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Abstract

A non-reflecting boundary condition (NRBC)
for practical computations in fluid dynamics
and aeroacoustics is presented. The technique
is based on the hyperbolicity of the Euler equa-
tion system and the first principle of plane
(simple) wave propagation [1]. The NRBC is
simple and effective, provided the numerical
scheme maintains locally a C'! continuous so-
lution at the boundary. Several numerical ex-
amples in 1D, 2D and 3D space are illustrated
to demonstrate its robustness in practical com-
putations.

1 Introduction

It is well-known that non-reflecting boundary con-
ditions (NRBCs) play an important role in fluid flow
and aeroacoustics computations. The need for artificial
boundary conditions arises when the domain of the prob-
lem is unbounded and extends to infinity. In order to
treat the problem numerically, a domain of finite size is
required and artificial boundaries are imposed. At these
artificial boundaries, NRBCs are sought for to minimize
their influences on the flow. A spurious reflection result-
ing from an inappropriate numerical boundary condition
will contaminate the flow field and may entirely spoil
the flow computation. Research on NRBC is a challeng-
ing topic in engineering and applied mathematics. For
decades, a vast number of papers on NRBC have been
published, e.g. see [3-6], the review paper by Givoli [2],
and the references cited there.

In one-dimensional flow, at an artificial boundary, En-
quist and Majda [3], and Hedstrom [7] proved that a
boundary condition is non-reflecting is equivalent to say-
ing that the characteristic variables corresponding to the
incoming characteristic curve remain constant across the
artificial boundary (see also Hirsch [8], p. 370). For
multi-dimensional flow, this 1-D technique is combined
with dimension splitting and applied in the practical
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NRBC treatment. Such a combined treatment has been
the topic of many papers on the characteristic based NR-
BCs (see e.g. [4] and references in [2]).

Other alternative treatments for NRBC found in the
literature include (see [2-6]):

(i) in the far-field, using a predictable asymptotic ana-
lytical solution at the boundary ( the radiation boundary
condition),

(ii) diminishing the strength of the waves/disturbances
before they reach the artificial boundary, and thus mini-
mizing the reflecting effect. Usually, increased numeri-
cal damping is applied to a zone between the core domain
and the artificial boundary (the buffer zone or sponge
zone) to do the job. In the recently developed PML (per-
fectly matched layer) method, a specially designed equa-
tion system is imposed in the matching layer (or sponge
zone) to guarantee the exponential decaying of the dis-
turbances in the layer [5,6].

In the present paper, a different but simple criterion
is introduced to treat the NRBCs of the time-dependent
hyperbolic conservation laws of gas dynamics. The cri-
terion is based on the first principle of plane (simple)
wave propagation [ 1] rather than the characteristics the-
ory. Emphasis is put on their viable practical applica-
tions. As it turns out that the NRBCs used in the recent
CE/SE finite volume schemes for flow and aeroacous-
tics computations (e.g. [14,15]) can be directly derived
from this criterion, the present paper also serves to ex-
plain why these simple NRBCs of the CE/SE schemes
work.

The paper is arranged as follows: In Section 2, based
on the hyperbolicity of the Euler equation system and
the propagation of plane wave, the continuity criterion
of NRBC is introduced and proved. An extrapolation-
like NRBC (Type I) based on this criterion and the nu-
merical procedure are described. Then the relation be-
tween the NRBC and the flux balance across the bound-
ary surface is established, which leads to another type
of NRBC (Type II). In Section 3, several numerical ex-
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amples for outflow NRBC in one and multi-dimensional
space are presented. Numerical examples with Type II
NRBC at the inflow and other artificial boundaries are
demonstrated in Section 4. Application of buffer/sponge
zones is illustrated in Section 5. At last, the paper is con-
cluded with remarks in Section 6.

As the time-dependent hyperbolic conservation laws
of gas dynamics ( in dimensionless form) is always in-
corporated in the new treatments of NRBC in the present
paper, they are briefly described here for later use:

Ui+ F,+G,+ H, =Q, (1)
where z, y, z and £ are the streamwise and transversal co-
ordinates and time, respectively. The conservative flow
variable vector U and the flux vectors in the streamwise
and radial directions, ¥, G, and H, are given by:

Uy P Fy pU
U, pu I3} pu® +p
U=|Us|=|pv | , F=| F; | = puv
Us pw Fy puw
Us pe Fy puH
G pU
Gy puv
G=|Gs|=|p’+p |,
G4 pow
G5 [)’UH
H, pw
ho pwu
H= | H; | = pwu
H, pw* +p
H5 pwH

where u, v, w and p, p are respectively the velocity com-
ponents, density and pressure, e = Py + 1/2(u? +
v? + w?), and the enthalpy H = p/p + e withy = 1.4.
The right hand side Q is the source term which may in-
clude the possible external forcing terms and/or viscous
fluxes.

By considering (z,y, z,t) as coordinates of a four-
dimensional Euclidean space, Ej4, and using Gauss’s di-
vergence theorem, it follows that Eq. (1) is equivalent to
the following integral conservation laws:

f I, -ds= / QdV, m=1,2,3,4,5 )
S(V) 1%

where S(V') denotes the surface around a volume V in
Ey and I, = (F, Gy Hpyy Uy,) stands for the flux
vectors, Inds = I, e nds , n being the outgoing unit
normal vector in Ejy, is the flux at the infinitesimal sur-
face element ds.
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Figure 1: The NRBC criterion in Ej.

2 The continuity criterion of NRBC for time
dependent conservation laws

There are various techniques to treat the NRBC based
on characteristics theory of the hyperbolic system. For
instance, a well-known 1-D flow NRBC treatment by En-
quist and Majda [3], and Hedstrom [7] is the requirement
that the local perturbation (disturbance) along incoming
characteristics be made vanish at the boundary (see [8],
p.370). Let W = (wy,ws,ws)T be the 1-D character-
istic flow variables, the above requirement states that for
those % such that the corresponding characteristic enters
the computational domain through the artificial bound-
ary:

Awp =0 (3)

Thompson [4], for example, has details on the practical
implementation of the characteristic NRBCs with a finite
difference scheme. Hirsch [8] also offers an excellent
resource of various NRBCs.

In finite volume numerical approaches with hyperbolic
conservation laws, grid nodes are often cell centers and
the boundary faces are often formed by the boundary
cell surfaces. No node lies exactly on the boundary. As
such, a continuity criterion of NRBC and the consequent
NRBC treatments are recommended based on the hy-
perbolicity of the equation system and the first principle
of plane wave propagation [1]. They are simple, robust
and particularly appropriate for cell center finite volume
schemes. Their limitations are also briefly discussed.

2.1 The continuity criterion of NRBC

The continuity criterion is first introduced in an heuristic
way and then proved via the first principle of plane wave
propagation [1].

Under a general assumption that the flow is continu-
ous near the boundary, i.e., with no shock or contact dis-
continuity, we first consider the behavior of the charac-
teristic variables W = (wy, ws, w3, ws,ws)T across the
artificial boundary surface element As as time elapses.
As also represents the interface between a boundary cell
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and its corresponding ghost cell. Note that any (artifi-
cial) spatial boundary is a cylindrical hyper-surface in the
space-time Ey4 space (Fig. 1 demonstrates the situation in
E;).

Let P; and P, be respectively an interior point and
an exterior point of the computational domain in the Ej4
space. Both P; and P, lie in the neighborhood of O, a
point on As (Fig. 1). Recall the standard NRBC treat-
ment for 1-D flow [3,7],

Awg, = wg(P;) —wi(Pe) =0, for selected k.
When P; tends to O from the interior of the domain and
P, tends to O from the exterior of the domain, the NRBC
Eq. (3) becomes:

I}.»i—r{lo wi(P;) = P{iino wi(Pe) = wi(0) 4)
for those selected ks. Therefore, the usual NRBC treat-
ment is formally interpreted as a continuity problem of
wy, across the boundary surface.

Secondly, for the NRBC of multi-dimensional flow,
we formally extend the continuity of wy across the
boundary surface to all ks rather than just a selected num-
ber of ks:

Pl.-lglo wk(P"):,{lgnowk(Pe)’ for all k. (5)

Let U = (u1,ua,us,ug,us)’ = (p, pu, pv, pw, pe)”
and V = (v1,v2,v3,v4,05)T = (p,u,v,w,p)T be re-
spectively the conservative flow variables and the prim-
itive flow variables. From the local equivalence of
the characteristic variables W and V or U (see e.g.
Hirsch[8], p.155-156), Eq. (5) is equivalent to the conti-
nuity of 'V or U across the artificial boundary surface:

Pl;lglo up(P;) = Algo up(Pe), for all k (6)
or
Pl.'lglO ve(B;) = P]elglo ve(Pe), for all k (7)

It is advantageous to switch from the continuity relation
(5) of W to that of V or U, (6) or (7), since the latter
can be treated in an easy way. At this stage, the conti-
nuity criterion of NRBC is heuristically inferred and will
be proved later. The feasibility that all ugs (vgs and wys
as well) can be made approximately continuous simulta-
neously at the boundary surface is demonstrated in the
numerical examples of NRBC in § 2.2.1.

Now, with the presence of the artificial boundary s
(hyper-surface), £ is bisected into two portions, domain
interior D; and domain exterior D.. Within each portion,
the flow is governed by the same Eq. (1). From the first
principle of plane wave propagation, it can be shown that

3

x
»-—-
=}

Figure 2: Sketch of the continuity criterion in 1-D flow,
only a real component of V is shown.

locally there is no reflection at the artificial boundary sur-
face s if the continuity criterion Eq. (7) (or Eq. (6), or
Eq. (5) ) is satisfied.
Proof: Consider a non-conservation form of Eq. (1)
in primitive variables V:
ov -0V

OV

ov. -
where A, B, and C are the jacobian matrices and func-
tions of V. Q is the source term vector. As a result of
the continuity condition (7), an admissible given set of
V at the boundary s may be used as a common boundary
condition to solve separately for V; and V, in their cor-
responding subdomains D; and D,, which are separated
by the artificial boundary s. (Note that generally, the ad-
missible V given at s should be identical to the solution
of V over the entire domain, see Appendix II). Here, V;
and V. are respectively the solutions of (8) in D; and
D.. Let V be the solution of (8) over the entire domain.
Due to the uniqueness of solution for well-posed initial-
boundary value problems (Appendix II), V; is identical
to V in D; and V. is identical to V in D,. Therefore,
in a neighborhood of s, V; and V, are mutually a con-
tinuation of each other across the boundary s and hence
there is no reflection (Fig. 2).

To be more specific in terms of plane wave propaga-
tion, notice that from the hyperbolicity of the system (8),
for any propagation direction k = (kg, ky, k) (the wave
number vector) , the matrix K = k, A + ky Bt k.C has
real eigenvalues and linearly independent left eigenvec-
tors, and then, there exists a plane wave (or simple wave)
solution:

Ni— vei(kox—w t) (9)

where x =(z,y, 2) is the position vector, i = /=1, w
is the angular frequency that is related to the eigenval-
ues via the dispersion relation (see Courant and Hilbert
[1], and Hirsch [8], p. 147, 150, and Appendix I). As a
wave solution of the hyperbolic system (8) can be locally
written as a superposition of the plane wave solutions by
Fourier integral (Appendix I), it suffices to consider only
the behavior of a single plane wave solution in the form
of (9) at the artificial boundary s.
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Figure 3: Numerical treatment of NRBC in Ej3.

Let O (X,,t,) be any point at the artificial boundary
s, then (8) can be locally linearized in the neighborhood
of O, ie.,A, B and C are frozen at V. For any given
wave number vector k, from the continuity criterion (7),
V, = V; = V,.,all A, B and C remain the same across
the boundary and so also the eigenvalues w; = w, = w
(see Appendix I). At O, the plane waves V; and V, share
the same k,x, w and ¢, and hence the same phase. Again,
from the continuity criterion (7), V; = V,, or

Veilkexwt) — 7 gilkexw 1)

ie., Vi = V.. Thus, the plane waves V; and V. share
the same amplitudes too. Therefore, V; is completely
identical to V in a neighborhood of O at the boundary
(in terms of phase and amplitude), and there is no reflec-
tion at O across the artificial boundary surface.

The continuity of V, or U or W (Eq.(5)- Eq.(7))
across the boundary surface is thus the basic criterion of
NRBC adopted in the present paper. In §2.2, the numeri-
cal NRBC (Type D) is constructed based on the continuity
criterion. In §2.3, the relation between an NRBC and the
flux balance across the boundary surface is established.
Such relation leads to another absorbing NRBC (Type
1D).

2.2 The numerical treatment of NRBC

Fig. 3 illustrates a 2-D (in £3) NRBC treatment. Let
AABC be a boundary cell centered at P, with the
side BC coincident with the artificial boundary surface.
ABCD is the ghost cell centered at (), sharing the
boundary edge BC with AABC'. Let O be the centroid
of the boundary surface element BC'C'B'. The limiting
process of limp, .o U(P;) is equivalent to extrapolating
U from the interior node P to O by Taylor expansion.
Similarly, limp, .o U(F,) is equivalent to extrapolating
U from the exterior ghost node @ to O by Taylor expan-
sion.

4

Although theoretically, (6) implies up to C'*° continu-
ity, in numerical approximation, only low order continu-
ity such as C°, C' or C?, etc. can be achieved. Since
a plane wave solution (9) is based on two parameters, its
amplitude and phase, the numerical approximation of U
(or V) is required to be at least C'* continuous at the arti-
ficial boundary in order to be consistent with the physical
solution. Taking a 1-D version of (9) for example, the C'!
continuity requirement is explained as follows.

It suffices to consider only a scalar component of V,
say, the first one p. After discretization, the (artificial )
boundary surface element center O is used to represent
the entire surface element As. Then, from the continuity
criterion, approximately, it can be inferred that the ‘am-
plitude’ (55)i = (Po)e = pPo, Where the subscripts o,
¢ and e stand respectively for the surface center O, do-
main interior and exterior. Approximately, at the bound-
ary surface As,

pi = ﬁoei(kizo_‘wito) = pe = p'oei(kezo_(l)eto). (10)
Note that numerically the C° continuity result (10) pro-
vides no information about the wave number k£ and the
frequency w. With the presence of phase error, numeri-
cal reflection may still occur. However, if the numerical
continuity is enhanced from C° to C1, i.e.

(pi)x =ik;p; = (pe)z = ike pe,

(pi)t = —iwipi = (pe)t = ~iWepe,

then k; = k. and w; = w, and there is no phase error.

In constructing the NRBCs, although any one of U, V,
and W can be used, U is selected since it is employed in
the numerical examples in the present paper. Therefore,
in addition to Uy, the space and time gradients of U at
P, namely, Uy, Uy, U, and Uy are also required. The
resulting linear Taylor expansion (C! continuity) yields
better accuracy and is consistent with the NRBC crite-
rion. The NRBC at the ghost node @ now turns out to
be a problem of how to define U and its gradients at )
so that the flow is C'' continuous at the boundary surface
(represented by O).

2.2.1 Examples of NRBC For the Type I (out-
flow) NRBC, under a mirror image assumption explained
later, it is found that a simple extrapolation technique
works well.

First, an example of NRBC in E3 (2-D space) for tri-
angular mesh is illustrated. As shown in Fig. 3, assume
AABC is a triangular boundary cell with the edge BC'
lying on the boundary and conveniently parallel to the y-
axis. Define a ghost node D as the mirror image of the
triangle vertex A with respect to BC'. Then AABC' and
ADBC are mutually mirror images of each other (the
mirror image assumption). At time step 7, conservative
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variables U are given at the cell center P of AABC.
Then, the NRBC (labeled as Type I) at the geometrical
center @ of the ghost cell may be defined as:

(U)q = (U)p,(Ux)q = (Ux)p =0,(Uy)q = (Uy)p.

(11)
Apply linear Taylor expansions to domain interior and
exterior separately:

(UO)interior = UP o (yO _yP)(Uy)P + 1/2At(Ut)P

(UO)exterior = UQ i (yO e yQ)(Uy)Q + 1/2At(Ut)Q

hence, (UO Jeaterior = (UO Yinterior-

Here, the subscripts P, () and O of z and y denote the
corresponding coordinates of P, ) and O, and from (1),
the time partial derivatives (Ug)g = (Ug)p can be di-
rectly obtained. Thus, U is O continuous at O across
the boundary surface element, (6) is satisfied and the
boundary surface element is non-reflective.

In a consistent way, for 3-D flows, under the same mir-
ror image assumption on the ghost cells, the following
extrapolations are valid NRBCs with C'! continuity:

UQ = Ups (Ux)Q = (Ux)P =0,

(Uy)Q = (Uy)P’(UZ)Q = (Uz)P7 (12)

or

UQ = UP + AIII(Ux)p, (UX)Q = (Ux)P7

(U)’)Q = (Uy)Pv (UZ)Q = (Uz)Pv (13)

where Az = zg — zp.

As demonstrated in the examples in §3 and §4, this
Type I NRBC works well for either supersonic or sub-
sonic flows at the outflow boundary, but it should be
noted that:

1. (12) or (13)is but a possible selection under the mir-
ror image assumptions, there are other forms of NR-
BCs based on (5) - (7);

2. The extrapolation technique utilizes the nearby U p
data to approximate the U data at the artificial
boundary, which is not an unreasonable choice, but
there is a danger that the solution could drift away
from the true solution (see Appendix II). A remedy
is to incorporate the Type | NRBC with other phys-
ical boundary conditions (e.g. back pressure, etc.)

5

P - boundary cell center
Q - ghost cell center

Figure 4: Control volumes (C'Vs) in E5 for compact
updating. Left: boundary cell AABC and the corre-
sponding hexagon C'V base ASBQC RA; right: quadri-
lateral boundary cell ABCD and its corresponding oc-
tagon C'V base ATBQCRDSA; R, S,T are centers of
neighboring cells and BC' the boundary. In any case,
quadrilateral PBQC'is a portion of the C'V base.

2.2.2 Numerical implementation of NRBC
The implementation of the NRBC is incorporated in the
numerical procedure and may be summarized in the fol-
lowing steps:

(i) Based on the flow data at the boundary cell center
P,ie. Up and its spatial gradients (slopes) Uy, Uy and
U, determine the flow data Ugq as well as its gradients
Uk, Uy and U, i.e. the NRBC at (), as described in
§2.2.1.

(ii) Update U at boundary cell center P to the new
time level by the conservation laws (2). In order that U
be C! continuous across the artificial boundary, the up-
dating procedure must be carefully designed to take ac-
count of the accuracy of surface flux calculation. Here
a compact updating procedure described in §2.2.3 is rec-
ommended.

(iii) After U at all the interior cell centers of the com-
putational domain are updated, evaluate the new spatial
gradients Uy, Uy, U, at the boundary cell center P by
finite difference. For multi-dimensional flows, a linear
equation system is required to solve for the gradients.

(iv) Repeat steps (i) - (iii) and march in time.

2.2.3 Compact updating The updating proce-
dure recommended here is identical to the one used in
the recent CE/SE method (Chang et al [10,11]) and sim-
ilar to the NT (Nessyahu-Tadmor ) scheme [12] in 1-D
flow.

The purpose for compact updating is to achieve high
accuracy (C' continuity) from a small cell stencil (e.g.
the stencil formed by the immediate neighboring cells).
Therefore, not only U but also its gradients U,, U,
and U, are required. The compact updating is capable
of maintaining C' continuity of U across the artificial

American Institute of Aeronautics and Astronautics



control volume
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Figure 5: Fluxes balance on an internal face S; in Ej3.

boundary.

Consider a triangular cell AABC' in £3 (Fig.4, shaded
area). Let P and @, R, S be respectively the cell centers
of AABC and its neighboring triangular cells. Most of
the finite volume schemes use the space-time cylinder
AABC as the control volume (C'V') for updating V or
U at P. Surface flux along, say, AB is obtained by ex-
trapolation from S across the cell to the surface center
along AB. Another treatment is to include S in the C'V
and replace the flux along AB by the fluxes along AS
and SB. Since S sits right on both surfaces along AS
and SB, no extrapolation across the interior of the C'V
is involved. For the triangular cell AABC in Fig. 4 the
CV turns out to be a space-time hexagon cylinder in E3
based on ASBQC RA. By applying the integral conser-
vation laws (2) to the C'V, updating flow data at P based
on the flow data at a compact node stencil of @, R, S
is now completed. Fig. 4 also demonstrates that for
quadrilateral mesh cells the C'V is an octagon cylinder
in B3 (2-D space).

The surface fluxes for the CV surfaces passing through
a vertex, say, cell centers ), R,S, can be evaluated
by first extrapolating U along the surface to their cor-
responding surface centers by linear Taylor expansion,
calculating flux functions FG and H, and then incor-
porating the surface unit normal vector and computing
the fluxes. For high space dimensions, the C'V's are geo-
metrically more complicated. More details including the
updating of U, Uy, and U, can be found in [10,11].

It should be noted that the compact updating is sug-
gested for boundary cells only. For interior cells, one
may still continue to use other finite volume schemes.

2.3 Relation between an NRBC and the flux
balance across the boundary surface

In this subsection, the relation between two statements is

established. The first one states that the incoming fluxes

at the artificial boundary surface are equal to the outgo-

ing fluxes, or fluxes are balanced across the boundary

6

artificial boundary surface
element ds

control volume
V=V1 +V2

Figure 6: Fluxes balance across a boundary surface ele-
ment in a control volume (the above figure) in Ej.

surface. Here, the outgoing flux is defined as a portion of
the left hand side of (2):

/ I, - ds,
AS

where AS denotes the artificial boundary surface (el-
ement). The second statement is that the boundary is
non-reflective.  Such a relation leads to the Type II
NRBC. Numerical implementation of the Type Il NRBC
is straightforward and will be illustrated in §2.4.

Let V' be any control volume in the E4 space inter-
sected and divided into two portions V; and V5 by an
internal surface S;. Let £1, ¥, and o7, 02 be the fluxes
around the surfaces of Vi and V5 respectively. Here oy
and o9 are the outgoing fluxes at the interface S; for V3
and V5 respectively (Fig. 5 ). Then, the following lemma
holds:

Lemma 1: For a control volume V in the E4 space,
fluxes passing through any of its internal surface S; are
balanced, i.e. o7 + 02 = 0.

Proof: Apply (2) to V', V; and V; separately. We have

m=1,2,3,4,5,

21+ 2 =/ QmdV,
v

Y1401 = deV, Yo+ 09 =

Vi Va
Add the second and the third equations and then subtract
the first one, we have o1 + 09 = 0.

In other words, across any interior surfaces, no extra
‘source’ should be generated.

Next, we show that locally the continuity of flow vari-
ables (Eq. (5). (6) or (7)) can be inferred from flux bal-
ance. Hence, flux balance suffices for an NRBC.

QmdV.
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Consider an element ds of the cylindrical spatial
boundary surface in E4. As shown in the control vol-
ume in Fig. 6 (in Ej), ds is centered at O. As-
sume the outgoing unit normal vector at O is n; =
(Niz, Mgy Mz O)T. then, the incoming unit normal is np =
(—ng, —ny, —nz,O)T. The outgoing flux o1 for the in-
ner boundary surface:

o11 F Gy H,
o12 Fy Go H,
o1= | o3 | =ds[n, | F3 |+ny | G |+n. | H;
014 Fy G4 Hy
o135 Hg Gs Hy

= ds[n.F +n, G + n_ H].

Let the outgoing boundary surface flux vector be:
L = [n,F +n,G + n H],

then
L =o01/ds.

Let V = (p,u,v,w,p)T be the primitive flow variable
vector. L may be considered as a non-linear vector func-
tion of V. The jacobian matrix % has the eigen values
(e.g. see Hirsch [8], p.177):

M=l =A3=u-Ng+v Ny +w-n,,

M=M—0CA5 =\ +c

where c is the speed of sound. If none of the eigenvalues
vanishes at O, the jacobian g—{; is non-singular, and an
inverse vector function, the primitive flow variables 'V as
a vector function of the surface flux L exists. Thus,

Lemma 2: If the jacobian g—{‘, is non-singular, then,
locally, the primitive variables V are uniquely defined
by the flux vector L at the center O of ds.

Proof: Assume L(V1) = L and there is another V2
in the neighborhood of V1, such that L(V3) = Lq. By
a linear Taylor expansion,

L(V3) - L(V1) =

JL

ov
Hence Vo — V1 = 0 or Vo = V7 since the first order
term cannot cancel with the second order term.

From Lemma 2 and the NRBC continuity criterion (7),
it is inferred that locally, under the condition that the ja-
cobian g—{; is non-singular, the following lemma holds:

Lemma 3: For hyperbolic conservation laws of gas
dynamics, an element of the artificial boundary surface is
non-reflective if its outgoing fluxes and incoming fluxes
are equal (balanced).

Jv=v,(V2 = V1) + O([V2 = V1[>) = 0

7

boundary surface
element As

control
volume V

/

interior cell

ghost cell
center

center

Figure 7: NRBC at inflow in E3. Inflow data are given
at the ghost cell center.

Lemma 3 states that conditionally the flux balance
across a boundary surface element is a sufficient condi-
tion for NRBC. With the concept of flux balance, there
is also an intuitive interpretation of the commonly used
terms for NRBC such as ‘transparent’ and ‘absorbing’.
If the flux 100% passes through the boundary surface
element (or the flux is balanced), the boundary surface
is said to be ‘transparent’ or ‘absorbing’ to the fluxes.
Chang er al [9] were the first attempting to explain the
1-D NRBC using flux concepts.

2.4 Implementation of absorbing boundary
condition

The lemmas in §2.3 can be easily applied to construct
the Type II NRBC. In case that at the ghost cell center
nodes flow variables must be specified as the given val-
ues (e.g. at the inflow boundary, Fig. 7), another type
(Type II) of NRBC - absorbing NRBC arises. A control
volume V" across the boundary surface is needed to apply
the divergence theorem (2). As shown in Fig. 7, the ghost
cell center lies outside of the domain, and the boundary
surface element As is an internal surface of the control
volume V, then, from Lemma 1 and Lemma 3, As is au-
tomatically a non-reflective boundary surface element.

The Type II NRBC states that no extra condition of
NRBC is needed with the prescribed flow boundary con-
ditions at the ghost cell center. This Type II NRBC is
flexible and valid with practically any cell shapes or con-
figurations. Ghost cells are not required to be mirror
images of the corresponding boundary cells. However,
it is noted that U is still required to be C' continuous
across the artificial boundary surface. Consequently, the
compact updating is still recommended for the Type II
NRBC.

In many cases, over a long time period, the (subsonic)
flow may develop a flow near the inflow boundary that is
different from the imposed boundary conditions, or the
boundary condition becomes ‘overdetermined’, then, a
‘matched layer’ may be formed between the computed
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interior flow and the imposed flow boundary condition
(see Fig. 18). The situation is somewhat similar to
that in the PML (perfectly matched layer) method [5,6].
The shock-capturing numerical scheme should be able to
quickly resolve this non-physical discontinuity in a few
cells.

25 Discussions on the NRBCs

In practical applications, due to discretization, approxi-
mation and lack of information in the domain exterior,
there are limitations for both Type I and Type II NRBCs.

For Type I NRBC, as mentioned in §2.2.1, extrapola-
tion technique might lead to drifting or deviation from
the true solution because no flow data outside the out-
flow boundary is available. In addition, under the mirror
image assumption on the ghost cells in §2.2.1 and the as-
sumption that the boundary surface As is normal to the
2 axis, the NRBC (12) implies that the NRBC continuity
criterion (5 - 7) are satisfied at any point on As. How-
ever, as explained in the following, due to discretization
and the possible consequent phase error, the accuracy of
the NRBC could be degraded.

Consider a Fourier mode in the plane wave solution
(9): eik**x+ 1) Here, §(x,t) = k @ x — wt is the phase
of the wave mode, with k being the wave number vec-
tor in the propagation direction. Generally, the direction
of k may or may not be the same as the flow direction.
B(z,t) = const. stands for a wavefront ( or a charac-
teristic surface, see e.g. Hirsch [8], p.150, Courant and
Hilbert [1] ). After discretization, the center O of As
(Fig. 3) is employed to represent the entire As. Then
how much phase error is introduced to the Fourier mode
by the discretization? Let x = (z,y, 2) be the position
vector of any point on As and xo the position vector
of the center O. For clarity, assume time ¢ is held un-
changed. Then, after discretization, the phase error Af
due to replacing x by x¢ is:

Al =kex—-kexp=ke(x—x0) (14)
note that Ax = X — xp lies on As, A§ = 0 when k
is normal to As. Therefore, for Type I NRBC, the best
result is obtained when the wave propagation direction is
normal or only slightly oblique to the boundary surface.
Otherwise, a phase error of order O(Ax) may be intro-
duced. It deteriorates the accuracy of NRBC and causes
numerical reflection.

For Type II NRBC, in addition to the similar phase er-
ror of Type I NRBC, there are other restrictions too. In
§2.3, Lemma 3 is conditionally valid because it is based
on the one to one correspondence between the boundary
surface flux vector L and the primitive flow variable vec-
tor V. The latter relies on the non-singularity of the jaco-
bian 2% . In case that 2% is singular, Lemma 3 may fail.

oV’ o
In addition, Lemma 3 is valid only locally. Globally, the
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o EXACT CE/SE
430.00 0.0000000000 0.0000000000
431.00 0.0000000000 0.0000000000
432.00 0.0000000000 0.0000000000
433.00 0.0000000001 0.0000000001
434.00 0.0000000014 0.0000000014
435.00 0.0000000149 0.0000000149
436.00 0.0000001391 0.0000001391
437.00 0.0000011125 0.0000011125
438.00 0.0000076294 0.0000076294
439.00 0.0000448527 0.0000448527
440.00 0.0002260436 0.0002260436
441.00 0.0009765625 0.0009765625
442.00 0.0036166981 0.0036166981
443.00 0.0114823007 0.0114823007
444.00 0.0312500000 0.0312500000
445.00 0.0729080650 0.0729080650
446.00 0.1458161299 0.1458161299
447.00 0.2500000000 0.2500000000
448.00 0.3674336231 0.3674336231
449.00 0.4629373561 0.4629373561
450.00 0.5000000000 0.5000000000
451.00 0.4629373561 0.4629373561

Figure 8: Comparison of exact and numerical results at
the domain boundary for the 1-D Gaussian pulse prob-
lem.

relation between L and V involves a quadratic equation,
the vector function V(L) could be multi-valued. This
could break the one to one correspondence between L
and V globally and lead to the failure of Lemma 3 in the
global sense.

In a nutshell, in reality, there are various situations
that the Type I or I NRBCs can only be partially or ap-
proximately implemented, causing spurious reflections
at the (artificial) boundary or deviation from the true so-
lution. In practice, an effective remedy is to impose a
buffer/sponge zone between the boundary and the inte-
rior domain. Although the same governing equations (1)
or (2) are employed in the sponge zone, numerical damp-
ing is highly increased to diminish the wave/disturbance
amplitude before it reaches the boundary and to mini-
mize the spurious reflection. An example is depicted in

§s.

3 Numerical examples for outflow NRBC

In this Section and §4, the effectiveness of these NR-
BCs is demonstrated in numerical examples in one, two
and three dimensional spaces.

In principle, any finite volume scheme can be used
with the above NRBC if it can be manipulated at cer-
tain high accuracy. Here the recently developed space-
time conservation element and solution element (CE/SE)
method [10,11] is chosen for computing the examples
since the compact updating is a standard procedure in
the scheme, making application of the NRBCs straight-
forward and effective. Full details of the method are de-
scribed in [10,11]. The Type I NRBCs used with the
CE/SE method are identical to (12), with possible minor
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Figure 9: Propagation of 1-D Gaussian pulse at the do-
main boundary.

modification according to the grid layout.

3.1 Propagation of a 1-D Gaussian pulse
Consider a scalar initial value problem:

ou  Ou

el S e

ot i oz

over the range —20 < = < 450, with a Gaussian pulse
u = 0.5ezp [—(In2)(£)?] att = 0. This is one of
the benchmark problems of the 1st CAA Workshop [13](
Category 1, Problem 1). The exact solution given there
is:

u = 0.5exp [»(an)(x—;—t)Q] )

In this example, Az = 1 is chosen and At = 1 is based
on CFL number = 1. With CF' L number = 1, and other
parameters € = 0 and a = 0, the CE/SE scheme yields a
numerical result which is identical to the exact solution
in the interior of the domain —20 < z < 451. Thus,
performance of the outflow Type I NRBC at z = 451
can be easily validated. At ¢ = 450, the Gaussian pulse
is passing through the outflow boundary = 451, where
the Type I NRBC (12) with appropriate modification to
1-D flow is imposed. The table in Fig. 8 lists the exact
solution and the CE/SE result from z = 430 to z =
451. The result is also plotted in Fig. 9. It is seen that
they are completely identical (up to 10 decimal places)
and there is absolutely no reflection, although the grid is
rather crude with Az = 1.

3.2 2-D free shear layer instability and vortex
roll-up

The problem considered here is identical to the inviscid

free shear layer instability problem considered in [14]

(Fig. 10). The background mean flow consists of a fast

stream (supersonic) in the upper half domain and a slow

9

Figure 10: Free shear layer instability problem, u; =
U1 = 1, v = 0, D1 = 1/315, P1 = l, M1 —
1.5,us = Uy = .7391 304, vo = 0, po = 1/3.15,p2 =
0.5405405, with subscripts 1,2 denoting the fast and
slow streams respectively.

stream (subsonic) in the lower half domain. The two par-
allel streams are connected by a continuously changing
shear layer of the hyperbolic tangent profile.

In the test, two computational domains are chosen.
The first one is 0 < o < 200 and —10 < y < 10,
with a grid of 200x 100 uniform cells. The second one
is0 < 2 < 100 and —10 < y < 10, with a grid of
100>1 00 uniform cells. Both cases have exactly the
same grid cell sizes, time step size At = 0.15, and pa-
rameters € = 0.2, a = 0. They are both run for 4000
time steps when the spatial instability is fully developed.
To ensure that the instability waves and vortex roll-up
develop quickly, a large perturbation amplitude of 0.02
at the most unstable frequency is chosen for the eigen-
functions. At the outflow boundaries, the Type I outflow
NRBC is used. Figure 11 demonstrates snapshots of the
isobars and isopycnics in the two cases. These contours
are observed to be almost identical to each other in their
common domain portion. The contours in the short do-
main seem as if they were a piece chopped off from the
longer one. This shows that the outflow NRBC in this
case is nearly perfect.

3.3 Acoustic Pulse Propagation

This problem is a typical subsonic wave propagation
problem [13]. The computational domain in the z-y
plane is a square with —100< 2z < 100,and 0 < y <
200. A uniform 201x 201 (triangulated) grid is used with
Az = Ay = 1. Initially, a Gaussian acoustic pulse is lo-
cated at the lower portion of the domain (z = 0,y = 25),
with a mean flow of Mach number M = 0.5 in z direc-
tion and a solid wall at the bottom. At the other three
boundaries, Type II NRBC is used. By choosing a small
amplitude factor § = 0.001, the Euler equations are prac-
tically linearized. Fig. 12 shows the isobars at ¢ = 100
and the comparison between numerical and analytical re-
sults for density along the line 2 = y for 0 < z < 100.
Although the wave propagation direction is oblique to the
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comparison of numerical results with different computational domains,
showing effectiveness of outflow NRBC
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(same contour levels)
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Figure 11: Contours for long and short domains, showing effectiveness of the outflow NRBC.

p along x=y,ep=.1,At=.6,at t=100(Cat.4.1)
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Figure 12: An acoustic pulse above a solid surface passing through the outflow boundary.
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Figure 13: Sketch of the rectangular jet, aspect ratio 5,
jet Mach number M=1 .6, L = 16D,W = 16D and
H =5.6D.

outflow boundary, only tiny reflection is observed from
Fig. 12. Another 2-D example with completely subsonic
flow will be illustrated in §4.

3.4 3-D rectangular jet flow

Fig. 13 is the sketch of an underexpanded rectangular jet
in 3-D space. The rectangular nozzle protrudes into the
computational domain by [ = 2D, D being the width of
the jet. The unstructured mesh consists of about 1.7 mil-
lion tetrahedral cells. At the inlet plane, ambient (station-
ary) condition is specified. Jet flow at higher pressure is
specified at the nozzle exit. All the rest boundaries are ei-
ther Type I or Type I NRBC. Fig.s 14 shows snapshots of
the isobars and v velocity contours on the cross sectional
mid-planes after running 60,000 time steps. Fig. 15
demonstrates the 3-D pressure iso-surfaces. No visible
reflection is observed.

3.5 Influence of the NRBC to the numerical
accuracy

When the outflow boundary is non-reflecting, the influ-
ence from the boundary to the interior flow is small.
Fig. 16 demonstrates the sound intensity level computed
based on two domains with different lengths but same
width for the 2-D Mach radiation problem in the 3rd
CAA Workshop (Category 5) [16]. The short domain has
a grid of 28) x 144 nodes. The only difference is that the
longer domain has 30 more uniformly distributed nodes
added in the z direction downstream. Fig. 16 shows the
sound intensity levels ( square of r.m.s. p' - pressure fluc-
tuation ) along the line y = 10 at ¢ = 400 (40000 time
steps or 28 periods ) for both domains. It is observed
that the maximum difference is about 2 x 1019, far be-
low the discretization error, thus is negligible. This case
also demonstrates the relative drifting side effect of the

11

v-contours on the mid-plane (wide side)

Figure 14: v velocity contours on the mid-planes with
mesh background. No visible reflection is observed. At
the outflow boundary, flow is supersonic in the jet core
and then becomes subsonic across the thick shear layer.

p isosurfaces
from the narrow
side

vortical structure

p isosurfaces from
the wide side

Figure 15: Pressure iso-surfaces, no reflection is ob-
served.
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Figure 16: Comparison of sound intensity levels from
computational domains of different lengths, showing that
the outflow NRBC has negligible infuence to the interior.

extrapolation Type I NRBC, but the error is acceptable.

4 Numerical example for the absorbing
boundary condition

As shown in §2.4, for an absorbing boundary condi-
tion such as the inlet, the prescribed inlet conditions are
already good enough for an NRBC. Fig. 17 illustrates the
instantaneous isobars for a cavity noise problem. 42, 000
triangulated structured cells are used. The problem is
a M=0.8 flow past a cavity of aspect ratio of 6.5. At
the cavity walls, no slip boundary condition is imposed.
Due to vortex shedding and acoustic feedback at the cav-
ity edges, strong nonlinear acoustic waves are generated
and propagate in both upstream and downstream direc-
tions [15]. Fig. 18 is an enlargement of Fig. 17 around
the inlet area. The details of the contours at the matched
layer is revealed. It is observed that there is no spurious
reflection and that the matched layer is about 4-5 cells’
thick. The matched layer in the Type IT NRBC is some-
what similar to that of the PML (perfectly matched layer)
method [5,6] in that the difference diminishes quickly
within this layer. But the layer arises automatically and
there is no need to solve a new set of equations in the
layer or to impose any conditions other than the pre-
scribed inflow physical conditions.

For NRBC at the top of the computational domain,
a Type I NRBC may be modified from (12) by simply
exchanging the axes z and y: Uq = Up,(Uy)q =
(Ux)q = 0, where as before, P and @ are respectively
the boundary cell center and the ghost cell center at the
top boundary. From Fig.s 17-18, even when the acoustic
wave is oblique to the boundary, there is still no visi-
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Figure 17: Isobars snapshot for a cavity noise problem
(Mach number M = 0.8), showing inflow NRBC and its
absorbing property. No visible reflection is found at the
top and the outflow boundary

ble reflection. A Type I NRBC is applied to the outflow
boundary, still, no visible reflection is found for the sub-
sonic flow.

5 Application of the buffer/sponge zone

Generally, the NRBCs amount to very little reflection.
However, there are situations that they may fail and dis-
cernible reflections occur. A simple but effective rem-
edy is to add a buffer/sponge zone between the core do-
main and the boundary. In the buffer zone, the same
governing equations are still used, except that the cell
size in the buffer zone may grow rapidly (e.g. exponen-
tially ) and create larger numerical damping. Typically,
the number of cells in a buffer zone may vary from a
few to 20. An example of a 2-D axisymmetric jet with
Mach radiation from an externally stimulated shear layer
is demonstrated. It is similar to the one described in the
3rd CAA workshop benchmark problems (Category 5)
[16]. The domain size is 33D x 19D with D being the
jet nozzle diameter. 300 x 280 non-uniform rectangular
cells are used before they are further triangulated. Ini-
tially, a Mach number M = 2 jet exists. At the center
of the nozzle exit plane, a source is imposed and per-
turbs the jet flow with a small amplitude A = 0.001 at
a Strouhal number St = 0.2. Mach radiation is then
triggered and gains its strength along the stream. At the
outflow boundary, particularly at the shear layer, due to
the staggered type mesh and the strong Mach waves, the
Type I NRBC fails and spurious reflection is generated
and propagates upstream (Fig. 19). After a buffer zone
of 10 cells is added at the domain outflow boundary, the
spurious reflection disappears and a clean mach wave ra-
diation is shown (Fig. 20). The size of the buffer zone
cells grows exponentially at a rate of 20% along the z
axis.
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Figure 18: Details of the contours at the inflow boundary,
showing the matched layer at the inlet and its spreading
over the grid.

Figure 19: Mach radiation from a M = 2 axisymmetric
jet (without buffer zone), showing severe spurious nu-
merical reflection.

Figure 20: Mach radiation from a M = 2 axisymmetric
jet (with buffer zone but not shown), showing a clean
acoustic field.

6 Concluding Remarks

In the present paper, the hyperbolicity of the Euler
equation system and the propagation of plane waves are
revisited, and then combined to derive the continuity
criterion of NRBC. The relation between flux balance
across the boundary surface and the NRBC is estab-
lished. Simple but effective C' continuity NRBCs are
consequently developed.

These NRBCs are simple and robust, as demonstrated
in the one and multi-dimensional numerical examples
based on the the recent CE/SE method. Numerical
examples with other finite volume schemes, e.g., N.T.
(Nessyahu and Tadmor) or upwind schemes can be found
in [17] (§8). Generally, their performances are similar to
those of the characteristics-based NRBCs. Limitations of
the NRBCs are also discussed in §2.5. In particular, the
Type I extrapolation NRBCs may cause solution drifting
due to lack of information beyond the (outflow) bound-
ary. A remedy is to incorporate the physical boundary
conditions or to use a sponge zone.

The diversity of various NRBCs in flow computations
can never be overestimated. The purpose of the present
paper is to show some guidelines in this direction and
develop NRBCs that are simple but robust for practical
computations. The compact updating procedure proves
to work well with the NRBCs and provides C! accu-
racy in surface flux evaluation. But it is definitely not
the only way to achieve non-reflecting effect. Different
schemes may have different treatments. Sometimes, a
combination of the NRBC treatments may provide much
improved results, such as the incorporation of the buffer
zone. As a byproduct, we are now able to explain why
the NRBCs with the recently developed CE/SE scheme
[10,11,14,15] are robust.

The restriction in §2.1 that the flow is continuous may
be lifted, since for shock-capturing schemes, a discon-
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tinuity may be considered as a continuous wave with
steeper gradient. But if the wave propagation direction is
oblique to the (artificial) boundary, the NRBC may per-
form poorly due to reasons explained in §2.5. Chang et
al [9], Huynh [17] presented 1-D examples ( i.e. wave
propagation direction normal to the boundary) showing
how a shock passes through an artificial boundary with-
out causing visible reflection.

At last, we comment on the influence of the errors of
the NRBCs on the accuracy for domain interior. Gener-
ally speaking, this involves the stability property of the
scheme. If the time-marching explicit scheme satisfies
the von Neumann stability criterion, an error introduced
by the boundary condition will decay exponentially in
time and space when it convects towards the domain in-
terior.
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Appendix I: Plane wave solutions
The plane wave solutions are based on the Cauchy’s
method of Fourier Integral (see Courant and Hilbert[1],
pp.210-211) for linear homogeneous differential equa-
tion. Consider Eq. (8):

o
ot

A0V L 5OV L OV _
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0z 0z Q
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Figure 21: Continuity criterion in 1-D flow.

In the neighborhood of a point O (xq, tg) at the artifi-
cial boundary, (8) can be locally linearized by setting the
jacobians A, B, C to their values at O. Assume a plane
wave with the form V = Ve, and substitute in (8).
Here # = 6(x,t) = x e k — wt is the phase of the simple

wave, 7 = y/—1. @ = const. stands for a characteristic
surface or wave front [1]. (8) then becomes:
FoA VAN \ Vg av ov = S
= — = i K~wIl)V = —%0
ot T4 TB gy 103+l EwlV = Qe

where [ is the 5 >5 identity matrix. For any given wave
number vector k = (k. by bz ) from the hyperbolicity
of (8), real ws exist such that K — wl = 0 (dispersion
relation), where the matrix K = kA + Koy B + &,C.
Then the ‘amplitude’ V may be solved from

oGV oY
ot Oz dy

Ca_v — Q —10

For more general waves other than the simple plane
waves, as (8) is locally linearized in the neighborhood of
the boundary point O(xq, to), they may be decomposed
by Fourier integral with respect to wave number k and
replaced by the superposition of plane waves.

Appendix II: Discussions on the continuity

criterion and the extrapolation technique

Without loss of generality, consider a 1-D flow shown
in Fig. 21.  As a pure initial value Cauchy problem,
V = V(z,0) att = 0 is given. This problem is well-
posed and there exists a unique soluiton V.= V()
over the entire domain D: —c0 < ¢ < o0, t = 0.
If a boundary exists on the left inlet side, the problem
becomes an initial-boundary-value problem, a boundary
condition is required at the inlet boundary.

Assume the artificial boundary locates at z = 0 and
bisects the entire domain D into domain interior ID; and
domain exterior D.: D = D; + D, (see §2.1). In order
that V; and V. in §2.1 are respectively the unique well-
posed solutions in subdomains D; and D,, an admissible
common boundary condition they share at z = 0 is:

Vi(0,t) = V(0,t) = V,(0, ).
Here, V,(0,t) is the entire domain solution along the
line = 0: or equivalently, V,(0,¢) may be obtained
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by the method of characteristics as sketched in Fig. 21 at
point O at the boundary.

However, for NRBC problems in reality,
Vo(z,t), = > 0; or V(z,t) is totally missing
(otherwise there is no need to investigate the NRBCs).
In this situation, the extrapolation technique e.g. (12)
is not an unreasonable choice for the NRBC continuity
criterion. The initial-boundary value problem for V; is
well-posed only when the flow is supersonic or is known
to remain unchanged across the artificial boundary at
z = 0 by a priori information. Otherwise, even though
locally the extrapolation (12) leads to non-reflecting
effect, globally the ‘solution” will keep drifting away and
deviate from the true solution. The following are some
remedies for practical numerical flow computations:

[1] useasponge (buffer) zone with highly increased nu-
merical damping to filter away the wave ingredients
in the flow; when the Type I extrapolation NRBC
is applied to the outer outflow boundary, the flow is
already uniform at the boundary.

[2] incorporate the extrapolation with other physical
boundary conditions (e.g. back pressure etc.).

Notice that the present discussions do not apply to the
Type II NRBCs.

American Institute of Aeronautics and Astronautics



