Adapting the SpaceCube v2.0 Data Processing System for Mission-Unique Application Requirements

2015 AHS Conference
Montreal, Canada
June 16, 2015

Dave Petrick
Principal Engineer
SpaceCube, Target Applications

- Small, light-weight, reconfigurable multi-processor platform for space flight applications demanding extreme processing capabilities
 - Reconfigurable components: FPGA, Software, Mechanical
 - Promote reuse between applications
- Hybrid Flight Computing: hardware acceleration of algorithms to enable onboard data processing and increased mission capabilities
- Example Applications: Instrument Data Interfacing and On-Board Processing, Autonomous Operations, Situational Awareness, Scalable Computing Architectures

Hardware Algorithm Acceleration

<table>
<thead>
<tr>
<th>Application</th>
<th>Xilinx Device</th>
<th>Acceleration vs CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
<td>Virtex-4</td>
<td>79x vs PowerPC 405 (250MHz, 300 MIPS)</td>
</tr>
<tr>
<td>Altimeter</td>
<td>FX60</td>
<td></td>
</tr>
<tr>
<td>RNS GNFR</td>
<td>Virtex-4</td>
<td>25x vs PowerPC 405 (250MHz, 300 MIPS)</td>
</tr>
<tr>
<td>FPU, Edge</td>
<td>FX60</td>
<td></td>
</tr>
<tr>
<td>HHT</td>
<td>Virtex-1</td>
<td>3x vs Xeon Dual-Core (2.4GHz, 3000 MIPS)</td>
</tr>
<tr>
<td>EMD, Spline</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Hyperspectral Data</td>
<td>Virtex-1</td>
<td>2x vs Xeon Dual-Core (2.4GHz, 3000 MIPS)</td>
</tr>
<tr>
<td>Compression</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>GOES-8 GndSys Sun correction</td>
<td>Virtex-1</td>
<td>6x vs Xeon Dual-Core (2.4GHz, 3000 MIPS)</td>
</tr>
<tr>
<td></td>
<td>300E</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1) All functions involve processing large data sets (1MB+)
2) All timing includes moving data to/from FPGA
3) SpaceCube 2.0 is 4x to 20x more capable than these earlier systems

On-Board Data Reduction

On-board product generation yields factor of 165x data volume reduction

Notes:
1) All functions involve processing large data sets (1MB+)
2) All timing includes moving data to/from FPGA
3) SpaceCube 2.0 is 4x to 20x more capable than these earlier systems
Commercial Processor Trend

“Fastest” consumer CPU in 2011

- Intel Core i7 3960X (Hex core)
- Intel Core i7 980 (Hex core)
- Intel Core i7 920 (Quad core)
- Intel Core 2 QX9770 (Quad core)
- AMD Athlon FX
- Intel Pentium 4
- AMD Athlon XP
- Intel Pentium III
- PowerPC 750
- Intel Pentium Pro
- Intel Pentium
- Motorola 68040
- Intel 286

MIPS

Space Processor Trend

- Shuttle
- Galileo
- HST
- Pathfinder
- ISS
- New Horizons
- Mars Rovers
- EOS Terra
- EOS Aqua
- MRO
- LRO
- DAWN
- SDO
- GPM
- Curiosity

Y-Axis: MIPS
X-Axis: Years (1975-2015)
Future Space Processing Requirement

Next Generation Mission Processing Requirements (Decadal Surveys)

Transistor count

SCIENCE DATA PROCESSING BRANCH • CODE 587 • NASA GSFC
SpaceCube Closes the Gap

Next Generation Mission Processing Requirements (Decadal Surveys)

Transistor count

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC
SpaceCube Family Overview

v1.0
- 2009 STS-125
- 2009 MISSE-7
- 2013 STP-H4
- 2016 STP-H5

v1.5
- 2012 SMART

v2.0-EM
- 2013 STP-H4
- 2016 STP-H5

v2.0-FLT
- 2015 GPS Demo
- Robotic Servicing
- Numerous proposals for Earth/Space/Helio

2012 SMART

2015 GPS Demo
- Robotic Servicing
- Numerous proposals for Earth/Space/Helio
Example SpaceCube Processing

Real-Time Image Tracking of Hubble

Fire Classification

Gigabit Instrument Interfacing

Xilinx ISS Radiation Data

Spectrometer Data Reduction

Image Compression
On-Board Image Processing

→ Successfully tracked Hubble position and orientation in real-time operations
→ FPGA Algorithm Acceleration was required to meet 3Hz loop requirement

→ Typical space flight processors are 25-100x too slow for this application
SpaceCube v2.0 Flight System

Power Card
- 22-38V Input, 7A limit
- 5V/80W, 3.3V/53W, +/-12V/24W

Processor Card

Backplane Card
- 4 slots
- Point-to-Point
- Gigabit SERDES
- 2 processors, 1 I/O
- 3 processors

Chassis: 12.7 x 23 x 27 cm^3
Example Mission-Unique I/O Cards

- Video/Spacecraft Interface Card
- GPS RF Front-End Interface Card
- LIDAR Front-End Interface Card
- LIDAR High Speed Digitizer
Processor Card

Power Draw: 10-15W
Weight: 0.98-lbs
22 Layers, Via-in-Pad
IPC 6012B Class 3/A

- 2x Xilinx Virtex-5 (QV) FX130T FPGAs
- 1x Aeroflex CCGA FPGA
 - Xilinx Configuration, Watchdog, Timers
 - Auxiliary Command/Telemetry port
- 1x 128Mb PROM, contains initial Xilinx configuration files
- 1x 16MB SRAM, rad-hard with auto EDAC/scrub feature
- 4x 512MB DDR SDRAM
- 2x 4GB NAND Flash
- 16-channel Analog/Digital circuit for system health
- Optional 10/100 Ethernet interface
- Gigabit interfaces: 4x external, 2x on backplane
- 12x Full-Duplex dedicated differential channels
- 88 GPIO/LVDS channels directly to Xilinx FPGAs
- Mechanical support for heat sink options and stiffener for Xilinx devices
STP-H4 Operational on ISS

ISS SpaceCube Experiment 2.0 (ISE 2.0) on STP-H4

Next Up: STP-H5 in 2016
Adapting the SpaceCube Platform

1) SpaceCube-based Lidar
 - Goddard Reconfigurable Solid State Lidar (GRSSLi)

2) SpaceCube-based GPS
 - Based on NASA/GSFC Heritage “Navigator” Technology

3) ISS Robotic Avionics
 - Robotic Refueling Mission 3 (RRM3)
LiDAR Application (GRSSLi)

- Imaging LiDAR based on MEMS Scanning Mirror
- What can it do?
 - High quality & high rate proximity operations range imaging
 - 6mm range resolution, <1cm noise 1σ, 5µs per pixel
 - Variable rate/ spatial resolution
 - 3Hz @ 256x256 pixels, 12Hz @128x128 pixels
 - Variable field of view, +/- 20° max (currently)
 - Variable fiber laser to extend dynamic range
 - <0.5m to 50 meter range max with 2µJ laser
 - Science quality sub-millimeter range resolution scans
 - Demonstrated 380µm resolution, 480µm noise 1σ
 - Geophysical science
 - Model building and reconnaissance
 - Range finding
 - 182 meters demonstrated with 1 second average
- All capabilities listed **do not** require hardware modifications
 - Software configurable
Main Goal: **Forge Path to Flight**
- All designs spec flight parts (where possible)
- TRL5 box built with engineering/commercial versions of flight parts

2 Box design
- Quickest path to working flight prototype
- Allows separation of heavier and hotter MEB, putting just front end box (FEE) on optical bench.
- Easier to modify for varying mission requirements (range/power, etc)
- Allows easy integration of additional sensors like cameras, vision algorithms, or additional cards like GPS
GRSSLi System Integration

Main Electronics Box (SpaceCube v2.0)

Front End Box
GRSSLi Sub-millimeter Scans

Science LiDAR Requirements
- Range resolution:
 - < 0.001 m
- Max Range: 10m
- Pixel Scale
 - 1 cm Spatial Resolution @ 1 m range

Demonstrated Capability
- Range resolution: 0.000380 m
- Range noise: 0.00480 m 1σ
- Laser Divergence: 2 mRad
 - At 1 m: 4 mm spot dia
 - At 10 m: 4 cm spot dia

3D Scan of “FeSS” Sandstone clearly exhibiting biologically derived textures

Mars Rock in Gale Crater with < 1 cm thick layers GRSSLi could measure the 3D arrangement of layered materials to understand depositional environments and textures associated with biosignature preservation potential.

Curiosity MastCam mosaic (100 mm images, NASA/JPL/MSSS)
SpaceCube-Based GPS

Merges NASA GSFC SpaceCube avionics and “Navigator” technologies

NavCube with dual frequency RF card

Spirent GPS simulators
High Level
GPS RF Card Diagram
High Level GPS Processor Card Diagram

- PROM
- 422 Interfaces
- Ext Temp/Volt (3x available)
- J3
- J4
- Aeroflex
 - CFG
 - FSM
 - UART
 - ADC
 - Ser Sync
 - Clock/Resets
- Xilinx 0
 - Unused FPGA Resources
 - C&DH
- GPS Embedded System
- Xilinx 1
- DDR
- Flash/DDR/SRAM
- XS0_CFG
- XS0/X1_CFG
- SerSync
- WDT
- S/C TLM
- Debug
- X1_CFG
- X1/X0_CFG
- SerSync
- WDT
- Debug
- GPS RF Signals

- J2

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC
SpaceCube GPS Tracking Data

Tracking GPS L1 and L2C signals

L1 measurements – L2 measurements

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC
MMS Mission On-Orbit Performance of GPS Navigator

Nsv: number of GPS satellites tracked

Radial pos: radial distance from center of Earth

Diagram Description

- **nsv/radial pos (R_e)**
- **Day of year 2015**

The diagram shows the number of GPS satellites (nsv) tracked and their radial position (R_e) over the days of year 2015, with different colors representing different observation sets (obs1, obs2, obs3, obs4). The y-axis represents the radial position in Earth radii (R_e), and the x-axis represents the day of year 2015.
Robotic Refueling Mission (RRM)
RRM Operations
RRM3 SpaceCube Preliminary Diagram

- +28VDC Power
- Sensor excitation
- 5V Discrete
- Two-way RS-422
- LVDS
- Analog Data
- 1553
- Ethernet
- Digital Data (ground only)

SpaceCube

- **SC2.0 Power Card**
- **SC2.0 Processor Card**
 - LVDS
- **Analog Card**

FRAM

- 1553 (ELC)
- Ethernet (ELC)

EGSE

- Wireless Access Point (WAP)

Environmental Temp Sensors

Cryogen Demonstration Subsystem (CDS)

RFMG & Flow Meter Electronics

Xenon Transfer Subsystem (XTS)

Situational Awareness Cameras (3)

Motor Control Electronics (MCE)

Power Distribution Unit (PDU)

Task Board Interface

Compact Thermal Imager (CTI)
SpaceCube on the ISS

ELC2
MISSE-7/8
SpaceCube 1.0

ELC3
RRM3
SpaceCube 2.0

ELC1
STP-H4
SpaceCube 1.0
SpaceCube 2.0
STP-H5
SpaceCube 1.0
SpaceCube Mini

Image Credit: DoD Space Test Program
Enabling Satellite Servicing

10x Realtime
Questions?