
 
Comparison of SMOS and Aquarius Sea Surface Salinity and analysis of possible 

causes for the differences 
 

E. P. Dinnat*
1
, J. Boutin

2
, X. Yin

2
, D. M. Le Vine

3
, P. Waldteufel

4
, J. -L. Vergely

5
 

1Cryospheric Sciences Laboratory, NASA-GSFC and Chapman University, Greenbelt, MD, United States 
2Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, CNRS/IRD/UPMC/MN, Paris, 

France 
3Cryospheric Sciences Laboratory, NASA-GSFC, Greenbelt, MD, United States 

4Laboratoire Atmosphères, Milieux, Observations Spatiales, CNRS/UVSQ/UPMC, Paris, France 

5ACRI-ST, 260 route du Pin Montard, Sophia Antipolis, France. ACRI-ST, 260 route du Pin Montard, Sophia Antipolis, 

France. 

1. Introduction 

Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet 

their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's 

Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant 

differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, 

except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the 
SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are 

mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. 

We investigate the impact of the vicarious calibration and some components of the retrieval algorithm used by both 

mission on these differences. 

2. Differences in SMOS and Aquarius algorithms 

One notable difference between the two missions’ algorithms is the dielectric constant model used for the sea 

water. SMOS uses the model of Klein and Swift (1977) [1] and Aquarius uses the model of Meissner and Wentz (2012) 

[2]. Although similar, the two models are noticeably different, especially in cold water (Fig. 2, left). The dielectric 

constant model is used at two stages of the data processing: 1/ to calibrate the instruments by comparing radiometric 

measurements to forward model simulations, and 2/ to invert SSS from surface brightness temperature (Tb). In order to 

assess the impact of the dielectric constant model on the differences observed in SSS between SMOS and Aquarius, we 
reprocess the Aquarius data using the model used for SMOS.  Specifically, we use the Klein and Swift model for the 

reference ocean used in the calibration of Aquarius; then we use it again, keeping all other factors the same, to perform 

the inversion to obtain SSS. 

Another difference between the two missions concerns the vicarious calibration. SMOS Ocean Target 

Transformation (OTT) uses comparisons between measured Tb’s and forward model simulations over a limited region in 

the Pacific Ocean to remove biases in its field of view [3]. Aquarius performs a similar comparison at global scale [4] . 

The reference SSS for the simulations is the World Ocean Atlas (2009) for SMOS [5], the HYbrid Coordinates Ocean 

Model (HYCOM) for Aquarius [6]. We assess the difference in the reference salinity fields that are used to calibrate both 

instruments. 

Finally, the correction for Faraday rotation is performed using different approaches for both missions. Faraday 

rotation results in mixing up the vertical (V-pol) and horizontal (H-pol) polarizations of Tb. It needs to be accounted for 
before retrieving SSS. The Faraday rotation angle is a function of the vertical Total Electron Content (TEC) up to the 

spacecraft altitude, the magnetic field vector B and the geometry between B and the sensor's line of sight. Aquarius 

retrieves the Faraday rotation angle using a combination of the measured third Stokes parameter and Tb at V- and H-pol 

as proposed in [7]. For now, SMOS algorithm retrieves a TEC value from SMOS data assuming TEC is constant over a 

dwell line and considering a prior value of TEC from the International GPS Service (IGS) data  [8]; the Faraday rotation 

angle is then derived from this retrieved TEC and B from the International Geomagnetic Reference Field (IGRF) [9][10]. 

However, a new technique for retrieving TEC from the third Stokes parameter measured by SMOS at high incidence 

angles has been developed [11]. We show some results from this new TEC estimates, and compare them with the IGS 

model. We also present the TEC derived from the Faraday angle retrieved by Aquarius and B from the IGRF model. It 

should be noted that the IGS TEC reported here are always scaled to the spacecraft altitude. 
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3. Results 

The two dielectric constant models exhibit differences of less than a percent, but this uncertainty results in 

differences in Tb of the order of a few tenths of a Kelvin (Fig. 2, left). The differences between Aquarius original data 

and data reprocessed with SMOS permittivity model vary mostly within 0.5 psu at global scale, with a few larger 

regional variations, for example in cold waters (Fig. 2, right). Seasonal variations occur at mid and high latitudes. 

Aquarius and SMOS differences exhibit dependence in temperature (Fig. 1), which is reduced when Aquarius data are 

reprocessed with SMOS’s permittivity model. We find that the permittivity model explains part of the differences 

between both instruments, particularly in cold waters, but some significant disagreement remains. 

The differences in the reference SSS field are most of the time relatively small, but not always negligible (Fig. 3, 

left). Large regions of the ocean exhibit differences of just 0.1 psu or less. However, regionally, differences can be larger 

(1 psu or more) and are variable in time. The difference in the region used for SMOS calibration varies between -0.1 psu 
and +0.05 psu since Aquarius started operating (Fig. 3, right). 

A comparison between the TEC obtained from Aquarius measurement and the IGS model for May 2012 (Fig. 4, 

left) shows good qualitative agreement in general, but a systematic higher IGS TEC for the southern latitudes. For the 

high southern latitudes (higher than -40 degrees), Aquarius TEC is close to null, contrary to what IGS predicts. A 

comparison of SMOS retrieved TEC in May 2011 (Fig. 4, right) shows very similar results, with IGS showing a much 

larger TEC than the one retrieved from the SMOS measurements. Preliminary tests indicates that using a TEC derived 

from Tb measurements improve SMOS SSS retrieval ([11] and [12], this meeting), and should make Aquarius and 

SMOS more consistent with each other. 

 

Figure 1: Global map of the difference in SSS between SMOS Level 3 (LOCEAN) product and Aquarius 

Level 2 product binned monthly at 1 deg x 1 deg spatial resolution, for the month of January 2013. The 

colorscale is saturated between - 1 psu and + 1 psu. 



 
 

Figure 2: (left) Tb difference at vertical polarization for a smooth sea surface (i.e. Fresnel reflectivity) caused by 

differences in sea water dielectric constant model, computed between  KS77 [1] and MW12 [2] models, versus Sea 

Surface Salinity (SSS) in psu and Sea Surface Temperature (SST) in Celsius. The incidence angle is 38 degrees. 

(right) Global map of the difference in Aquarius SSS (psu) for one week in early February 2012 caused by 

differences in dielectric constant models. The difference is between our reprocessed Aquarius data and the official 

Level 2 product. We compute the reprocessed data using the KS77 model for the calibration and the inversion of 

the Level 2 data into SSS. The official product uses MW12 for the calibration and inversion. 

4. Conclusion 

We assess the impact of the difference in dielectric constant model and reference salinity field on the difference in 

retrieved SSS between SMOS and Aquarius. We find that the dielectric constant has a large impact mostly in cold 

waters. Differences in reference SSS fields are small in general, but could explain biases of 0.1 psu at times. This 
research is ongoing and will address the differences in reference fields for the sea surface temperature. We also analyze 

the results of a new technique used to derive the Total Electron Content (TEC) from the third Stokes parameter measured 

by SMOS. Results appear consistent with the TEC derived from Aquarius measurements (although these preliminary 

tests were conducted for the same month but for different years) and lead to improved SMOS SSS retrieval ([11] and 

[12], this meeting) . Ultimately, a processing similar to SMOS will be applied to Aquarius data to assess the impact on 

SSS retrieval of several of the differences in the two instrument's algorithms. 

  

Figure 3: (left) Global monthly map of the differences in SSS (psu) between the two different ancillary products 

used in the calibration of Aquarius and SMOS. The difference is between the HYCOM model (used for Aquarius) 

and the World Ocean Atlas 2009 (used for SMOS). The red square in the south of the Pacific Ocean off the coast of 

South America illustrates the region used for the calibration of  SMOS SSS product (i.e. the Ocean Target 

Transformation). (right) Time series of the average (mean and median) and standard deviation of the difference in 

SSS between HYCOM and WOA09 over the Ocean Target Transformation (OTT) region since the start of the 

Aquarius mission (Aug 2011 - Nov 2013). The vertical dashed lines part the different years. 



 

 

 

Figure 4: Latitudinal mean of Total Electron Content (TEC) retrieved from (left) Aquarius and (right) SMOS 

measurements (blue curves), and TEC from the IGS model [8] (green curves). Aquarius data are for May 2012 

and SMOS data are for May 2011. 
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