Rotational variation of daughter species production rates in Comet 103P/Hartley: Implications for the progeny of daughter species and the degree of chemical heterogeneity

Adam J. McKay a,⁎, Nancy J. Chanover a, Michael A. DiSanti b, Jeffrey P. Morgenthaler c, Anita L. Cochran d, Walter M. Harris e, Neil Dello Russo f

a Astronomy Department, New Mexico State University, 1320 Fringer Mall, Las Cruces, NM 88001, USA
b Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771, USA
c Planetary Science Institute, 1700 E. Fort Lowell, Ste 106, Tucson, AZ 85719, USA
d University of Texas Austin/McDonald Observatory, 1 University Station, Austin, TX 78712, USA
e Department of Applied Science, University of California Davis, 1 Shields Ave., Davis, CA 95616, USA
f Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723, USA

⁎ Corresponding author.
E-mail addresses: amckay@nmsu.edu (A.J. McKay), nchanove@nmsu.edu (N.J. Chanover), Michael.A.Disanti@nasa.gov (M.A. DiSanti), jpmorgenthaler@psi.edu (J.P. Morgenthaler), anita@barolo.as.utexas.edu (A.L. Cochran), wmharris@ucdavis.edu (W.M. Harris), neil.dello.russo@jhuapl.edu (N.D. Russo).

ARTICLE INFO

Article history:
Received 4 July 2013
Revised 22 November 2013
Accepted 22 November 2013
Available online 23 December 2013

Keywords:
Comets
Comets, coma
Comets, composition

ABSTRACT

We present analysis of high spectral resolution optical spectra of Comet 103P/Hartley taken during its Fall 2010 apparition. These spectra include transitions belonging to CN, C2, CH, NH2, and OI. We measure production rates and mixing ratios from these spectra. We find evidence for large changes in production rates (factors of a few) over the course of a nucleus rotation, in agreement with other measurements. We also measure variability with rotational phase in the CN/H2O and C2/CN ratios, which has not been previously reported for any comet. There may also be variability in the NH2/H2O ratio with rotational phase, but this trend is not as clear as for CN/H2O. We interpret the changing mixing ratios as due to H2O and C2 being released primarily from the icy grain halo, while the CN parent molecule comes directly from the nucleus. There is evidence that the CH/CN ratio is higher pre-perihelion than post-perihelion. We conclude that the observed CN and NH2 abundances are consistent with HCN and NH being the dominant parent molecules for these species. The C2 and CH abundances are higher than those of candidate parent molecules (C2H2 and CH4 respectively), so there must be another source for these molecules in 103P’s coma. Carbonaceous dust grains could serve as this source.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Comets have a primitive composition that has undergone very little alteration since their formation. Therefore studies of cometary composition play a key role in understanding the formation and evolution of the early Solar System. Cometary volatile composition is best studied using in situ measurements by spacecraft flybys or a sample return mission, but even in aggregate these studies can investigate only a tiny portion of the cometary population. This makes ground-based observations of cometary comae critical for characterizing the population as a whole and placing mission results in context.

In order to infer the chemical composition of cometary nuclei from observations of volatile species in the coma, an understanding of the physics and chemistry operating in the coma is needed, since these processes work to alter the coma composition. A key process operating in cometary comae is photodissociation of molecules as they travel away from the nucleus. This means that atomic and molecular species present in cometary comae can be classified into two main groups based on their provenance. Molecules released directly from the nucleus (or directly from the icy grain halo surrounding the nucleus) are defined as parent species. Parent species are inherently present as ices or trapped gases in the cometary nucleus. Examples of parent species in cometary comae are H2O, HCN, and C2H6. Molecules or atoms that are released into the coma by photodissociation of a parent molecule are called daughter species.

Daughter species are not inherently present in the nucleus, but are released into the coma only upon photodissociation of another molecule. Examples of daughter species include OI, CN, and C2.

Parent-daughter inter-relationships in comets remain poorly understood. For instance, it has been noted in some comets that there is not enough HCN and C2H2 to account for the observed abundances of CN and C2, respectively (Dello Russo et al., 2009;
Kobayashi et al., 2010), though in other comets this is not the case. It is possible that the excess CN and C$_2$ in certain comets comes from carbonaceous dust grains or HCN polymers. Linking observations of parent and daughter species is an important step in addressing the origin of daughter species, and is best done with near simultaneous observations in the NIR and/or radio portions of the electromagnetic spectrum (for characterization of the parent species) and the optical (to characterize the daughter species). However, the sample size of comets for which NIR and/or radio observations have been made is small (~20) and is not yet statistically significant. The sample size of comets for which nearly coincident optical and NIR/ radio data have been obtained is even smaller.

The degree of chemical heterogeneity in cometary nuclei can also influence the observed composition of the coma and has important consequences for the formation and evolutionary history of comets. Potentially observable consequences of heterogeneous chemical composition in the nucleus include rotational modulation (short term) and seasonal effects (longer term) on the gas production rate, and spatial asymmetries in the distribution of gaseous species in the inner coma. Previous observations have revealed compositional heterogeneities in Comets 3P/Tempsel (Feaga et al., 2007) and 2P/103P W1 Boattini (Villanueva et al., 2011).

Comet 103P/Hartley (hereafter 103P) is a Jupiter Family Comet (JFC) that was the target of the Deep Impact Extended Investigation (DIXI) mission, which performed a flyby of the nucleus on UT November 4, 2010. Due to the favorable apparition of 103P in Fall 2010 (1.4 ~ 0.12 AU at closest approach to Earth) and the DIXI flyby, this comet was the subject of a coordinated ground-based observational campaign to support the DIXI flyby (Meech et al., 2011). This provided a unique opportunity to correlate observations of the nucleus made by DIXI with high quality ground-based observations of the coma. Together the DIXI and ground-based observations can increase our understanding of coma physics and chemistry.

We present analysis of high resolution optical spectroscopy of 103P obtained in Fall 2010. 103P was also observed throughout the apparition using the near infrared spectrometer NIRSPEC on Keck II (Dello Russo et al., 2011; Mumma et al., 2011; Kawakita et al., 2013). The optical data presented here and the NIRSPEC observations of 103P provide a much needed near simultaneous optical and NIR spectral data set for a comet. The paper is organized as follows: in Section 2 we describe our observations and reduction and analysis procedures. Section 3 presents our results. In Section 4 we discuss our results in the context of the parent-daughter relationship and degree of chemical heterogeneity for 103P. Section 5 presents a summary of our conclusions.

2. Observations and data analysis

2.1. Observations

We obtained spectra of 103P using the ARCES echelle spectrometer mounted on the Astrophysical Research Consortium 3.5-m telescope at Apache Point Observatory (APO) in Sunspot, New Mexico. ARCES provides a spectral resolution of R \equiv $\lambda / \Delta \lambda$ = 31, 500 and a spectral range of 3500–10,000 Å with no interorder gaps. This large, uninterrupted spectral range allows for simultaneous observations of many gaseous species present in cometary coma, such as CN and C$_2$. More specifics for this instrument are discussed elsewhere (McKay et al., 2012, 2013).

The observation dates and geometries are described in Table 1. All nights were photometric, meaning absolute flux calibration of the spectra was possible. We centered the 3.2" x 1.6" slit on the optocenter of the comet. We used an ephemeris generated from JPL Horizons for non-sidereal tracking of the optocenter. For short time-scale tracking, the guiding software uses a boresight guiding technique, which utilizes optocenter flux that falls outside the slit to keep the slit on the optocenter. We observed a G2V star in order to remove the underlying solar continuum and Fraunhofer absorption lines. We obtained spectra of an A0V star to account for telluric features and spectra of a flux standard to establish absolute intensities of cometary emission lines. The calibration stars used for each observation date are given in Table 1. To ensure comparable airmass for the comet and A0V star observations, we alternated between observing the A0V star and the comet throughout the night. We obtained spectra of a quartz lamp for flat fielding and acquired spectra of a ThAr lamp for wavelength calibration.

2.2. Data reduction

Spectra were extracted and calibrated using IRAF scripts that perform bias subtraction, cosmic ray removal, flat fielding, and wavelength calibration. We divided each comet, G2V, and flux standard star spectrum by the A0V star spectrum to remove telluric features. We then converted the tellurically corrected comet spectrum flux to physical units using the tellurically corrected flux standard spectrum. We assumed an exponential extinction law and extinction coefficients for APO when flux calibrating the cometary spectra. We shifted the tellurically corrected solar analog spectrum in wavelength to match the comet spectrum. Then we scaled the solar analog spectrum to the flux calibrated comet spectrum and subtracted the solar analog spectrum to remove Fraunhofer lines.

Because of the small size of the ARCES slit, it is necessary to obtain an estimate of the slit losses to achieve an accurate flux calibration. We find the transmittance through the slit by performing aperture photometry on the slit viewer images. For a given exposure, the initial slew places the target off the slit, so the initial slitviewer image serves as a reference flux for the subsequent images. During the exposure the slit is superimposed on the star, therefore comparison of the stellar flux in these images to the unobstructed star image gives an estimate of the transmittance. An example plot of calculated transmittance versus time for the flux standard used for our November 4 observations is shown in Fig. 1. The mean transmittance is plotted as a solid line, which we adopt as the transmittance through the slit for a given observation. We adopt the standard deviation of the transmittance calculated from the ensemble of slitviewer images on a given night as the 1-sigma uncertainty in our transmittance estimation, which in Fig. 1 is plotted as dashed lines. The transmittance is typically between 70–95% and the typical standard deviation in the transmittance estimation is approximately 10%.

Another possible issue related to the small ARCES slit is the effect of differential refraction on fluxes obtained at different wavelengths. This is potentially important for CN, whose primary emission band is in the near UV (3870 Å) and therefore suffers from significant differential refraction compared to other species like C$_2$ and [O I], which reside in the 5000–6500 Å range. To evaluate the effect of differential refraction, we employ the computed differential refraction as a function of wavelength and airmass from Filippenko (1982), and interpolate to the relevant wavelengths and airmasses for our observations. We calculate the amount of differential refraction and use a Haser model profile convolved with a Gaussian point spread function to estimate the slit loss due to the differential refraction. For all our observations, the effect of differential refraction is 5% or less. This is smaller than other uncertainties (e.g. slit losses), so we consider the effect of differential refraction on our results negligible.
2.3. Analysis of [O I] emission

Among the emission features present in the ARCES bandpass is the [O I]6300 line. The [O I]6300 line is also present as a telluric emission feature, and so a combination of high spectral resolution and large geocentric velocity (and therefore large Doppler shift) is needed to resolve the cometary line from the telluric feature. For the observations reported here, only on November 4 are the telluric and cometary features not sufficiently separated. However, for bright comets like 103P the 6300 Å line is much stronger than the telluric feature, so we can use the measured 6300 Å line flux to estimate the H$_2$O production rate, with the caveat that there is likely a small (~10%) correction needed to account for telluric contamination of the line flux. For the observations where the telluric and cometary [O I] emission were sufficiently separated, we deblended the lines using the method described in McKay et al. (2012) and McKay et al. (2013).

2.4. Spectral fitting model for molecular species

The transitions of interest in this work are electronic fluorescence transitions (except for [O I]6300, which is prompt emission). For molecules, there is ro-vibrational structure superimposed on the electronic transitions, which results in an intricate band structure for the emission features. These bands can include hundreds to thousands of lines spread out over spectral regions with widths...
of hundreds to thousands of Angstroms. This makes analyzing high spectral resolution observations of molecular daughter species in the optical in a consistent manner challenging.

For this purpose we developed a spectral fitting program specifically designed for ARCES spectra. The program references the line atlas for Comet 122P/De Vico compiled by Cochran and Cochran (2002) to find the rest wavelengths for the transitions of interest. Since the Cochran and Cochran (2002) line atlas has a higher spectral resolution than the ARCES data, many features listed as individual lines in the Cochran and Cochran (2002) line atlas blend together at the ARCES resolution and manifest themselves as a single line. We account for this blending when generating the final line list that the program uses to fit the line profiles. The rest wavelength generated by this procedure are then shifted according to the geocentric velocity of the comet at the time of observation. At this point the number of spectral lines and the central wavelength for each spectral line match those in the ARCES spectra. Once this line list is compiled, we fit each spectral feature in the list to a Gaussian profile (i.e. the ISF, see Section 2.3). However, there are some cases where two or more lines can partially blend, resulting in a multi-peaked profile that is the sum of two or more Gaussians. We identify the lines for which this is an issue and fit the entire line profile to a sum of the appropriate number of Gaussians. We add all the line profile fits together to create an empirical fit to the spectrum and then integrate over this model fit to obtain a flux for the band of interest.

The spectral fitting is necessary because there is mixing between different species throughout the observed spectrum. For example, the wavelength range covered by the C2 δν = 0 band also contains NH2 emission. So integrating the data over this spectral range would include both C2 and NH2 lines, which results in an overestimation of the C2 flux. Since we do not currently have a detailed fluorescence model for the species of interest, the model has no constraints on relative strengths of lines. Therefore a somewhat arbitrary hierarchy is used when determining line identifications for heavily blended lines with emission from multiple species. We performed tests with several hierarchies to evaluate the systematic error introduced. All cases produced small differences in the measured fluxes (<7%). Example fits for the 3860–3885 Å (dominated by the CN δν = 0 band) and the 5154–5166 Å (C2 δν = 0 emission, but also NH2 and a couple unidentified lines) spectral regions are shown in Figs. 2 and 3, respectively.

2.5. Conversion of observed flux to production rate

The flux derived above is representative of the number of molecules present in the volume covered by our slit. In order to convert these fluxes into production rates, we need to extrapolate to the flux that would be measured if the entire coma was observed. This extrapolation is done by calculating an aperture correction. The aperture correction is the ratio of the total number of molecules in the entire coma (i.e. the total number of molecules contained in a FOV encompassing the entire coma) to the total number of molecules present in the slit FOV. To determine the aperture corrections for our observations, we employed algorithms based on those used in Morgensthaler et al. (2001), Morgenthaler et al. (2007), and McKay et al. (2012), which can be summarized as follows. We calculate the number density for the species of interest as a function of nucleocentric distance using the computationally simple Haser Model (Haser, 1957). The Haser Model gives the gas number density as a function of nucleocentric distance, given by

\[n(r) = \frac{Q}{4\pi r^2 v} \frac{\beta_p}{\beta_d - \beta_p} (e^{-\beta_d r} - e^{-\beta_p r}) \]

(1)

for a daughter species. Here \(n \) is the number density, \(r \) is the nucleocentric distance, \(Q \) is the production rate, \(v \) is the coma expansion velocity, and \(\beta_d \) and \(\beta_p \) are the inverse photodissociation scale lengths for the parent and daughter species, respectively. The photodissociative scale length is defined as

\[\beta = \frac{1}{\eta \tau} \]

(2)

where \(\tau \) is the photodissociation lifetime. The Haser Model is unphysical in that it assumes a spherically symmetric expanding gas cloud, and does not account for the isotropic distribution of ejection velocities for daughter species. Therefore we modify the Haser scale lengths following the prescriptions of Combi et al. (2004) to emulate the more physical vectorial model (Festou, 1981), which accounts for isotropic ejection of daughter species following dissociation of the parent molecule. Tseng et al. (2007) measured the expansion velocity of the gas coma to be 0.96 km s\(^{-1}\) at 1 AU; they also found that it scales as \(r^{-0.44} \). Using the Tseng et al. (2007) relation, we derive expansion velocities of 0.87–0.94 km s\(^{-1}\) for the coma of 103P at the epochs of our observations. It is important to note that because of our small projected slit size, a large fraction of the gas may not be accelerated to the terminal value calculated using the Tseng et al. (2007) relation. However, as we assume the same expansion velocity for all species, this will only affect absolute production rates and not mixing ratios. Therefore our production rates may be biased by the assumption of constant expansion velocity, but the mixing ratios are not. The physical parameters we employ for each molecule are given in Table 2. The relevant parameters are the parent photodissociative lifetime \(\tau_p \), the daughter photodissociative lifetime \(\tau_d \), and the ejection velocity of the daughter after photodissociation of the parent \(v_{ej} \). All scale lengths and excess velocities are adopted from Huesbner et al. (1992). The lifetimes are given for a heliocentric distance of 1 AU.

Once the spatial distribution is calculated, we use a numerical integrator to convert the spatial density function to a column density along the line of sight for each point in the field of view (FOV). We use a similar integration technique to find the total number of molecules in the FOV. We changed the FOV from a circular aperture to a rectangular geometry consistent with the shape of our slit. Integrating over the entire coma and our slit FOV allows us to calculate the aperture correction. We then calculate the production rate using:

\[Q = \frac{4\pi \Delta F \text{FAC}}{gt} \]

(3)

where \(Q \) is the production rate, \(\Delta \) is the geocentric distance, \(F \) is the observed flux, \(AC \) is the aperture correction, \(g \) is the g-factor (fluorescence efficiency), and \(t \) is the dissociative lifetime. The g-factors we employ are displayed in Table 2. For CN and C2, we adopt g-factors from Schleicher (2010) and A’Hearn et al. (1995), respectively. For NH2, we derive our production rate using the (0,5,0) band (bent notation) and employ g-factors from H. Kawakita (private communication), which were calculated using the same model as in Kawakita and Watanabe (2002). For CH we adopt the g-factor from Singh and Dalgarno (1987), although we include the Swings Effect, which we discuss in the next section.

One of the shortcomings of the Haser model is that it is time independent. This means that any short-term variability in production rates will cause deviations from the Haser profile. Therefore the column density along the line of sight will not necessarily be given by a Haser profile. This is potentially important for 103P because other investigations have observed short-term variability in production rates associated with the rotation of the nucleus (A’Hearn et al., 2011; Drahus et al., 2012). However, with our small
projected slit size, most of the observed flux originates from the inscribed sphere, so any systematic error from the Haser model assumption introduced by the presence of short-term variability is small.

2.6. Possible Swings Effect for CH

Due to the presence of CH absorption features in the solar spectrum, CH emission could be subject to a significant Swings Effect. The Swings Effect (Swings, 1941) is a variation in the g-factor due to the Doppler Shift induced by the heliocentric velocity of the comet. Depending on the heliocentric velocity, the exciting wavelength for the fluorescence transitions observed can be shifted into or out of absorption features in the solar spectrum. This can change the available flux to drive a given transition substantially. The Swings Effect is well documented for the CN A-X transition (e.g., Schleicher, 2010).

We used the BASS2000 solar spectrum (http://bass2000.obspm.fr/solar_spect.php), which is highly variable as a function of wavelength near the CH A-X emission band, due to the presence of CH absorption in the solar spectrum (the so-called “G-band”). We plot the g-factor as a function of heliocentric velocity in Fig. 4. We calculated the g-factors by multiplying the g-factor we adopt from Singh and Dalgarno (1987) at a heliocentric velocity of zero km s\(^{-1}\) (2.3 \times 10^{-14} \text{ ergs s}^{-1} \text{ mol}^{-1}\) by the ratio of the solar flux available to pump the band at \(\tilde{r} = 0 \text{ km s}^{-1}\) with the solar flux at the heliocentric velocity of interest. There is a strong minimum near \(\tilde{r} = 0 \text{ km s}^{-1}\), as would be expected, but the g-factor is fairly symmetric between comparable positive and negative velocities. We adopt these updated g-factors when calculating the CH production rates. This is not a detailed fluorescence calculation, thus this is an approximation to the actual Swings effect. A detailed calculation is beyond the scope of this work, but will be the subject of future work.

2.7. \(\text{H}_2\text{O}\) production rate from \([\text{OI}]6300\) emission

As molecular abundances in comets are typically calculated with respect to \(\text{H}_2\text{O}\), it is desirable to have observations of \(\text{H}_2\text{O}\) to compare to our derived molecular production rates. \(\text{H}_2\text{O}\) does not have any transitions in the optical, but our bandpass includes the \([\text{OI}]6300 \text{ Å}\) line, which has been used as a reliable proxy for \(\text{H}_2\text{O}\) production in the past (Spinrad, 1982; Magee-Sauer et al., 1990; Schultz et al., 1992; Morgenthaler et al., 2001; Morgenthaler et al., 2007; McKay et al., 2012). We employ the same Haser Model for the \([\text{OI}]\) emission as used in McKay et al. (2012) to infer \(\text{H}_2\text{O}\) production rates from our \([\text{OI}]\) observations.

Since 103P has a large CO\(_2\) abundance, we have included CO\(_2\) as a source of \(\text{D}^0\) oxygen atoms. The CO\(_2\)/H\(_2\text{O}\) ratio varied from 10% to 20%, depending on the rotational phase of the nucleus (A'Hearn et al., 2011). Therefore we have assumed a CO\(_2\)/H\(_2\text{O}\) ratio of 0.15 when estimating the contribution of CO\(_2\) to the \(\text{D}^0\) oxygen atom population. For estimating the CO\(_2\) contribution, we use a very similar Haser Model to that used for \(\text{H}_2\text{O}\). We find that for CO\(_2\)/H\(_2\text{O}\) = 0.15, approximately 25% of the \(\text{D}^0\) oxygen atoms are contributed by CO\(_2\) photodissociation. Since the CO\(_2\)/H\(_2\text{O}\) ratio for 103P was variable, adopting a constant value of 0.15 may introduce a systematic error in our \(\text{H}_2\text{O}\) production rates. However, the contribution from CO\(_2\) ranges from 17% for CO\(_2\)/H\(_2\text{O}\) = 0.1 to 34% for CO\(_2\)/H\(_2\text{O}\) = 0.2. Employing these CO\(_2\)/H\(_2\text{O}\) ratios rather than the average value of 0.15 changes the \(\text{H}_2\text{O}\) production rates by less than 10%, so adopting an average value of CO\(_2\)/H\(_2\text{O}\) does not affect our derived \(\text{H}_2\text{O}\) production rates significantly.

3. Results

The resulting average production rates for each observation date are given in Table 3. The mixing ratios relative to \(\text{H}_2\text{O}\) use the \(\text{H}_2\text{O}\) production rate derived from the cometary \([\text{OI}]6300\) line (see Table 4).

![Fig. 4. Calculated g-factor for the CH A-X band as a function of heliocentric velocity. As expected, there is a strong minimum near zero heliocentric velocity. The g-factor is fairly symmetric with respect to perihelion (zero heliocentric velocity). Overplotted are symbols showing the heliocentric velocity and g-factor for 103P on each of our observing dates.](image-url)
3.1. Rotational variation

We observe variability in gas production on hour timescales, which is presumably associated with the rotation of the nucleus. This variability also has been inferred by other studies for parent molecules at IR (Dello Russo et al., 2011; Mumma et al., 2011) and sub-mm (Drahus et al., 2012) wavelengths. We show a plot of production rate vs. time for CN on UT September 30–October 1 in Fig. 5, and the same for C2, CH, NH2, and H2O in Fig. 6. This variability is not consistent with a simple sinusoid function, but rather a juxtaposition of two rotational phases, namely the ~ 18 h precession period and the ~ 27 h “roll”. Our production rate measurements on UT September 30 and UT October 1 are fit fairly well by a sum of two sinusoids with the precession and “roll” periods found by other studies (A’Hearn et al., 2011; Samarasinha et al., 2011; Knight and Schleicher, 2011; Belton et al., 2013; Knight and Schleicher, 2013). The functional fits are overplotted on the data shown in Figs. 5 and 6.

We derived the fits using the IDL routine MPFIT (Markwardt, 2009), which employs a χ-squared minimization technique. The fits for the periodicity are a sum of two sine waves with periods of 17.6 and 29.0 h (the periods for the precession and roll found by Belton et al. (2013) at the time of these observations). We kept these periods as fixed parameters during the fitting process to limit the number of free parameters. The phase was kept a free parameter for the fit to the absolute production rate of CN. The retrieved phase is very sensitive to the initial value, so we had to try several iterations with different phases in order to arrive at a satisfactory fit. Once we found the phase of the variation in the CN production rate, we fixed the phase for subsequent fits to the absolute production rates and mixing ratios. There is no evidence for a significant phase difference among species, consistent with other studies (A’Hearn et al., 2011; Drahus et al., 2012). The sum of the two rotational modes results in a quasi-periodic function with a period of ~ 55 h, similar to the periodicity found from studies of the CN morphology (Samarasinha et al., 2011; Knight and Schleicher, 2011). However, our data set does not consist of a continuous temporal baseline long enough to show this conclusively, and only shows that our measurements are consistent with this interpretation.

An alternative way to determine whether we are observing actual variation in gas production is to calculate the standard deviation of our production rates and compare that to the average uncertainty associated with the measured production rates. If the standard deviation is much higher than the average uncertainty, then there is evidence for variability in the gas production rates, which in the case of 103P is likely due to rotational modulation. We show the average gas production rates over the apparition, the average uncertainty in the production rates, and the standard deviation of the production rates for each species in Table 5 (we have excluded the September 8 observations to avoid introducing possible variation due to changing heliocentric distance). All species have a standard deviation in their production rates that is at least three times greater than the average uncertainty, as shown in the last column of Table 5. Therefore it is likely that we have detected rotational modulation of the gas production rates.

Fig. 7 shows the mixing ratios CN/H2O, C2/H2O, CH/H2O, and NH2/H2O for our UT September 30 and UT October 1 observations, while Fig. 8 shows C2/CN, CH/CN, and NH2/CN on those same dates. Functional fits similar to those plotted in Figs. 5 and 6 are overplotted. In all cases, a periodic function can be fit to the data. However, we require that the inferred amplitude of the variation be at least twice the error bars to be considered a real variation. When this criterion is enforced, only the CN/H2O (Fig. 7) and C2/CN (Fig. 8) ratios vary significantly. For all other mixing ratios, we plot a fit with constant mixing ratio, which in effect is the weighted mean. There may be variations in these mixing ratios, but our data do not have the signal to noise to show them definitively. Like the absolute production rates on September 30 and October 1, the C2/CN and the CN/H2O ratio are also fit well by a sum of two sinusoids with the precession and “roll” periods found for 103P. The functional fit suggests that the C2/CN ratio varies from 0.7 to 1.3 and the CN/

Table 4

<table>
<thead>
<tr>
<th>UT Date</th>
<th>X/H2O × 100.0</th>
<th>X/CN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH</td>
<td>C2</td>
</tr>
<tr>
<td>9/8/2010</td>
<td>0.12 ± 0.01</td>
<td>0.16 ± 0.01</td>
</tr>
<tr>
<td>9/30/2010</td>
<td>0.12 ± 0.01</td>
<td>0.15 ± 0.01</td>
</tr>
<tr>
<td>10/1/2010</td>
<td>0.16 ± 0.01</td>
<td>0.15 ± 0.01</td>
</tr>
<tr>
<td>11/4/2010</td>
<td>0.14 ± 0.01</td>
<td>0.14 ± 0.01</td>
</tr>
<tr>
<td>11/26/2010</td>
<td>0.31 ± 0.04</td>
<td>0.22 ± 0.02</td>
</tr>
</tbody>
</table>
H$_2$O ratio varies from 0.12 to 0.24, but as is the case with the inferred functional form of the variation of the absolute gas production rates, analysis of our data set does not provide a conclusive finding and is only consistent with the proposed scenario.

We present the average mixing ratios, average uncertainties, and standard deviations in Table 6. Applying the criterion that the ratio of the standard deviation to the average uncertainty be greater than two (see last column of Table 6) in order for a mixing ratio to be considered variable, we determine that most mixing ratios are fairly constant. The only ones that vary significantly are CN/H$_2$O and C$_2$/CN, which are the same ratios inferred to be variable from the period fitting approach. Therefore we have evidence from two independent approaches that the CN/H$_2$O and C$_2$/CN abundance ratios for our observations of 103P exhibit significant variability. A similarly variable CN/H$_2$O ratio with rotational phase is also observed in the DIXI flyby data (D. Bodewits, private communication and in prep.). It is possible other mixing ratios also exhibit variability, but analysis of our data does not definitively demonstrate this. Comparison with other data sets provides possible evidence that NH$_2$/H$_2$O is variable (see Section 4.1).

Fig. 6 suggests that CH (top right) and NH$_2$ (bottom left) experience strong rotational modulation in their gas production rates, but not quite as strong as CN (Fig. 5). C$_2$ shows a much weaker dependence on rotational phase of the nucleus (top left of Fig. 6), and H$_2$O shows the weakest rotational modulation (bottom right of Fig. 6), though the variation is still a factor of 3 (this relative hierarchy, with CN exhibiting the most variation and C$_2$ and H$_2$O the least, is also supported by examination of the standard deviations, see Table 5). The stark difference in the amount of rotational modulation for C$_2$ and H$_2$O as compared to CN is manifested in the changing mixing ratios of these species displayed in Figs. 7 and 8 while for NH$_2$ and CH the data are too noisy to see a definitive change in mixing ratios compared to either CN or H$_2$O with rotational phase.

Table 5

<table>
<thead>
<tr>
<th>Species</th>
<th>Ave. Q^b</th>
<th>Ave. σ^b</th>
<th>Ave. σ (% of ave.)</th>
<th>Standard dev.b</th>
<th>Standard dev. (% of ave.)</th>
<th>Standard dev./ave. σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>1.22</td>
<td>0.12</td>
<td>10</td>
<td>0.55</td>
<td>45</td>
<td>4.5</td>
</tr>
<tr>
<td>CH</td>
<td>6.27</td>
<td>0.85</td>
<td>14</td>
<td>2.3</td>
<td>37</td>
<td>2.6</td>
</tr>
<tr>
<td>NH$_2$</td>
<td>2.53</td>
<td>0.26</td>
<td>10</td>
<td>0.84</td>
<td>33</td>
<td>3.3</td>
</tr>
<tr>
<td>C$_2$</td>
<td>1.20</td>
<td>0.12</td>
<td>10</td>
<td>0.39</td>
<td>33</td>
<td>3.3</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>777</td>
<td>80</td>
<td>10</td>
<td>200</td>
<td>33</td>
<td>3.3</td>
</tr>
</tbody>
</table>

a Excludes values from UT September 8 to avoid possible heliocentric distance variations.

b In units of 10^{25} mol s$^{-1}$.

3.2. Changes in mixing ratios pre- vs. post-perihelion

We plot the mixing ratios relative to H$_2$O and CN over the course of the apparition in Figs. 11 and 12, respectively. Most of the variation in mixing ratios can be attributed to rotational modulation. However, the CH/CN ratio is much higher pre-perihelion than post-perihelion, and it seems it cannot be attributed to rotational variation (compare with the range of observed CH/CN values in Fig. 8). Examination of the production rates shows that the...
production rate of CH remains fairly constant, while that of CN and other molecules is higher post-perihelion. This suggests that CN and other species may have experienced an increase in production rates post-perihelion (this has also been observed by Knight and Schleicher (2013)), while CH did not.

4. Discussion

4.1. Comparison to other studies

Our production rates for CN and C₂ are within 20% of those found by Knight and Schleicher (2013) for dates where our observations are separated by less than a day from theirs (i.e. September 8, September 30, and October 1). Our inferred H₂O production rates from [OI]6300 observations on these dates are in agreement with the H₂O production rates inferred from OH observations by Knight and Schleicher (2013) and Lyman-α observations by Combi et al. (2011). Though they did not observe NH₂, Knight and Schleicher (2013) report NH production rates. Since NH₂ and NH are both thought to be released into the coma via photodissociation of NH₃ (NH₂ directly, NH through a two step process involving NH₃), the production rates for NH₂ and NH should be similar. Our NH₂ production rates are significantly lower (50%) than the NH production rates determined by Knight and Schleicher (2013). This may mean there is an additional source of NH in 103P’s coma (see Section 4.3 for more discussion on this possibility).

Our production rates on November 4 are all much lower than those found by Shinnaka et al. (2013). However, we infer that our observations occurred just before a minimum in the gas production. The observations by Shinnaka et al. (2013), which occurred about 9 h (half a rotation) after ours, would have sampled the comet near a maximum in gas activity. If this is correct, then the discrepancy can be explained by the observations being at
different rotational phases. Observations by Dello Russo et al.
(2011) nearly bridge the gap between our observations and those
of Shinnaka et al. (2013). We present a plot of gas production for
\(\text{H}_2\text{O}, \text{CN}/\text{HCN}, \) and \(\text{NH}_2\text{/NH}_3 \) on November 4 from this work, Dello
Russo et al. (2011), and Shinnaka et al. (2013) in Fig. 9. Gas produc-
tion increased throughout the course of the Dello Russo et al.
(2011) observations, supporting the conclusion that differences
in rotational phase for the observations is responsible for the dis-
crepancy in gas production rates. Also, the peak in HCN and CH$_3$OH
production determined by Drahus et al. (2012) occurred just after
the Shinnaka et al. (2013) observations (we employ the same rota-
tional phase convention as Drahus et al. (2012) and Shinnaka et al.
(2013)), again suggesting that their observations occurred during
maximum gas production. Similarly, the minimum of HCN and
CH$_3$OH production observed by Drahus et al. (2012) occurs at a
rotational phase of 0.3, the same as our minimum in gas
production.

We plot the mixing ratios of \(\text{NH}_2\text{/H}_2\text{O} \) and \(\text{CN/HCN} \) compared to
\(\text{H}_2\text{O} \) on November 4 from Dello Russo et al. (2011), Shinnaka et al.
(2013), and this work in Fig. 10. There is evidence that CN/H$_2$O
changed with rotational phase. The highest mixing ratios happen
to occur at peaks in the gas production rate (compare Figs. 9 and
10). For CN on October 1, the peak CN/H$_2$O ratio corresponds to
higher production rates (compare Fig. 5 and top left panel of
Fig. 7). This comparison also provides evidence that the NH$_2$/H$_2$O
ratio changes over the course of the observations, but does have
the caveat that we are comparing different observations with dif-
f erent observing geometries and observing different transitions of
NH$_2$ and NH$_3$.

Our measurements of the C$_2$/CN ratio are lower than that mea-
sured by other studies for 103P. However, all previous measure-
ments were done using either low resolution spectra or
narrowband photometry. Although extensive methods have been
developed to minimize contamination of these types of observa-
tions by the continuum or other gas species (e.g. Farnham et al.,
2000), there is some level of contamination present. This has the
greatest effect for C$_2$, for which the wavelength region traditionally
employed as the C$_2$ $\Delta v = 0$ band also includes unidentified emis-
sion and NH$_2$ lines. Our high spectral resolution observations iso-
late these lines and our fitting routines more accurately establish
the flux from each molecular band.

For our 103P observations, the contaminating flux from uniden-
tified emission and NH$_2$ is about 30–40% that of the C$_2$ flux. When
this contaminating flux is included as C$_2$ flux, our C$_2$/CN ratios are

<table>
<thead>
<tr>
<th>Mixing ratio</th>
<th>Ave.</th>
<th>Ave. σ</th>
<th>Ave. σ (% of ave.)</th>
<th>Standard dev.</th>
<th>Standard dev. (% of ave.)</th>
<th>Standard dev./ave. σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN/H$_2$O</td>
<td>0.16</td>
<td>0.019</td>
<td>12</td>
<td>0.046</td>
<td>29</td>
<td>2.4</td>
</tr>
<tr>
<td>CH/H$_2$O</td>
<td>0.84</td>
<td>0.14</td>
<td>17</td>
<td>0.19</td>
<td>23</td>
<td>1.4</td>
</tr>
<tr>
<td>NH$_2$/H$_2$O</td>
<td>0.32</td>
<td>0.033</td>
<td>10</td>
<td>0.051</td>
<td>16</td>
<td>1.6</td>
</tr>
<tr>
<td>C$_2$/H$_2$O</td>
<td>0.16</td>
<td>0.017</td>
<td>11</td>
<td>0.023</td>
<td>14</td>
<td>1.4</td>
</tr>
<tr>
<td>CH/CN</td>
<td>1.03</td>
<td>0.08</td>
<td>8</td>
<td>0.17</td>
<td>17</td>
<td>2.1</td>
</tr>
<tr>
<td>CH/H$_2$O</td>
<td>5.69</td>
<td>0.85</td>
<td>15</td>
<td>1.05</td>
<td>18</td>
<td>1.2</td>
</tr>
<tr>
<td>NH$_2$/CN</td>
<td>2.13</td>
<td>0.27</td>
<td>13</td>
<td>0.31</td>
<td>15</td>
<td>1.2</td>
</tr>
</tbody>
</table>

* Values given in %.

Fig. 9. H$_2$O, CN or HCN, and NH$_2$ or NH$_3$ production rate on November 4 from Shinnaka et al. (2013) (last point, rotational phase 0.75), this work (first three
points, rotational phase 0.2–0.35), and Dello Russo et al. (2011) (all remaining data
points between rotational phase 0.35–0.65). Production rates from Dello Russo et al.
(2011) are for H$_2$O, NH$_3$, and HCN, while production rates from Shinnaka et al.
(2013) and this work are for H$_2$O, NH$_2$, and CN. Note the increase in gas produc-
tion over the course of the observations, likely due to rotational modulation. We
normalize the production rates so that they all display clearly on the same plot.

Fig. 10. Mixing ratios of CN or HCN and NH$_2$ or NH$_3$ compared to H$_2$O vs. time on
UT November 4. The first three data points (between rotational phase 0.2 and 0.35)
are from this work and are measurements of CN/H$_2$O and NH$_2$/H$_2$O. The last data
point at rotational phase 0.75 is from Shinnaka et al. (2013) and is also a
measurement of CN/H$_2$O and NH$_2$/H$_2$O. The rest of the data points in between
rotational phase 0.35 and 0.65 are from Dello Russo et al. (2011) and are
measurements of HCN/H$_2$O and NH$_2$/H$_2$O. Here we observe evidence that both
CN/H$_2$O and NH$_2$/H$_2$O change with rotational phase of the nucleus.
consistent with those previously measured for 103P. This implies that C$_2$/CN ratios measured from low resolution spectroscopy or narrowband photometry may not reflect the true abundance ratio in cometary comae, which has implications when comparing the abundance of C$_2$ to that of candidate parent molecules such as C$_2$H$_2$. It is also possible that 103P is overabundant in whatever species is responsible for the unidentified emission lines present in optical spectra of comets (NH$_2$ is not particularly overabundant in 103P compared to other comets, and is responsible for only a small fraction of the contaminating flux), and that for the majority of comets this is less of an issue. Moreover, due to the shorter scale length of NH$_2$ compared to C$_2$, NH$_2$ contamination is much smaller for long slit spectroscopy, meaning that any contamination is likely from unidentified emission. More high spectral resolution optical observations of comets are needed to quantify the amount of unidentified line and NH$_2$ emission present. A more detailed fluorescence model for these species that includes line-by-line g-factors would better predict how much contamination should be present. Detailed study of the unidentified emission features that leads to their identification would also help quantify the amount of contamination present and how this contamination may affect low spectral resolution observations.

4.2. Comparison to candidate parent molecules

We compare our measured abundances of CN, C$_2$, CH, and NH$_2$ (averaged over the apparition) to candidate parent molecules observed at NIR wavelengths (Dello Russo et al., 2010, 2011; Mumma et al., 2011; Kawakita et al., 2013) (average of all measurements) in Table 7. Our CN/H$_2$O ratios are consistent with the HCN/H$_2$O ratios measured by NIR studies, suggesting that HCN is the primary parent of CN in the case of 103P. We measure a variability in the CN/H$_2$O abundance that does not seem to be present in the NIR observations of HCN. However, none of the IR observations have a long temporal baseline such as our UT September 30–October 1 observations, which sample the rotational modulation with baselines of hours.

The measured C$_2$/H$_2$O ratios are higher than the C$_2$H$_2$/H$_2$O ratios measured for 103P, which suggests the need for an additional source of C$_2$ besides C$_2$H$_2$. C$_2$H$_6$ could account for the rest of the C$_2$, but C$_2$H$_6$ is thought to have a low branching ratio for releasing C$_2$, making it a poor candidate for C$_2$ parentage (Weiler, 2012). In addition, the C$_2$H$_6$ spatial distribution is similar to those of HCN and C$_2$H$_2$. Since HCN and C$_2$H$_6$ have similar spatial distributions, it would be expected that C$_2$ originating from C$_2$H$_6$ photodissociation would still have a rotational modulation similar in amplitude to CN (which likely is released via HCN photodissociation), which is not observed. Therefore, an as-of-yet unobserved hydrocarbon or CHON (carbonaceous dust) particles likely contribute significantly to the C$_2$ population.

The NH$_2$/H$_2$O ratios we measure are less than the NH$_3$/H$_2$O ratios measured in the NIR, implying that no source other than NH$_3$ is required. The lower NH$_2$/H$_2$O ratios compared to NH$_3$/H$_2$O may be due to the possible rotational modulation discussed in the previous section. The CH/H$_2$O ratio is higher than the upper limit for CH$_4$/H$_2$O found by Dello Russo et al. (2010), suggesting that CH$_4$ is not the only source of CH. As is the case for C$_2$, this may suggest an as-of-yet undetected hydrocarbon or CHON grains are contributing to the CH population in the coma of 103P. If the production of CHON particles did not increase post-perihelion like the gaseous species (and CHON particles are a significant source of CH), this could explain the asymmetry in the CH/CN ratio with respect to perihelion.

![Fig. 11. Mixing ratios relative to H$_2$O throughout the apparition. All the observed variation can be explained as rotational modulation. Therefore there is no evidence for a significant change in mixing ratios compared to H$_2$O over the apparition.](image1)

![Fig. 12. Mixing ratios relative to CN throughout the apparition. The observed variation can be explained as rotational modulation, but the change in CH/CN is too large to be explained by rotational modulation alone. Therefore we conclude that the CH/CN ratio is higher pre-perihelion than post-perihelion.](image2)

Table 7

<table>
<thead>
<tr>
<th>Daughter</th>
<th>Daughter abundance (X/H$_2$O × 100)</th>
<th>Parent</th>
<th>Parent abundance (X/H$_2$O × 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>0.16 ± 0.005</td>
<td>HCN</td>
<td>0.24 ± 0.01</td>
</tr>
<tr>
<td>C$_2$</td>
<td>0.16 ± 0.004</td>
<td>C$_2$H$_2$</td>
<td>0.11 ± 0.01</td>
</tr>
<tr>
<td>C$_2$</td>
<td>0.16 ± 0.004</td>
<td>C$_2$H$_6$</td>
<td>0.75 ± 0.02</td>
</tr>
<tr>
<td>CH</td>
<td>0.84 ± 0.03</td>
<td>CH$_4$</td>
<td><0.5</td>
</tr>
<tr>
<td>NH$_2$</td>
<td>0.32 ± 0.01</td>
<td>NH$_3$</td>
<td>0.71 ± 0.05</td>
</tr>
</tbody>
</table>

4.3. Implications for the origin of daughter species in 103P

The results for CN and NH$_2$ are consistent with an origin from dissociation from HCN and NH$_3$, respectively, which is the current consensus on where these radicals originate. The results for CH suggest that a good portion of CH may have a source other than CH$_4$. The variability in the CN/H$_2$O and the C$_2$/CN ratios (Figs. 7 and 8, respectively, and Table 6) and the smaller amplitude of the variations in Q$_{C_2}$ and Q$_{H_2O}$ compared to Q$_{CN}$ (Figs. 5 and 6 and Table 5) suggest that H$_2$O and C$_2$ originate from icy or carbonaceous grains surrounding the nucleus, while the parent of CN is released directly from the nucleus. This is because the grains expand outward more slowly than the gas, meaning the grain population in the FOV will experience less rotational modulation than the number of gaseous molecules. Many observations have confirmed that a large majority of the H$_2$O is released from icy grains (A’Hearn et al., 2011; Bonev et al., 2013; Knight and Schleicher, 2013).

The lesser rotational modulation of C$_2$, combined with a lack of a sufficient amount of C$_2$H$_2$, suggests a significant fraction of the C$_2$ production is coming from carbonaceous grains, also referred to as CHON particles. It is also possible that a hydrocarbon other than C$_2$H$_2$ is responsible and in turn this hydrocarbon is predominately present on the icy grains. However, any hydrocarbon other than C$_2$H$_2$ (and likely C$_3$H$_2$ as well) must release C$_2$ through at least a 2-step decay process (Jackson, 1976; Cochran, 1985). Using spatial profiles of C$_2$ in 1P/Halley, Combi and Fink (1997) showed that the observed spatial distribution could only be reproduced with a 2-step decay process with impossibly small ejection velocities for the daughter and granddaughter species. On the other hand, they determined that if C$_2$ came predominately from a halo of CHON particles, the spatial distribution of C$_2$ could be fit quite well. The lifetimes of CHON particles are comparable to the icy grains thought to be responsible for the H$_2$O production in 103P, meaning it is likely any species originating from the CHON particles would have a similar rotational modulation to one produced from the icy grains, as we observe to be the case for C$_2$ (CHON) and H$_2$O (icy grains).

Another potential parent of C$_2$ is C$_2$. C$_2$ is a daughter species that has a bright emission band in the ARCES band-pass. However, accurate subtraction of the continuum under this feature is difficult because of the dense forest of lines present. Our method of continuum subtraction overestimates the continuum in the C$_2$ emission region, resulting in an underestimation of the C$_2$ flux.

For this reason we have excluded C$_2$ from the present analysis. However, measurements of C$_2$ in 103P from Knight and Schleicher (2013) suggest that C$_2$ may be abundant enough to account for the discrepancy between the C$_2$ and C$_2$H$_2$ production rates. However, C$_2$ is a daughter product, meaning that any C$_2$ released from C$_2$H$_2$ photodissociation is released via a two-step process, which we argued in the previous paragraph is unlikely. If C$_2$ is released from photodissociation of a hydrocarbon such as C$_3$H$_4$, then C$_2$ itself is likely a granddaughter or great-granddaughter species (Helbert et al., 2005; Weiler, 2012). Since all of these photodissociation events have long timescales of greater than 5×10^4 s (Helbert et al., 2005), this makes C$_2$ a very inefficient source of C$_2$ in the inner coma.

Therefore we consider our results another piece of evidence in favor of a CHON grain source for C$_2$ in addition to photodissociation of hydrocarbons. Although some C$_2$ does likely result from C$_3$H$_4$ photodissociation, at least for 103P a significant fraction of the C$_2$ seems to originate from sublimating CHON particles or some other unknown source. Traditionally the C$_2$/CN ratio has been considered a diagnostic for the abundance of carbon-chain molecules. If indeed a majority of the C$_2$ actually originates from CHON grains, the C$_2$ abundance would then actually be a tracer for the abundance of CHON particles present, not necessarily the carbon-chain molecule abundance. This hypothesis also explains the possible tendency for comets beyond 2 AU from the Sun to have lower C$_2$ abundances than those at smaller heliocentric distance (Newburn and Spinrad, 1989), since beyond this distance CHON grains may not sublimate readily (Combi and Fink, 1997) (though other surveys, for example (A’Hearn et al., 1995), do not find evidence for such as a trend). An increase of the C$_2$/CN ratio for comet C/2009 P1 Garradd inbound from 3 AU to 1.8 AU is evident in optical spectra of this comet (McKay et al. in prep), which could be indicative of changing parentage for C$_2$ from exclusively photodissociating hydrocarbons to a combination of hydrocarbons and carbonaceous grains. More observations of C$_2$ and C$_2$H$_2$ in comets are needed to fully understand the progeny of C$_2$ in cometary comae.

As noted in the previous section, our NH$_2$ production rates in September are lower than those of NH found by Knight and Schleicher (2013). Knight and Schleicher (2013) found that the spatial distribution of NH and OH were very similar, and suggested the OH and NH parents (H$_2$O and NH$_3$) originated from icy grains. However, if the changing NH$_2$/H$_2$O ratio inferred in Section 4.1 is real, this suggests that the NH$_2$ parent (NH$_3$) comes from a source similar to the parent of CN (HCN), not H$_2$O. This combined with the production rates of NH found by Knight and Schleicher (2013) being systematically higher than our NH$_2$ production rates may suggest that not all the NH in 103P’s coma is a granddaughter product of NH$_3$, but that some of it sublimes off of icy or carbonaceous grains. Either a spatial distribution of NH$_2$ or a light curve for NH would be needed to test this possibility.

4.4. Degree of compositional heterogeneity for the nucleus of 103P

A’Hearn et al. (2011) observed that the C$_2$H$_2$/H$_2$O ratio for 103P changed by a factor of two over a nucleus rotation. Drahus et al. (2012) observed a similar trend for the HCN/C$_2$H$_2$/H$_2$O ratio from sub-mm observations. Both A’Hearn et al. (2011) and Drahus et al. (2012) cite these changing mixing ratios as evidence for compositional heterogeneity in the nucleus. However, changing mixing ratios were not observed from ground-based IR observations (Dello Russo et al., 2011; Mumma et al., 2011; Kawakita et al., 2013). This may simply be due to the fact that the ground-based IR observations were “snapshot” observations, while those of A’Hearn et al. (2011) and Drahus et al. (2012) had longer temporal baselines that sampled the rotational variation better. Although they did not observe changing mixing ratios, ground-based IR observations did observe different spatial distributions for different species. H$_2$O and CH$_3$OH emission was extended in the antisolar direction, consistent with these molecules sublimating off icy grains, while the HCN, C$_2$H$_2$, and C$_2$H$_6$ emission correlates with the CN jet seen in optical imaging (Knight and Schleicher, 2013). Therefore Mumma et al. (2011) and Kawakita et al. (2013) argue specifically from the different spatial distributions for different volatiles for small scale heterogeneity in that there are at least two different types of ice present in 103P, but that these ices are not necessarily distributed in a heterogeneous manner throughout the nucleus. Unfortunately CO$_2$ cannot be observed from the ground, but it is interesting to note that CH$_3$OH and HCN, observed to have different amplitudes of rotational modulation in the sub-mm, have different spatial distributions as observed in the IR. This suggests that species that have different spatial distributions should also have different amplitudes of rotational modulation in their production rates.

Our observations provide evidence from optical wavelengths that supports the interpretations of IR and sub-mm observations. We observed that the mixing ratios CN/H$_2$O and C$_2$/CN (and possibly NH$_3$/H$_2$O) are variable with rotational phase, just as A’Hearn et al. (2011) and Drahus et al. (2012) observed
variability in the $\text{CO}_2/\text{H}_2\text{O}$ and HCN/CH$_3$OH ratios, respectively. Since HCN and H_2O exhibited different spatial distributions and we determined that HCN is likely the dominant source of CN in 103P’s coma, it is not surprising that CN and H_2O have different amplitudes of rotational modulation.

We suggest that changing mixing ratios with rotational phase can be explained by different volatiles having different sources, either directly from the nucleus or from the icy grain halo. This hypothesis also explains the different spatial distributions of different volatile species seen at both IR (Dello Russo et al., 2011; Mumma et al., 2011; Kawakita et al., 2013) and optical (Knight and Schleicher, 2013) wavelengths. Species outgassing directly from the nucleus exhibit spatial distributions similar to the CN jet, while species outgassing from the icy grain halo have spatial distributions that are always extended in the antisolar direction due to radiation pressure pushing the grains in that direction. Also, species outgassing directly from the nucleus will have stronger rotational modulation and has a spatial distribution correlated with the CN jet, while species outgassing from the icy grain halo due to the much shorter residence time of gas as compared to dust in a given FOV (see Section 4.3), resulting in changing mixing ratios of species that come from different sources. Therefore, a species that exhibits strong rotational modulation and has a spatial distribution correlated with the CN jet (e.g. HCN) outgasses directly from the nucleus, while a species that exhibits weaker rotational modulation and has a spatial distribution extended in the antisolar direction (e.g. H_2O) originates predominately from the icy grain halo. This means that H_2O, CH$_3$OH, and C$_2$H$_2$ come from sources in the icy grain halo, while CO$_2$, CN, HCN, C$_2$H$_2$, and C$_2$H$_4$ outgas directly from the nucleus. CH may originate in the icy grain halo and NH$_3$ may outgas mostly from the nucleus, but more data is needed to test these conclusions.

The fact that there is a segregation of species between the icy grain halo and direct outgassing from the nucleus suggests that the composition of the ice sublimating in the icy grain halo is different than the ice that is sublimating directly off the nucleus. This supports the conclusions of Mumma et al. (2011) and Kawakita et al. (2013) pertaining to the heterogeneity of the ices in 103P.

5. Conclusions

We presented high spectral resolution optical spectra of Comet 103P/Hartley throughout the Fall 2010 apparition. We measured production rates for CN, C$_2$, CH$_2$, NH$_3$, and H_2O, and computed mixing ratios for these species compared to H_2O and CN. We observed significant rotational modulation in gas production rates (factors of 3–5 for all species). We also found evidence that the CN/H_2O, NH$_3$/H_2O, and C$_2$/CN ratios experience rotational modulation, although for NH$_3$/H_2O this required comparison of multiple data sets, which may introduce systematic errors due to different transitions observed and different observing geometry that are not considered in the formal error bars. There is also evidence that the CH/CN ratio was higher pre-perihelion than post-perihelion.

We interpret the changing mixing ratios as a manifestation of the source of the gas, whether it sublimates directly from the nucleus or predominately from icy grains. In this picture, C$_2$ and H$_2$O sublimate off CHON particles and icy grains, respectively. The parent molecules of CN and (possibly) NH$_3$ sublimate directly from the nucleus. This suggests chemical heterogeneity in the composition of the ices present in the nucleus. By comparing our observations to those of parent molecules in the NIR, we determined that our observations are consistent with all CN and NH$_3$ resulting from photodissociation of HCN and NH$_3$, respectively. The C$_2$ and CH abundances cannot be supplied by C$_2$H$_2$ and CH$_4$ alone. Therefore another parent, whether a different hydrocarbon or CHON grains, is needed to account for the observed abundances.

References

