our
non-intrusive approach outperform a monolithic analysis
technique?

A. Tool Support

We use a version of the Eclipse plugin from our previous
work [31] to instrument the Java source code. The original
implementation of the plugin did not include a check to
determine if an obligation was previously covered, thus com-
puting redundant instrumentation and exacerbating the issues
outlined in Section II. To address this issue, we have modified
the plugin to check if an obligation was previously covered
before attempting to cover it again. This helps reduce the
path explosion problem in the instrumentation algorithm, and
improves the algorithm performance relative to the original
plugin implementation. This modification was done to avoid
bias in the evaluation towards our non-intrusive approach.

We implement the preprocessor for computing condition
information as an Eclipse plugin. The plugin automatically
analyzes the AST generated by the Eclipse Java compiler to
compute the set of conditions and their respective locations
in the source code that are relevant for tracking coverage
obligations. The plugin results are saved to an XML file that
can then be used during execution of the code under analysis
to track coverage obligations.

We implement the test case generation application as an
extension to the Symbolic PathFinder (SPF) [21], [22] engine
for analyzing Java bytecode. For a given system under test,
our extension reads in the XML and sets up data structures
to map information about the uncovered decision, condition,
and value triples in the source code to the Java bytecode.
A listener in the extension then monitors the execution of
the bytecode and updates coverage information based on
the algorithm presented in Section IV. Finally, we use the
regression analysis implemented in the DiSE framework [23],
[28], another extension to SPF. The preprocessor plugin and
extension to SPF that uses the preprocessed information can
be downloaded from: https://github.com/spftest

B. Artifacts

We evaluated our technique on six Java artifacts. The first
two artifacts are Java implementations of two container classes
used in [37]. FibHeap is an implementation of a Fibonacci
heap consisting of 286 SLOC. TreeMap is an implementation
of a red-black tree extracted from java.util.TreeMap
and consisting of 580 SLOC.

The third program, Traffic Anti-Collision Avoidance System
(TCAS), is a Java implementation of a system to avoid air col-
lisions. It is available from the Software-artifact Infrastructure
Repository (SIR)1 which consists of 150 SLOC. The fourth
artifact, the Wheel Brake System (WBS), is a synchronous

1SIR Repository. http://sir.unl.edu.



reactive component derived from the WBS case example found
in ARP 4761 [15], [29]. The WBS is used to provide safe
breaking of the aircraft during taxi, landing, and in the event
of an aborted take-off. The Simulink model was translated to C
using tools developed at Rockwell Collins and manually trans-
lated to Java. It consists of 231 SLOC. The Altitude Switch
(ASW) and FGS applications are asynchronous reactive com-
ponents from the avionics domain. They were developed as
a Simulink models, and were automatically translated to Java
using tools developed at Vanderbilt University [33].

C. Experimental Setup

We explore one independent variable in our study: the
method for computing achieved coverage. Two methods are
explored: the non-intrusive approach presented in this work
and a state-of the-art instrumentation based technique.

The two dependent variables in our evaluation are (1) the
coverage achieved (against time) for RQ1, and (2) the overall
wall clock time required to completely explore all paths (RQ2).
Note that for RQ1 it was not always feasible to run until the
entire system was explored as the time required is sometimes
too long. For both research questions, time measurements do
not include the time required to perform the preprocessing
step. For the artifacts used in this study, the preprocessing
time to instrument the code or to preprocess the coverage
information was a small fraction of the analysis time (less
than one second).

In this study, we control two factors: the coverage cri-
terion used, and the randomization of symbolic execution’s
exploration during test generation. We chose to explore the
effectiveness of our approach in the context of MC/DC
coverage—a complex structural coverage criteria mandated
for use in critical systems domains such as avionics and
automotive systems. MC/DC is also a prime example of a
structural coverage criteria that quickly becomes unwieldy
when computed using source code instrumentation. To avoid
any bias associated with this search order, we randomize
which branch is first explored, and run each approach/artifact
combination ten times, thus producing ten different sets of
results for each combination of artifact/approach.

D. Results and Analysis

For each artifact, we compute the set of decision, condition,
and value triples for each conditional branch statement in
the Java bytecode using the preprocessor (un-instrumented
version). We also create an instrumented version of the pro-
gram to enable tracking of MC/DC obligations. We randomize
the search during symbolic execution for both approaches
which entails randomly selecting the next state from the set
of possible successors. The search is bound to one hour. We
run ten trials of each experiment.

Figure 6 presents a comparison of the time taken to
successfully generate test cases that cover MC/DC obligations
for each of the six artifacts. We plot a point on the graph
each time an MC/DC obligation is successfully covered by
the preprocessing approach or the instrumented approach. The

TABLE II: Overhead for computing MC/DC obligations.

Artifacts Preprocessed Std. Sym Exe Increase p-value
WBS 15.7 7.0 124.29 < 0.01
TreeMap 27.8 16.5 68.48 < 0.01
TCAS 95.6 88.6 7.9 < 0.01

time taken for the coverage of each obligation is plotted
on the X-axis while the total number of covered obligations
(normalized) is plotted on the Y-axis. The maximum number
of obligations covered by the two techniques for a given time
period was treated as the total number of obligations in order
to normalize the results on the Y-axis. Three artifacts, TCAS,
Treemap, and WBS, completed full symbolic execution within
the time bound of one hour, whereas for the ASW, Fibheap,
and FGS examples, the search is terminated when the time
bound of one hour was reached.

RQ1 The results in Figure 6 demonstrate that symbolic
execution using preprocessed information can quickly discover
a large number of coverage obligations compared to the in-
strumented approach. For the ASW, TCAS, Fibheap, and FGS
artifacts, our approach incurs less runtime overhead compared
to that of the instrumented approach. In the WBS example,
however, the instrumented approach begins covering MC/DC
obligations a fraction of a second before our approach. This is
due to the fact that symbolic execution using the preprocessed
information has a constant overhead cost of approximately half
a second to read in the preprocessed data and set up the data
structures. In the WBS example, this becomes noticeable since
the entire analysis is performed within a few seconds.

In the FGS artifact, the highest number of MC/DC obli-
gations covered by the preprocessed approach among the
ten runs before reaching the time bound is 552, whereas
the maximum number of covered MC/DC obligations by the
instrumented approach across ten trials is 407. For the ASW
artifact, the preprocessed approach successfully explores a
maximum of 79 MC/DC obligations prior to reaching the time
bound, whereas the instrumented approach maximally covers
58 obligations. Overall, for the artifacts analyzed in this study,
the preprocessed approach improves the efficiency of the test
input generation in SPF when compared to the state-of-the-art
instrumented based test generation technique.

RQ2 We measure and report the overhead incurred during
symbolic execution when computing the covered MC/DC
obligations (Preprocessed) as compared to symbolic execution
on an un-instrumented program (Std. Sym Exe) in Table II.
We use the three artifacts that complete execution within the
given time bound. For each artifact we present the total wall
clock time taken by each approach in seconds, the increase
in runtime in percentage, and the p-value as computed using
a bootstrap permutation test. The WBS and TreeMap artifacts
have a significant overhead of 124% and 68% respectively.
Note, however, that the WBS and TreeMap artifacts finish gen-
eration of the tree in less than 20 seconds. In these examples,
the constant time to read in the preprocessed data at the start
tends to dominate the total time taken. Whereas the TCAS has
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Fig. 6: Comparison of the time taken to observe MC/DC coverage obligation using the instrumentation approach versus the
preprocessing based approach

TABLE III: States explored and time taken to compute im-
pacted coverage obligations.

Version DiSE States DiSE Time SE States SE Time
V1 42 4 695 47
V2 166 12 679 44
V3 325 24 837 55
V4 52 3 743 51
V5 197 15 763 53

longer total runtime compared to WBS and TreeMap examples
and here we observe an acceptable overhead of 7.9%.

RQ3 To evaluate the efficiency of our preprocessing ap-
proach in the context of a novel analysis, we compare the
number of states generated and total time taken by DiSE
to cover impacted MC/DC obligations compared to standard
symbolic execution. The results for five versions of the TCAS
artifact found in the SIR repository are presented in Table III.

In Table III we present the total number of states explored
and the total wall clock time is measured in seconds. DiSE
explores fewer states and takes less overall time compared
to standard symbolic execution (SE). Using the preprocessed
information, we can leverage DiSE to efficiently compute and
cover the set of impacted MC/DC obligations.

E. Threats to Validity

External: Our study is limited to six Java programs. Al-
though the results may not generalize to other artifacts, we
attempted to mitigate this threat by analyzing artifacts from
two distinct classes of objects (1) data structure examples, and
(2) Java applications representing embedded systems. Both
classes represent considerable challenge for automatic test
case generation. Furthermore, all of the artifacts used in the



evaluation of our approach have been used in previous studies
of symbolic execution based techniques.

Internal: The primary threats to internal validity are the
potential faults in the implementation of our algorithms to
compute structural coverage metrics. We controlled for this
threat by testing the tools and implementation of the algo-
rithms on examples that could be manually verified. It is also
possible that another implementation of an instrumentation-
based approach exists which does not incur the overhead
observed in our current implementation. To mitigate this
threat we improved the current state-of-the-art published
instrumentation-based approach.

Construct: We measured the efficiency of each approach
based on coverage achieved over time. Naturally, the goal
of testing is fault detection, with coverage serving as a
proxy. We recognize (and have indeed demonstrated in our
previous work) that the relationship between coverage and
fault detection is not always straightforward, and that work
strengthening this relationship is necessary [13].

VI. RELATED WORK

Many code coverage analysis tools have been developed to
assess the quality of software testing. These tools help devel-
opers ensure that all or most of the coverage obligations, e.g.,
statement, branch, are met during testing and identify the parts
of the code that were not covered by the test suite. A number
of commercial tools that perform code coverage analysis have
been reviewed in a recent survey [39], including JCover [4],
IBM’s Rational PurifyPlus [5], and Clover [2] for Java. These
tools are able to measure different levels of code coverage,
e.g., statement/line/block, branch/decision, method/class, by
monitoring the execution of the program and recording cover-
age information. Program execution monitoring represents an
important challenge for code coverage tools as it is based on
program instrumentation which can inflict considerable over-
head on the testing process. Most of the tools reviewed in [39]
use source code instrumentation, while a smaller number use
byte code instrumentation (including JCover and PurifyPlus)
or dynamic (runtime) instrumentation [1]. Regardless of the
instrumentation approach, all of the coverage tools described
in [39] have a reported instrumentation overhead of more than
30% [17].

Tikir and Hollingsworth propose a freely available tool
which takes advantage of dynamic instrumentation and pe-
riodical garbage collection to remove instrumentation when
it does not provide additional coverage in order to reduce
the runtime overhead of code coverage [34]. Although they
report reduced runtime overhead by 38-90% compared to
the PureCoverage commercial tool [3], dynamic deletion of
instrumentation code can introduce considerable risk and
complexity into the instrumentation process. Another similar
coverage tool that uses dynamic instrumentation to perform
code coverage is proposed by Misurda at al. [19]. Compared
to Tikir and Hollingsworth’s tool, the prototype tool in [19]
can remove instrumentation code immediately, rather than pe-
riodically, which gives it slightly better performance at branch

coverage (average slowdown of 1.03 compared with Tikir and
Hollingsworth). Experiments in [19] also reveal an average
of 1.6 speed up compared with static instrumentation for
branch coverage. Pin [18] provides a dynamic instrumentation
API which uses a customized just-in-time (JIT) compiler to
instrument code before it is translated for execution. This
makes it portable and more efficient due to the optimizations
performed by the JIT, however, it has been reported to increase
the instruction count over the execution of native applications
up to 60% on average [35].

Automated coverage driven testing techniques has been an
active area of research for the past several decades [16].
Techniques based on symbolic execution [31], random test-
ing [32], and search-based techniques [6], [10] have been
developed for complex coverage criteria such as MC/DC.
One recent approach based on Dynamic Symbolic Execution
(DSE) proposes a new testing criterion label coverage which
is intended to be both expressive and efficient in the context of
DSE [7]. Their approach is capable of computing several cov-
erage criteria including decision, condition, decision-condition
and multiple-condition coverage. and it achieves scalability by
performing tight instrumentation and iterative label deletion.
On the other hand, as noted in [7], the approach is not
capable of computing MC/DC coverage as it involves both
path conditions and, in the case of xor and =, 6= expressions
involving Boolean arguments, choices as to the required test
cases. Also, it requires modification of the source code to
ensure all conditional expressions are side-effect free; our
approach does not require any source code modifications.

The inspiration for this work comes from previous work
in which we propose a hardware-supported monitoring frame-
work and an efficient algorithm for tracking MC/DC based
on the framework [38]. While the work presented in [38]
addresses the issue of instrumentation overhead, it proposes
a very different solution leveraging multicore processor archi-
tectures to create a non-intrusive general purpose monitoring
framework, while this work proposes a technique for avoiding
instrumentation by pre-computing the coverage information.

VII. CONCLUSION

In this paper, we introduced a non-intrusive and flexible
approach for pre-computing structural coverage information.
Our approach is based on a static partial evaluation of the
decisions in the source code and a source-to-object code
mapping procedure. The key novelty of our approach is that it
uses pre-computed coverage information to enable applications
to efficiently compute coverage obligations without the need
for code instrumentation. Moreover, our approach enables new
coverage driven analyses that rely on the structure of the
code and are therefore not compatible with instrumentation-
based techniques. Although the focus of this paper is on
MC/DC, and symbolic execution based applications, the initial
evaluation of our approach indicates it can support diverse
structural coverage metrics and enable a variety of applications
to efficiently compute coverage obligations.
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[22] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz,
and N. Rungta. Symbolic Pathfinder: integrating symbolic execution
with model checking for Java bytecode analysis. Automated Software
Engineering, pages 1–35.

[23] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental
symbolic execution. In PLDI, pages 504–515, 2011.

[24] S. Rapps and E. J. Weyuker. Selecting software test data using data
flow information. IEEE Trans. Software Engineering, SE-11(4):367–
375, Apr. 1985.

[25] G. Rothermel and M. J. Harrold. A safe, efficient regression test
selection technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210,
Apr. 1997.

[26] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An empirical study
of the effects of minimization on the fault detection capabilities of test
suites. In ICSM, pages 34–43, 1998.

[27] RTCA/DO-178C. Software considerations in airborne systems and
equipment certification.

[28] N. Rungta, S. Person, and J. Branchaud. A change impact analysis
to characterize evolving program behaviors. In ICSM, pages 109–118,
2012.

[29] SAE-ARP4761. Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment. SAE
International, December 1996.

[30] K. Sen and G. Agha. CUTE and jCUTE : Concolic unit testing and
explicit path model-checking tools. In CAV, pages 419–423, 2006. (Tool
Paper).

[31] M. Staats. Towards a framework for generating tests to satisfy complex
code coverage in java pathfinder. In NFM, pages 116–120, 2009.

[32] M. Staats, G. Gay, M. W. Whalen, and M. P. Heimdahl. On the
danger of coverage directed test case generation. In 15th Int’l Conf. on
Fundamental Approaches to Software Engineering (FASE), April 2012.

[33] J. Sztipanovits and G. Karsai. Generative programming for embedded
systems. In GPCE, pages 32–49, 2002.

[34] M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation for code
coverage testing. SIGSOFT Softw. Eng. Notes, 27(4):86–96, July 2002.

[35] G.-R. Uh, R. Cohn, B. Yadavalli, R. Peri, and R. Ayyagari. Analyzing
dynamic binary instrumentation overhead. In Workshop on Binary
Instrumentation and Application, 2007.

[36] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs.
In ASE, Grenoble, France, 2000.
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