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Nanoindentation measurements are made on thermosetting materials using canti lever 

deflection vs . piezoelectric scanner position behavior determined by AFM. The spring 

model is used to determine mechanical properties of materials. The generalized 

Sneddon ' s equation is utilized to calculate Young' s moduli for thermosetting materials at 

ambient conditions. Our investigations show that the fo rce-penetration depth curves 

during unloading in these materials can be described accurately by a power law 

relationship . The results show that the accuracy of the measurements can be contro lled 

within 7% . The above method is used to study oxidation profiles in Pl\1R-15 polyimide. 

The thermo-mechanical profiles ofPNIR-15 indicate that the elastic modulus at the 

surface portion of the specimen is different from that at the interior of the material. It is 

also shown that there are two zones within the oxidized portion of the samples. Results 

confirm that the surface layer and the core material have substantially different 

properties . 
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INTRODUCTION 

Atomic force microscope (AFM), I also known as the scanning force microscope (SFM), 

is one of the most sllccessful scanning probe microscopes (SPMs), which encompasses a 

family of instruments used to study surface topography and surface properties of 

materials on a very fine scale 2
--l It has been an indispensable analytical tool for obtaining 

high-resolution images of conductive and non-conductive surfaces. The development of 

the AFM imaging capabilities has focused on the effects of the tip-surface interaction 

forces on images, leading to the utilization of the AFM as a surface force apparatus. The 

forces include repulsive, van der Waals, magnetic, electrostatic and capillary forces .5-
9 

The ability to measure the interaction as a function of separation distance between the tip 

and the sample surface leads to the configuration of an AFM into a nanoindenter. 1o This 

allows the AIM to characterize the deformation characteristics of the materials via 

nanoindentation at shalJow depths and low loads. The methodology of obtaining 

mechanical properties such as elastic modulus of materials in the literature has focused 

on indentation with conventional indenters in materials science and engineering. II , 12 

Since AFM is a relatively new instrument, the instrumental ability to probe mechanical 

propel1ies of materials needs to be evaluated and documented. 

Polyimides based on the P.MR (polymerization of monomeric reactants) approach are 

used as high temperature resistant polymer matrix materials for aircraft engine 

applications, 13 since they combine ease of processing, high specific strength and modulus 

with good oxidative stability up to 316 °C. The thermo-oxidative stability (TOS) of 
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P.MR-15 polyimide has been assessed using classical methods and modern instruments. 14-

22 Physical changes of PlVIR-15 polyimide upon aging have been examined by weight 

loss measurement, light optical microscopy (LM), and scanning electron microscopy 

(SEM) . X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FIIR) 

spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy have been used to 

study chemical changes of PIvlR-lS polyimide upon aging. There is little assessment on 

microscopic spatial variations of PlVIR-15 polyimide due to oxidation in the literature. 

Our purpose in this research is to carry out studies in the areas : (l) develop and improve 

the methodology of using AFM as a nanoindentation technique; (2) utilize elastic theories 

to calculate the Young 's modulus of polymeric materials; (3) investigate the oxidation 

profile in PMR-15 polyimide. 

EXPERlMENT AL 

Sample preparation 

PMR-15 polyimide plates (100 x 100 x I. 5 mm) were compression molded from an 

imidized powder commercially available from HyComp of Cleveland, Ohio . A charge of 

30 g of material was loaded into a steel tool that was then placed between the plates of a 

hydraulic press preheated to 232 °C. Stops were used to prevent pressure on the material 

until the mold temperature reached 232 0C. At this point, the stops were withdrawn and 

contact pressure was applied and held for 10 min. After this hold, a pressure of 240 psi 

was applied and the temperature ramped up to 315 °C. When the die temperature reached 

300 °C, the pressure was increased to 500 psi . The part was held under these conditions 

for 2 h, after which it was allowed to cool to below 232 °C before removal. The resulting 
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PMR-15 polyimide plate was cut into specimens (nominally l Ox l Ox 1.5 mm) using a 

diamond wheel. All edge material was discarded to avoid any anomalous effects 

Nine samples were selected for isothermal aging. Three air-circulating ovens were set 

at the temperatures of 315 DC, 330 DC, and 343 DC respectively. Three samples were 

placed in the middle area of each oven. The airflow rate for the ovens was controlled to 

be 100 cm3/min .. The aging periods for the samples were nominally 100 h, 200 h, and 

300 h. 

Prior to indentation measurements using the AFM, the PNlR-15 polyimide samples 

either unoxidized or oxidized were mounted into epoxy to form cylinders 25 mm in 

di ameter and 19 mm in length. The samples were mounted in a way that the cross-

section of the samples is near the surface of the 25 -mm diameter. These cylinders were 

polished to expose the thickness of the PMR-15 polyimide materials and to achieve 

optical smoothness of the exposed internal sample surface. These samples were then cut 

by a diamond saw in a very mild lubricant in to 4 x 4 x 1.5 mm pieces with the poli shed 

interior sUlface preserved . The small sized samples were then washed by DA ~ brand 

concentrated dish liquid and thoroughly rinsed by distilled water. The samples were then 

dried under a hood and put into a desiccator under vacuum condition for later use. 

AFM as a nanoindenlatiol7 technique 

The TopoMetrix 2100 AFM used in this work is a comrnercial AFM made by 

TopoMetrix Inc. of Santa Clara, CA. (Now part of Thermomicroscopes of Santa Clara). 

A schematic diagram of the main components of an AFM is shown in Figure 1. In this 

technique, the laser beam from a laser diode reflects from the mirror onto the back of the 
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cantilever, then the beam reflects from the back of the cantilever onto the position-

sensitive photodiode detector. As the cantilever bends due to the forces between the tip 

and the sample, the position of the laser beam on the detector shifts. The changing 

detected signal is recorded in nanoampere (nA) . 

In this study, the sample is located on top of a tripod piezoelectric scanner that provides 

~ 
sample positioning in z direction. The sample movement in x-y plane is accomplished 

" 
with a translator beneath the tripod scanner. 

Force measurements are made in contact AFM by monitoring the deflection of a flexible 

element (usually a canti lever) in response to the interaction forces between the tip 

(normally integrated with the free end of the cantilever) and the sample. Because of the 

sensitivity of the photodiode detector involved, the cantilever should have a spring 

constant (typically 10-2 
- 103 N/m) that is measurable. In this study, I-shaped single 

crystal silicon probes with the tip geometry of an asymmetrical four-side pyramidal shape 

(Nanosensors GmbH, in Germany) were used . The spring constant of these probes is in 

the range of 0.30 - 600 N/m. These probes also have a high resonant frequency (20-

500 kHz) . The mechanical quality factor (Q) of these probes is in the range of 100 -

1000 . 

In the indentation experiment of AFM, the probe-sample interaction is simulated as two 

springs in series, the spring model approach,23 as shown in Figure 2. After contact is 

made between the probe tip and the sample surface, the relationship between the total 

displacement of the piezoelectric scanner (.6Zp) , the displacement due to tip deflection 

(.6Z,), and the indentation displacement due to sample deformation (.6Zi) is simply 
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L1Zp = L1Z, x cos(a ) + .6Li (1) 

where a is the angle between the cantilever and the horizontal axes and the tip deflection 

can be directly related to the applied force, F, by 

F = .6Z, x cos(a) x kc (2) 

where kc is the spring constant of the cantilever. Since the optical detection system is 

used to record the cantilever displacement, the unit of cantilever displacement has to be 

converted fr0111 nA into 11111 to study mechanical properties of materials. 

To convert the unit of cantilever deflection, a sample, such as sapphire, which is 

effectively infinitely stiff with respect to the cantilever probe is used . In this case, the 

assumption made is that there is no indentation in the sample and the piezo displacement 

is totally contributed to the tip displacement, i.e . .6Zp = .6z.. 

From simple beam theory, the angle change (.68,) and the tip displacement (.6Zt) are 

related by 

.68, = (3.6Z,)/(2Lc x cos(a» (3) 

where Lc is the length of the cantilever probe. This angle change is directly related to the 

change in tip deflection current (A'd) by system conversion and amplification factors, 

which can be lumped into a constant, Ca, such that 
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L'l.8 l = (L'l.Ald)/Ce (4) 

combining equations (3) and (4), the slope of the deflection curve, S, is shown to have an 

upper limit, S *, given by 

S* = (L'l.Ad)/(L'l.Zp) = (3Ce)/(2Lc x cos(a.)) (5) 

The Young' s modulus of a material is calculated using Sneddon' s equation24 from 

continuous indentation experiment if the indentation behavior of the material is elastic. 

For materials that exhibit not only elastic behavior but also plastic under indentation 

experiments, Sneddon's approach does not apply. Instead , a generalized form of 

Sneddon' s equation" better describes the unloading behavior of these materials . 

F = [(~ x E)/(l-,})] X (h-hlY (6) 

where F is the applied load (nN), ~ is dependent on the contact geometry, E is the 

Young's modulus CPa), \) is the Poisson ' s ratio, h is the current penetration depth (orn), hl' 

is the final depth of the contact impression after unloading (run), and n is the tip 

geometry. This generalized Sneddon ' s equation is used to study the unloading behavior 

of thermosets in this work. 
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RESULTS Al'JD DISCUSSION 

Eva/llalioll of AFM as a t/a77oindenlation lechldque 

The cantilever deflection-piezoelectric scanner displacement behavior of a sapphire 

sample was in vestigated first using an I-shaped silicon probe (46#6) to test the reliab ility 

of the atomic force rnicroscope in this experiment. In Figure 3, cantilever deflection 

(nA) is plotted as a function of piezoelectric scanner position (nm) for a sapphire sample. 

It is seen that the cantilever deflection remains unchanged before the tip-sample contact 

is made. After the tip contacts the sample, the cantilever deflection increases with the 

extension of the piezoelectric scanner in the loading process. It decreases with the 

retraction of the piezoelectric scanner in the unloading process and returns to its 

equilibrium position after the tip breaks free of the sample. It is also seen that the 

unloading path retraces the loading path. It indicates the linear behavior of the 

piezoelectric scanner and the position sensitive photodiode detector. 

In Figllre -I , the cantilever deflection (nA) is plotted as a function of piezoelectric 

scanner position (nm) for the deflected portion of the loading curve in Figure 3. Linear 

regression is used to fit the deflection data. The slope (nA/nm) is defined as the 

cantilever sensitivity and used to convert the deflection unit from nA to nrn. Because 

sapphire can be considered as an infinitely hard sample compared to the stiffness of the 

cantilever of the silicon probe, the cantilever deflection of the probe increases or 

decreases linearly with the extending or retracting of the piezoelectric scanner position. 

There is no penetration of the tip into the sapphire sample. Therefore, the linear 

coefficient of the data is taken as the cantilever sensitivity. Ten sets of data were 
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collected at different locations on the sapphire sample. The average value of the 

cantil ever sensitivity is utilized throughout this study. 

The cantil ever deflection as a function of piezoelectric scanner position behavior of a 

commercially availab le epoxy was investigated. This material is chosen to be a reference 

sample fo r evaluating AFM as a nanoindentation technique for thermosetting materials. 

There are th ree reasons for choosing this material as a reference sample. First, epoxy is a 

widely used thermosetting materi al and its mechanical properties can be obtained readily 

from the literature. Second, with the known modulus and Poisson' s ratio of epoxy, the 

contact geometry and ti p geometry parameters of epoxy can be calculated from the 

generalized Sneddon's equation. Third, since PNIR-1S polyimide is also a thermosetting 

material, the contact geometry parameters calculated fo r epoxy can be assumed to be the 

same for Pl\IlR-l S polyimide if the experimental conditions are set the same. The 

Poisson ' s ratio of these two materials can also be considered to be the same. Therefore, 

the elastic modulus of P iVLR-l S polyimide can be calculated from the generalized 

Sneddon ' s equation. The cantilever deflection as a function of piezoelectric scanner 

position for an epoxy sample indented by a silicon probe is presented in Fig llre 5. It is 

observed that the silicon probe remains at its equilibrium condition before the tip makes 

contact with the sample. Starting at the contact point, the cantilever defl ection increases 

with the extension of the piezoelectric scanner till a predetermined maximum load is 

reached, then the cantil ever deflection decreases with retraction of the piezoelectric 

scanner and returns to its equilibrium condition after the tip detaches fro m the sample. 

After tip-sample contact is made, the piezoelectric SCa tU1er position (nm) includes not 

only the penetration depth of the epoxy sample but also the cantilever deflecti on of the 
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silicon probe The penetration depth of the epoxy sample is calculated using the spring 

model and the unit of the cantilever deflection is converted using the cantilever 

sensitivity parameter. 

The cantilever deflection (nm) as a funct ion of penetration depth (nm) behavior of 

epoxy is plotted in Figllre 6 It shows that the cantilever deflection increases with 

increasing penetration depth in the load ing process and decreases with decreasing 

penetration depth in the unloading process. When the load returns to zero, there is a final 

depth in the unloading cUl-ve. This final penetration depth is due to plastic deformation of 

epoxy. The plastic deformation is included in the generalized Sneddon's equation for 

materials in indentation experiments. Therefore, the unloading data of the epoxy sample 

is fitted with the generalized Sneddon's equation. 

The force (nN) as a function of displacement (nm) behavior of epoxy is indicated in 

Figllre 7. The power law coefficient is used to calculate the contact geometry parameter 

(~) with the known \'alues of elastic modulus and Poisson 's ratio of epoxy. The power 

law exponent provides the tip geometry parameter (n) . Ten sets ofloading-unloading 

curves were performed at ten different locations on the epoxy sample. The average 

values of the geometry parameters of epoxy sample are used . 

The cantilever deflection (nA) versus piezoelectric scanner position (mn) behavior of 

PIVIR.-1S polyirnide is investigated not only for the reason of testing the reliability of the 

instrument but also for extracting the elastic modulus using the generalized Sneddon's 

equation. 

Figllre 8 shows the cantilever de~ection (nA) as a function of piezoelectric scanner 

position (nm) of un-oxidized PrvlR-lS polyinude. It is seen that the loading and 
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unloading beha\'ior of un-oxidized PlVLR-l 5 polyimide is similar to that of the epoxy 

sample. The cantilever deflection (nm) - penetration depth (nrn) behavior of un-oxidized 

PlVIR-l S in Figllre 9 shows similar trends compared with that of epoxy sample. A finite 

penetration depth is also observed in the unloading process. This final penetration depth 

is due to the plastic deformation of un-oxidized PlV1R-lS polyimide in the loading 

process. 

To calcu late the elastic modulus of un-oxidized PlV1R-lS polyimide, the force (nN) as a 

function of the nth power of the displacement ((nmY'n) is plotted using the unloading 

data of un-oxidized PlVlR-I 5 polyimide in Figllre j O. It is seen that the force has a linear 

relationship with the nth power of the displacement. The linear coefficient contains the 

elastic modulus value of un-oxidized PlV1R-lS polyimide. By assuming the same contact 

geometry parameter and Poisson's ratio as that for epoxy sample, the elastic modulus of 

un-oxidized PlVIR-1 5 polyimide is calculated . Ten sets of loading-unloading curves of 

PlVIR-l S polyimide were performed at ten different locations and data were processed 

using spring model and the generalized Sneddon ' s equation. The average elastic 

modulus (3 .3 J ± O. II GPa) is compared with that (3 .24 GPa)25 of PlVIR-l 5 polyimide 

from the literature and the deviation is about 7%. 

To evaluate the repeatability of the indentation technique of AFM, another silicon probe 

(56#2) of the same type as 46#6 is selected . Indentation measurements were made on 

sapphire, epoxy, and PlV1R-15 polyimide under the same experimental conditions. Data 

were collected at three different times. The average values of the contact geometry 

parameters (~ and n) from epoxy and the elastic modulus (E) from PMR-l 5 polyimide are 

listed in Tab/e j . It is seen that consistent results are obtained at the three different dates. 
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The tips of these probes used in this study are in the form of a four-sided pyramid . It is 

necessary to evaluate the consistency of the tip geometry of these probes since irregular 

tip geometry ,viII cause erroneous measurements in indentation by AFM2 6 In order to 

evaluate the consistency of the geometry, four silicon probes (46#6, 56#2, 32#1, and 

32#3) were used and the samples were sapphire, epoxy, and un-oxidized PMR-15 

polyimide. The average values of the geometry parameters obtained' ~ epoxy samples J 
and elastic moduli ob tained from un-oxid ized PWIR-15 samples are listed in Table 2. It 

shows that while geometry parameters vary somewhat ~ probe to probe, the 

determined values of the modulus for the PMR-15 samples are more consistent. 

It has been reported that the calculated elastic modulus of materials may change with 

changing penetration depth due to tip defects . 12. 26 Therefore, in this work, the elastic 

modulus of PMR-1 5 polyimide as a function of penetration depth is plotted in Figure 11 . 

It is seen that the elastic modulus of un-oxidized PMR-15 polyimide does not change 

with changing penetration depth if the geometry terms corresponding to The depth are 
~ ~~ 

used. ~ --- - ____ .. _ ~ ) 

IJl vestigation of oxidatioll profile in PMR-15 po/yimide 

Weight loss measurement has been a classical method to estimate the oxidation behavior 

of PWIR-1 5 polyimide. Weight loss (%) of the PMR-15 polyimide specimens aged at 

315 , 330, and 343 °C as a function of aging time (h) is shown in Fig7lre 12. It is seen that 

the weight loss increases with increasing aging temperature. The initial weight loss is 

faster than that near the end of the test for the samples aged at three temperatures. In 

Figllre J 3, data are displayed on a weight-loss-rate basis . At all three temperatures, the 
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curves are characterized by a relatively rapid initial weight loss rate that decreases as the 

aging time progresses and then becomes nearly constant. Similar results for PNlR-15 

polyimide samples aged at different temperatures and time scales have been reported 1 4
, 17 

The weight loss phenomena ofPMR-15 polyirnide have been related to the chemical 

changes during oxidative attack2 1 

Figllre J -I shows a cross-section of a specimen that is not aged . It is seen that this 

sample exhibits uniformity from the sample surface to the interior of the sample, 

indicating there is no oxidation effect in this sample. The cross-sections shown in 

Figllres J 5 to 23 of aged samples show presence of a distinct layer that develops and 

grows on the polymer specimen surface due to oxidation at different aging times at 

elevated temperatures. It is observed that this layer thickens with aging time and 

temperature. Also, voids are observed in this layer. The size and the amount of voids 

increase with increasing aging time and temperature. Similar observations have been 

documented in the literature. l-l 

It has been discussed that the polymer oxidation process appears to entail the concurrent 

formation of a surface layer that is structurally different from the interior of the specimen, 

which is the same as the initial cured polymer material. There is also a formation and 

growth of voids in this surface layer. The formation of the voids is related to the gaseous 

byproducts released during oxidation of the polymer.17
. 21 

Modulus (GPa) as a function of position from sample surface (~Lln) for PNlR-15 

polyimide samples aged in air at 315 °C at three different time scales is plotted in Figure 

2-1 . The modulus profile of un-oxidized P:MR-15 polyimide is also included for 

companson. It is seen that the elastic modulus of the latter is about constant as the probe 
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moves from the sample surface towards the interior of the sample. However, each of the 

aged samples show up to three distinct zo nes on the oxidation profiles along the sample 

thickness . 

In the region closest to the surface, the data for each sample is constant in to a certain 

depth . The layer represented by this "plateau" can be referred to as the homogeneously 

oxidized layer, which is the result of a zero order reaction Beneath this reaction zone, 

the modulus decreases as the probing position moves towards the interior of the sample 

and at some point merges with that of un-oxidized P:MR-lS polyimide. This reaction 

zone could be considered as the diffusion-controlled oxidation zone, which is the result of 

a first order reaction. After the merge, the modulus of the inner material has been found 

to be unchanged by oxidation reaction. This is in agreement with microscopic FTIR data 

17 which shows that polymer in the outer layer has undergone complete oxidation but the 

interior is unchanged chemically from unaged samples. 

Modulus profiles of PNIR-lS polyimide samples aged in air at 330 DC for three different 

time scales are presented in Figure 25. It indicates that the homogeneously oxidized 

layer is present for samples aged at 100 hand 200 h, but not for the sample aged for 300 

h. (The absence is more obvious in the data for aging at 343 DC given in Figure 26.) . In 

addition, the thickness of the homogeneously oxidized layer increases with increasing 

aging time from 100 h to 200 h. The absence of the homogeneously oxidized layer for 

the sample aged for 300 h could be due to presence of voids developed at the sample 

surface at longer aging time and higher temperature. 
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In Figure 26, the modulus profiles are presented for sample aged in air at 343 °C for 

100 h, 200 h, and 324 h. It shows that the homogeneously oxidized layer is not observed 

for these three samples. 

Figures 27 Gild 28 show the temperature effect of the modulus profiles ofPMR-15 

polyimide samples aged for 100 hand 200 h respecti vely. It is seen that the thickness of 

the homogeneously oxidized layer decreases with increasing aging temperature. 

The modulus profiles observed in this study are similar to profiles seen by Dole and 

Chauchard using pinpoint DMA of heterogeneously aged poly( ethylene-co­

methylacrylate )-based elastomer. 17 Dole and Chauchard discussed a general solution for 

the theoretical oxidation profile based on rate of oxidation reaction and rate of diffusion 

of oxygen. In their model , the oxygen concentration profile is as shown in Figure 29. 

Critical oxygen concentration, [02Jc, is defined as the amount necessary to oxidize the 

polymer at the maximum rate. Four cases can exist. In case I, the oxygen concentration 

at the surface is lower than [02] .: therefore, the oxidation rate is lower than the maximum. 

Hence, the modulus decreases steadily from the surface to the center of the sample. For 

case 1I, the oxygen concentration at the sample surface is equal to [02]c. Again, the 

modulus decreases steadily from the surface to the interior, but it is higher at the surface 

than in Case 1. For Case III, the oxygen concentration at the surface is much higher then 

[02]C. In this case a fraction of the sample forms a homogeneously oxidized layer where 

oxidation is controlled by rate of reaction rather than diffusion of oxygen . Proceeding 

further into the sample, is a diffusion controlled layer as seen in Cases I and II where the 

oxygen concentration is again below [02]c. Case IV is the condition in which oxygen 
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concentration throughout the sample is above [02]c, and therefore oxidation is 

homogeneous throughout the sample. 

In this study, samples ofPMR-1 5 aged at 315 °C fit Case III. In each of these samples, 

a homogeneous oxidation layer is obtained but grows in depth with increasing aging time. 

At higher temperatures, the profiles fit Case I or II. No homogeneous oxidation layer is 

produced because the maximum rate of oxidation increases with increasing temperature, 

hence the [02]c is never reached . 

CONCLUSIONS 

In this work, the results of carefully designed and executed experimental investigations 

have been reported . The experimental study consists two parts. The first part is focused 

on evaluation of AFM as a nanoindentation technique . Particular attention was focused 

on extracting the elastic modu lus of polymeric materials. The second part is focused on 

investigation of oxidation profile in PMR-15 polyimide using AFM as a nanoindenter. 

The effects of temperature and time on PMR-15 polyimide oxidation behavior were 

studied . 

Results from the first part indicate that the generalized Sneddon's equation can be u sed 

to describe accurately the unloading behavior of thermosetting materials. The power law 

exponent is about 2 suggesting that the flat punch method of analysis for determining 

modulus from indentation force-penetration depth data is not entirely adequate. The 

contact geometry and tip geometry parameters (~ and n) obtained using four silicon 

probes show fairl y consistent tip shape for this type of probe. The elastic modulus of un­

oxidized PlVlR-15 polyimide obtained using four silicon probes indicates the parameters 
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to be independent of penetration depth. The moduli computed by this method are within 

7% of the values reported by independen t means . 

In the second part of the investigation, detailed modulus profiles in P:tv1R-15 polyimide 

samples aged at different temperatures and time scales are established confirming that 

AFM is capable of mapping mechanical property variations in polymers . The modulus 

profiles in PMR-15 polyimide samples aged at 3 15°C for 100 h, 200 h, and 344 h and 

330 °C for 100 hand 200 h show diffusion independent (zero order reaction) and 

diffusion-controlled (first order reaction) oxidation processes . The modulus profiles of 

FMR-15 po lyimide samples aged at 343 °C indicate the absence of the diffusion 

independent zone and on.ly the diffusion-controlled process. 
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Figure 17 P\ lR-1 5 polyimide surface degradation after aging in air at 315 °C 
for 344 h 
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Figure 20 PI\[R-15 polyimide surface degradation after aging in air at 330 °C 
for 300 h 

FigllJ"P 21 P\ I R-I ~ polyimide suIiace degradation after aging in air at 343 °C 
for 100 h 



Figure 22 P0.fR-15 poly-imide surface degradation after aging in air at 343 °C 
for 200 h 

Figure 23 P\ IR- 15 polyimide surt~lce degradation after aging in air at 343 °C 
for 32-+ h 
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Figure 25 Modulus profiles of PMR-15 polyirnide samples aged in 
air at 330 °C for three different time scales and un-oxidized PMR-15 
polyimide sample used as reference. The error bar gives the standard 
devia ti on. 
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Tflble 1 Geometry parameters and elasti c modulus obtained for testing experimental cond itions u ing epoxy, 
un-oxidized PMR-1 5 polyimid e, and a sili con probe (56#2) 

date of experiments 
(measurements taken at ten differe nt locations) 

January 51h
, 2000 Janua ry ih, 2000 January 131h

, 2000 

co ntact t ip elast ic contact tip elastic contact tip elastic 
geometry geometry mod ulu s geometry geomet l-y modulu geometry geometry modulu 

(~) (n) (E , GPa) (~) (n) (E, GPa) (~) (n) (E, GPa) 

0. 184 2 .200 3.246 0. 186 2.063 3.246 0. 194 2.138 3.232 
0 .22 1 2.207 3.247 0. 179 2.046 3 .25 1 0. 193 2.243 3.246 
0 .206 2.398 3.253 0. 180 2 .107 3 .236 0. 183 2. 176 3.246 
0.179 2.253 3.256 0. 178 2. 11 3 3 .245 0. 182 2 . 150 3.257 
0 .20 1 2.073 3.28J 0.178 2.0] 5 3.250 0. 19 1 2.230 3.202 
0. 179 2. 11 2 3.238 0.179 2.059 3 .234 0.193 2.136 3.247 
0.188 2.093 3.240 0.174 2.069 3.242 0.175 2. 1 J 1 3.26 1 
0. 188 2. 185 3.252 0. 184 2.027 3.257 0.186 2. 155 3.253 
0. 182 1.99 1 3.228 o 18 1 2.056 3.246 0. 187 2.13 1 3.242 
0 .178 2.0 17 3.292 0. 179 2.046 3.243 0.175 2.190 3.253 

average average average average average average average average Average 
0 .190 2 .153 3.253 0.180 2.062 3.245 o. ·186 2. 166 3.244 

standard standard stand ard standard standard standard standard standard tandard 
deviation deviation deviation deviation deviation deviation deviation deviation deviation 

0.014 0.] ] 5 0.018 0.003 0.030 0.006 0.007 0.04] 0.0 ] 7 



Table 2 The average va lu es of geometry parameters and elasti c modulus obtained for testing the consistency of lip geometry 
using four silicon probes, epoxy, and un-oxidized PMJ~-15 polyimide 

probe 1 D average valu e of average va lue of tip average va lu e of elastic elastic modulus of PMR-1 5 
contact geometry geometry using modulus using PMR-15 polyimide from literature25 and 

uSing epoxy epoxy polyimid e the percentage deviation from 
(GPa) experimental result 

(GPa) 

46#6 0.185 ± 0.013 2.002 ± 0.003 3.288 ± 0.082 3.243 (4 .624%) 

56#2 0.186 ± 0.007 2.166 ± 0.04] 3.244 ± 0.017 3.243 (0 .237%) 

32# ] 0.155 ± 0.006 1.935 ± 0.020 3.308 ± 0.] 06 3.243 (6.693%) 

32#3 0.569 ± 0.036 2.003 ± 0.002 3.246 ± 0.00] 3.243 (0.248%) 


