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ABSTRACT

An extensive examination of NACA Report No. 496 (NACA 496), “General Theory of Aerodynamic
Instability and the Mechanism of Flutter,” by Theodore Theodorsen, is described. The examination
included checking equations and solution methods and re-computing interim quantities and all
numerical examples in NACA 496. The checks revealed that NACA 496 contains computational shortcuts
(time- and effort-saving devices for engineers of the time) and clever artifices (employed in its solution
methods), but, unfortunately, also contains numerous tripping points (aspects of NACA 496 that have
the potential to cause confusion) and some errors. The re-computations were performed employing the
methods and procedures described in NACA 496, but using modern computational tools. With some
exceptions, the magnitudes and trends of the original results were in fair-to-very-good agreement with
the re-computed results. The exceptions included what are speculated to be computational errors in
the original in some instances and transcription errors in the original in others. Independent flutter
calculations were performed and, in all cases, including those where the original and re-computed
results differed significantly, were in excellent agreement with the re-computed results. Appendix A
contains NACA 496; Appendix B contains a Matlab ® program that performs the re-computation of
results; Appendix C presents three alternate solution methods, with examples, for the two-degree-of-
freedom solution method of NACA 496; Appendix D contains the three-degree-of-freedom solution
method (outlined in NACA 496 but never implemented), with examples.

I. INTRODUCTION

In a year 2000 engineering note, Zeiler [1] pointed out that several of the foundational papers and texts

in aeroelastic flutter [2 through 6] contain numerical errors in some of their example problems. It is not

surprising that such errors exist because — especially in the cases of references 2, 3, and 4, written in the
1930’s and 40’s — all calculations were performed “by hand” with pencil and paper, slide rules, and, after
they were invented, large table-top four-function electro-mechanical calculators.

Because these foundational papers and texts are often used in graduate courses on aeroelasticity, Zeiler
recommended that an effort be undertaken to employ the computing resources available today to re-
calculate the example problems and to publish the results so as to provide a complete and error-free set
of example problems. Following Zeiler’s recommendation, the purpose of this paper is to provide re-
computed results for the example problems presented in reference 2: NACA Report No. 496, “General
Theory of Aerodynamic Instability and the Mechanism of Flutter,” by Theodore Theodorsen (referred to
hereinafter simply as “NACA 496”). Future papers will provide re-computed results for references 3 and
4,

In order to perform the re-computation of its numerical examples, an extensive study of NACA 496 was
undertaken by the present author. The study entailed many parts, including reading and re-reading the
paper, checking and re-checking its equations, and checking and re-checking its solution method. In the
process, the present author discovered in NACA 496 computational shortcuts (time- and effort-saving

devices for engineers of the time) and clever artifices employed in its solution methods. Unfortunately,



the present author also discovered, via tripping, several tripping points (aspects of NACA 496 that have
the potential to cause confusion) and errors. These items are discussed in the present paper.

In reference 1, Zeiler stated “One does not set about lightly to correct the masters ...” Embracing this
notion, the present results have been carefully checked and re-checked, and, as a further check, for
some of the numerical examples, independent calculations were performed by a colleague. In all cases,
including those where the original and present results differed significantly, the independent
calculations were in excellent agreement with the present results, providing additional confidence in the
present results.

The arrangement of the remainder of the present paper is as follows:

Section Il contains preliminaries, which are intended to aid in the understanding of the
remainder of this paper.

Section Il contains an overview of NACA 496, including its theoretical development and solution
method.

Section IV describes the checks performed by the present author on the equations and solution
method of NACA 496.

Section V presents the re-computation of quantities contained in Tables |-V of NACA 496.

Section VI presents the re-computation of the example problems contained in Appendix Il of
NACA 496.

Section VII contains concluding remarks.

Appendix A contains a reproduction of NACA 496. (Throughout the present paper the reader
will be referred to Appendix A frequently.)

Appendix B contains a Matlab® program that implements the two-degree-of-freedom flutter
equations and the two-degree-of-freedom solution method found in Appendix | of NACA 496.

Appendix C contains descriptions of, and example problems for, three alternate solution
methods for the two-degree-of-freedom flutter equations presented in NACA 496.

Appendix D contains a description of, and example problems for, the three-degree-of-freedom
flutter equations presented in NACA 496.



Il. PRELIMINARIES

As stated in the Introduction of the present paper, the information contained in this section is intended
to aid in the understanding of the remainder of this paper.

Terminology

The present paper refers to sections and appendices within itself and sections and appendices within
NACA 496. The present paper also refers to the authors of both papers. To avoid confusion in regard to
which paper or author is being referred to, the following (unfortunately but necessarily) awkward-

n u ” u

sounding convention is adopted: for the present paper, the terms “present paper,” “this paper,” “main
body,” “Appendix A, B, C, or D of the present paper,” and “present author” are used; for NACA 496, the

terms “NACA 496,” “main text,” “Appendix |, Il, or Il of NACA 496,” and “author of NACA 496,” are used.

Symbology

The present paper retains the symbology of NACA 496. Appendix A of the present paper (the
reproduction of NACA 496) contains a symbol list (pp. 9 and 10 of NACA 496). Symbols not contained in
the list are defined as they are used in NACA 496 and as they are used in the present paper.

Tripping Points and Errors

As used in the present paper, the term “tripping point” is defined to be an aspect of NACA 496 that has
the potential to cause confusion for a reader of NACA 496. Tripping points that the present author
encountered while reading NACA 496 are identified throughout the present paper and are collected in
Table | of the present paper.

Errors in some of the equations, tables, and figures of NACA 496 were found by the present author.
These errors are identified throughout the present paper and are collected in Table Il of the present
paper.

Three versions of NACA 496

The author of the present paper had access to three different versions of NACA 496. At the conclusion
of their respective main texts, all three versions contain the following lines of text

“LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LANGLEY FIELD, VA., May 2, 1934.”



indicating that all three are “the same” report. This common date is important, as will be seen below.

The first version of NACA 496 was in hard-copy form and was contained in the bound volume
“Twentieth Annual Report of the National Advisory Committee for Aeronautics,” which contains the
significant findings of NACA for fiscal year 1934 (July 1933 through June 1934). The page numbering
(pages 413 to 433) in this version reflects the fact that NACA 496 was one of many papers in the bound
volume. Errors in some of the equations, tables, and figures were found (by the present author) to exist
in this version.

The second version was in electronic form and was acquired from the NASA Technical Report Server
website (http://ntrs.nasa.gov). This version was a reprint of the first version and was issued as a stand-
alone report. The date on the cover of this version is 1949. The page numbering in this version (pages 3
to 23) reflects the fact that it was a stand-alone report. Some of the errors found in the first version are
corrected in the second version.

The third version was also a hard-copy version, was also a stand-alone report, and was acquired from
the NASA-Langley technical library. Pages 3 to 23 in this version are identical to those in the second
version, but the date on the cover of the third version is 1940.

The first tripping point for the present author was the fact that there are three versions of the paper,

each with a different publication date. A second tripping point was that some of the errors in the first
version were corrected in the second and third versions, but no known errata was issued by NACA, as
confirmed by the staffs of the NASA-Langley and NASA-Ames technical libraries. (Errors from the first
version that were not corrected in the second and third versions, and therefore remain in the second

and third versions, will be discussed throughout the present paper.)

The third version, a corrected version, is contained in Appendix A of the present paper.

Referring to Equations

NACA 496 contains many equations, but only a minority is identified by letters or numbers. In the main
text, capital Roman letters and Roman and Arabic numerals, all within parentheses, are used as
identifiers. In Appendix | of NACA 496, Arabic numerals within parentheses are used as identifiers; in
addition, some terms are identified by Arabic numerals, but without parentheses. In what would be
very unconventional by today’s report-writing standards, within NACA 496, there are multiple instances
of different equations being identified using the same equation number.

In the present paper, references to specific equations in NACA 496 will cite the NACA 496 page and
equation numbers. For example, equation (A) on page 10, equation (XXI) on page 12, and equation (9)
on page 14 would be identified herein as “equation (10/A),” “equation (12/XXl),” and “equation (14/9),”
respectively.

Equations in the present paper are identified by Arabic numerals within parentheses.



Computational Shortcuts

Given the very rudimentary computational aids of the early 1930’s (paper and pencil, slide rules, four-
function electro-mechanical calculators), it is natural to deduce that in the construction of their solution
methods engineers of the time would have sought ways to minimize the overall number and/or to
simplify the complexity of calculations so as to minimize the human time and effort required to obtain a
solution. It should not be surprising, then, that such time- and effort-saving techniques are evident in
the NACA 496 solution method. These techniques will be given the general term “computational
shortcuts.” They will be identified throughout the present paper and are collected in Table Il of the
present paper.

lll. OVERVIEW OF NACA REPORT No. 496

NACA 496 lays out the theoretical development of aeroelastic flutter for a typical section with degrees
of freedom in torsion (&), aileron deflection (f), and vertical deflection (at times referred to in NACA 496
as flexure) (h). NACA 496 has three appendices: Appendix | presents a detailed description of the steps
of the implementation of the solution procedure, including tables of numerical values of quantities
required in the solutions; Appendix Il presents a number of numerical calculations, including a few
comparisons with experimental data; and Appendix Il presents integral evaluations for some of the
velocity potentials.

Theoretical Development

In NACA 496, the theoretical development begins with four simplifying assumptions: (1) the flow is
potential and non-stationary; (2) the “wing” is actually a two-dimensional typical section with no
thickness and therefore with no airfoil shape; (3) the “wing” motions are sinusoidal and infinitesimal;
and (4) the “wing” has no internal or solid friction, resulting in no internal damping forces.

Next, the circulatory and non-circulatory velocity potentials are developed. The magnitude of the
circulation, in the form of Theodorsen’s circulation function, is developed. After this, the aerodynamic
forces and moments are determined via the chordwise integration of the velocity potentials. Then, the
aerodynamic forces and moments are combined with the inertia and restraining forces and moments to
produce three second-order differential equations in the three unknowns ¢, £, and h, equations (10/A),
(10/B), and (10/C), reproduced here:
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where C(k), Theodorsen’s circulation function, is a complex function of reduced frequency, k. Equation
(10/A) defines the sum of the moments about the elastic axis; equation (10/B), the sum of the moments
about the aileron hinge; and equation (10/C), the sum of the forces on the entire “wing” in the vertical
direction. Upon examination of equations (10/A) through (10/C) one sees that k appears only implicitly
gin C(k) while velocity, v, appears multiple times.

Figure 1 in the present paper is a re-drawn figure 2 from NACA 496. It illustrates the definitions and
positive senses of many of the important physical parameters appearing in the equations of motion.

Assumed forms of the unknowns, , £, and h. - The assumed forms of the unknowns in equations
(10/A) through (10/C) are introduced in NACA 496 as sine functions of the distance, s, traveled by the
wing from the first vortex element. Employing the distance formula, s = vt, the sine functions in

complex form may be expressed as:

k2

a= aye’s" (1a)
B = Boe' eV (1b)
h= hoei(k%”‘“) (1c)

where ap, fo, and hg are the (infinitesimal) amplitudes of ¢, £, and h, and ¢, and ¢, are phase angles of
Sand h with respect to a. The first and second time derivatives of ¢, £, and h are:

~()'a

ik2p and f = —(kg)zﬁ

. 4 U .
0(=lk;0( and &

B
h=ikZh and h= —(k%)zh

Substitution of assumed forms into, and normalization of, equations. - Making the substitutions of

equations (1a) through (1c) and their time derivatives into equations (10/A) through (10/C) transforms
the latter equations from three simultaneous differential equations into three simultaneous algebraic



2
equations. The algebraic equations are then normalized by the quantity (g k) and by their

respective exponentials and amplitudes, resulting in the equations taking the form

(Aga + QeX)a + AggB +Agnh = 0 (2a)
Abaa + (Abﬂ + .QbX)ﬁ + Abhh =0 (2b)
Aga + A + (A + QpX)h = 0 (2¢)

The physical constants of the problem (x; a, b, ¢, X4 re, X5 s @s @5 and ax) reside in the coefficients,
that is in the A’s and the (2X terms.

The quantities Aqq, etc. are complex functions of reduced frequency, k, with real parts Rg,, etc. and
imaginary parts /g, etc. The real parts are defined in equations (12/1) through (12/9) and the imaginary
parts in equations (12/11) through (12/19). (There is no equation (12/10). This equation numbering
convention was chosen in NACA 496 so that for any given imaginary part, the second digit in its two-digit
equation number would be the same as the single-digit equation number of its corresponding real part.)

The £2X terms are discussed next.

Products £2,X, 25X, and £2.X . - In equations (2a), (2b), and (2c) the products €2.X, 25X, and £2.X are

Ca Cp Ch
e (from eqn. (10/A)), MbZ (from eqn. (10/B)), and b (from

eqn. (10/C)), respectively. Via the substitution and rearrangement of terms and the use of cancelling

real. They are derived from quantities

expressions in the numerator and denominator, from page 12 of NACA 496 these products are

P Q. S0 Y LA (3a)
¢ kZMv2k w,T.) K\ vk
2
QX = Cp _ <wﬁrﬁ>21<brrwr) (3b)
k?Mv?k w, ) K\ vk
Cpb? wp \2 1 /bryw\> 3
o= 2 () 2
k?Mv?k wy ) K\ vk

where, to the right of the second equal sign in each equation, X comprises the two right-most terms

1 brra)r)z
X= K( vk )

and the respective £2’s, the remaining terms

0, = ()’ (5a)
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0= (2o (50)

Wy Ty

The quantities @r and r, are a reference frequency and reference length, which may be conveniently
chosen.

Referring back to the normalization that produced equations (2a) through (2c), a critically important
result of the normalization is that the quantity X has been conveniently isolated from the other terms in
these equations and X is the only quantity in these equations that contains the velocity. The NACA 496
solution methods take advantage of this result in an ingenious way. As will be seen immediately below,
X and the 2's are clever artifices created by the author of NACA 496 to enable the determination of the
flutter velocity, vy, and flutter reduced frequency, k. At times X and the 2’s are treated not as the
known quantities expressed in equations (4) and (5), but rather as parameters. At other times X and the
(2’s are treated as the known quantities.

Solution Methods

The solution of equations (2a), (2b), and (2c) is obtained when their determinant is zero

Aga + QX Aaﬁ Aan
Apa Apg + QpX Apn =0 (6)
Acq Acﬁ Acp + QpX

The form of equation (6), det(A + X{2) = 0, bears some resemblance to the characteristic polynomial of
the eigenvalue problem, det(A - Al) = 0. The quantity X in eqn. (6) would be analogous to A in the
eigenvalue problem and the quantity (2, a 3x3 diagonal matrix with diagonal elements (2, €25 and (2,
would be analogous to the identity matrix. However, in terms of the solution of equation (6), this is
where its resemblance to the eigenvalue problem ends.

Expanding the determinant in equation (6) yields equation (12/XXI), re-written here

Q0 X3 + (QuQpAch + QQpAgy + QpQpApp) X2 o)

+(QoMaq + QMpg + QuMcp)X +D =0

which is third-order in X with complex coefficients. In equation (7), D is the determinant in equation (6)
without the £2X terms and the M’s are the minors of the determinant without the £2X terms. Except for
€, (2, and (2, all quantities in equation (7) are functions of reduced frequency, k.



The object of the solution method is to find the values of v and k that cause equation (7) to be satisfied.
Such values are then identified as vrand ky, the flutter velocity and the flutter reduced frequency,
respectively.

Three-degree-of-freedom solution method. — NACA 496 outlines the method by which the three-

degree-of freedom flutter problem (that it names the “general case”) may be solved.

NACA 496 does not recommend solving directly the third-order equation with complex coefficients (eqn.
(7). Instead, it suggests the computational shortcut of creating two equations, each with real
coefficients, by separating the real and imaginary parts of the original. The first equation is cubic in X
and is obtained from the real parts of the A’s, M’s, and D; the second is quadratic in X and is obtained
from the imaginary parts. The right hand side of both equations is zero. This separation of a complex
equation into its real and imaginary parts eliminates complex arithmetic from the solution method.

At this point in the solution method, the artifice of treating X as a parameter, rather than as a known
guantity, is employed. The cubic and quadratic equations are each solved for their roots, identified
herein as Xg , Xg,, Xg,, X;,, and X, for a large number of reduced frequencies. The Xz’s and X/'s are
then plotted on the same set of axes as functions of the inverse of reduced frequency. Intersections of
any of the Xg's with any of the X/'s identify the values of X and the values of reduced frequency, which
simultaneously satisfy the cubic and quadratic equations, and therefore also solves the original third-
order equation with complex coefficients. These values are the flutter values - Xrand k.

With X and the kf known, the artifice of treating X as a parameter is now abandoned and equation (4) is
employed, which when re-written to solve for flutter velocity, becomes

1 1 bw,m
Vp = ——

(8)

where xand b are known constants of the problem and @: and r, are chosen reference values.

Although many illustrative examples are presented in Appendix Il of NACA 496 none are given for the
general case, almost certainly due to the difficulty in the early 1930’s of solving “by hand” a cubic
equation.

Two-degree-of-freedom solution method. — There are three two-degree-of-freedom subcases available

from the three-degree-of-freedom equations: torsion — aileron; aileron — flexure; and flexure — torsion.
NACA 496 lists the subcases in the order just given, but then identifies the first one listed as subcase 3,

the second one listed as subcase 2, and the third one listed as subcase 1. No reason is offered in NACA
496 for this curious pairing of listing order and subcase number.

NACA 496 presents an ingenious solution method for obtaining the flutter velocity and flutter reduced
frequency for the three two-degree-of-freedom subcases. This solution method again involves
computational shortcuts and the artifices, but, in yet another curiosity, this solution method differs
fundamentally from the recommended solution method for three degrees of freedom.



Whereas equation (12/XXl) is the characteristic equation obtained from the expansion of the 3x3
characteristic determinant (eqn. (7) in the present paper), equations (12/XXl1), (12/XXl1l1), and (12/XXIV)
are the characteristic equations obtained from the expansion of the three 2x2 minors of the
characteristic determinant. The reader is referred to Appendix A of the present paper.

Using the torsion — aileron subcase (subcase 3) as the example, NACA 496 goes through the algebraic
steps of this solution method. The algebraic steps for subcases 2 and 1 mirror those for subcase 3.
Equation (12/XXIl), a second-order equation in X with complex coefficients, is the starting point. NACA
496 again employs the computational shortcut of creating two equations, each with real coefficients, by
separating the real and imaginary parts of the original. The first equation is quadratic in X and is
obtained from the real parts of Aag, Aps, and Mc; the second is linear in X and is obtained from the
imaginary parts. The right hand side of both equations is zero.

At this point the two-degree-of-freedom solution method departs from the three-degree-of-freedom
solution method, but like the latter solution method it also employs the artifices: it treats both X and (2,
as parameters, rather than as the known quantities in equations (4) and (5a). The quadratic and linear
equations and parameters X and (2, are treated as two equations in two unknowns and are solved
conventionally by substitution.

From page 13 in NACA 496, the first step is to solve the linear equation for X, yielding

1
Mch

X=———
Qalpp + Qplag

(9)
This expression is then substituted into the quadratic equation in X, thereby eliminating X from that

equation and producing, after several steps, equation (13/XXV), which is quadratic in £2, and re-written
here

QZ(ME 155 — MiyRyplyg) + Qa[—Miy (Raglpe + lagRoa) + 2ME1aqlng]

(10)
+ thlgaf - MéhRaaIaa =0

Equation (10) is then solved for its two roots, {1, and (),_, for a large number of reduced frequencies.

With the artifice still in place, but recognizing from equation (5a) that {2, is defined as the square of a
quantity, only the real positive values of ), and {},,and their corresponding reduced frequencies are

retained. A plot of £2, as a function of 1/k, which contains both Qaland Qg,, is produced.

Next, values of X are found by substituting the values of £2,, just obtained, their corresponding values of
reduced frequency, and the values of M'e, la,, and Iy, at corresponding reduced frequencies, into
equation (9). NACA 496 chooses to present the quantity X as a function of £2, rather than as a function
of 1/k.

At this point a new quantity, F, the nondimensional flutter factor, is introduced

10
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Fis also treated as a parameter. Substituting into equation (11) the X’s and their corresponding reduced
frequencies produces a plot of F as a function of (X, again containing both Q, and Q.

The two curves, 2, vs. 1/k, and F vs. 2, represent a family of flutter solutions for a range of £2,’s. Each
point on the first curve has a corresponding point on the second and each pair of corresponding points
represents a unique flutter solution.

To obtain a specific flutter solution from the family of solutions, the artifice is abandoned: quantities
£2,, X, and F are no longer interpreted as parameters and equations (5a) and (4) are employed. In
addition, when the expression in equation (4) is substituted for X in equation (11), the flutter factor
becomes

bw, 1.

When solved for flutter velocity, equation (12) becomes

bw,,

Vi

Thus, once a family of flutter solutions is obtained, the following simple two-step process for obtaining a

Vf:F

specific flutter solution from the family of solutions is performed:

First, problem-specific values of @y, ra, @, and r, are substituted into equation (5a), yielding
a problem-specific value of £2,. This value of €2, is located in the plot of 2, vs. 1/k. The
value of 1/k corresponding to this value of £2, then yields, via its inverse, the flutter reduced
frequency, ky.

Second, the problem-specific value of €2, is located in the plot of F vs. £2,. The value of F
corresponding to this value of £2, and problem-specific values of b, @, rr, and xare
substituted into equation (13), yielding the flutter velocity, vy.

IV. CHECKS OF NACA 496 EQUATIONS AND SOLUTION METHOD

Beginning with equations (10/A), (10/B), and (10/C) in the “DIFFERENTIAL EQUATIONS OF MOTION”
section of NACA 496, the present author checked all of the equations in the main text and Appendix I.
With a few exceptions, discussed below, all equations checked.

11

(11)

(12)

(13)



Missing 1/b Factors in Expressions on Page 12

In checking the equations in NACA 496, the present author duplicated 12 of the 18 expressions in the
left column on page 12. However, as they appear in NACA 496, the real expressions in equations (12/3),
(12/6) and (12/9) and the imaginary expressions in equations (12/13), (12/16) and (12/19) each lack a
factor of 1/b compared to what the present author found. These six expressions make up the entirety
of equation (10/C) and none of the six appears in either equation (10/A) or equation (10/B).

As it turns out, the missing 1/b factors are of no consequence because the left-hand side of an equation
whose right-hand side is zero, such as equation (10/C), may be multiplied by any factor without
changing the equation. The present author believes that, as a computational shortcut, the author of
NACA 496 multiplied both sides of equation (10/C) by the semi-chord, b, thus eliminating the 1/b factor
from equations (12/3), (12/6), (12/9), (12/13), (12/16), and (12/19) and thereby relieving engineers of
the time of extra, but unnecessary, multiplications in the hand calculations of these expressions.

Comparing Real Expressions in Main Text and Appendix |

The real expressions in the left column on page 12 (main text), the real expressions in the right column
on page 14 (Appendix 1), and the real expressions in the left column on page 15 (Appendix 1), term-by-
term, share the same equation numbers. This assignment of equation numbers is a potential tripping
point because, term-by-term, the expressions obviously differ from each other. As it turns out, the
expressions on page 12 are, term-by-term, equal to the sums of the respective expressions on pages 14
and 15. In checking the equations the present author reproduced all of these expressions.

Table Il on page 17 in Appendix | contains a range of values for the expressions in equations (14/1)
through (14/9).

Comparing Imaginary Expressions in Main Text and Appendix |

The imaginary expressions in the left column on page 12 (main text) correspond to the imaginary
expressions in the right column on page 14 (Appendix I). A cursory examination of these equations
suggests the identity of corresponding expressions because: (1) the same symbols for the I's (lag, Ibs ek,
etc.) are used in both places; and (2) the same equation numbers are used in both places.

In checking the equations, the present author reproduced the expressions on page 12. However, in
comparing the expressions on page 12 with those on page 14, it is seen that each expression on page 12
contains a multiplying factor of 1/k while those on page 14 do not. As with the omission of the factor of
1/b previously discussed, it turns out that the omission of 1/k is also ultimately of no consequence, and
for the same reason. As with the 1/b omission, the present author believes that the 1/k omission was
also done deliberately by the author of NACA 496 as another computational shortcut, again relieving
engineers of an extra, but unnecessary, multiplication in the hand calculation of these expressions.
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The author of NACA 496 does alert the reader to these differences in the I's, but via a whisper, not a
shout: a footnote on the bottom of page 14. No explanation is given as to why 1/k has been eliminated,
yet the elimination has important consequences in the equations employed in the solution method. The
differences represented a significant tripping point for the present author, who initially missed the
footnote.

Table IV on page 17 in Appendix | contains a range of values for the expressions in equations (14/11)
through (14/19) (that is, the expressions without the 1/k factor).

Comparing Equations for Solution Method in Main Text and Appendix |

The NACA 496 solution method is derived beginning at the bottom of the left column on page 12 and
continuing through the end of the main text on page 13. The procedure for implementing the solution
method is contained in Appendix | on pages 14 through 16. These parts of NACA 496 will be referred to
as the derivation section and the implementation section, respectively.

The solution method involves solving quadratic equations whose coefficients (a, b, and c) contain
numerous sums and differences of products of the R’s and I's and other terms. The other terms are the
real and imaginary parts of the minors of the characteristic determinant (M?, Mf.o, M?y5 and M,
M'aq, M'yp, and referred to hereinafter as “real minors” and “imaginary minors”), which also contain
sums and differences of products of the R’s and I’s.

As mentioned above, to take advantage of a computational shortcut, all the I's in the implementation
section had their common 1/k factor eliminated. For clarity these I's without the 1/k factor will be called
“new I's.” The new I's and any quantities involving the new I's (the real and imaginary minors and the
quadratic coefficients a, b, and c) are all affected by the elimination of the 1/k factor.

This situation would have caused no confusion had new symbols (perhaps original symbols with tildes)
been introduced in NACA 496 to represent the new I’s. The original symbols could have been used in
the derivation section; the new symbols in the implementation section. However, the author of NACA
496 chose not to do this; he chose to retain the original symbols in the implementation section and in so
doing assigned each symbol two meanings, with each meaning specific to a given section of the paper.

However, with careful attention to section-specific definitions and by doing a little algebra, it is easy to
prove that the quadratic coefficients in the implementation section are proportional, term-by-term, to
the quadratic coefficients in the derivation section, with proportionality constant 1/k?. Thus, because
multiplying either equation (both of whose right-hand sides are zero) by the proper quantity (either k2
or 1/k?) will produce the other, both equations will yield the same roots, and therefore the same values
of vsand k;.
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V. RE-COMPUTATION OF QUANTITIES EMPLOYED IN NACA 496 SOLUTION METHOD

NACA-496 contains four tables of quantities needed in the implementation of the NACA-496 solution
method. For the engineer of the time, these tables, especially the latter two, would have saved valuable
human computation time.

Constants Resulting from the Integration of Velocity Potentials

Table | in NACA 496 contains constants, T;, associated with integrations of the velocity potentials. These
constants are functions of the nondimensional chordwise location of the aileron hinge, c. At the top of
the right column on page 5 of NACA 496 are the integrals in question and it can be seen that there are
two types of integrals that produce the T/s: those whose limits of integration are c to 1 (integrations
over the aileron only) and those whose limits are -1 to 1 (integrations over the entire “wing”).

At the bottom of the right column on the same page are the equations for T; through T:.. However
Table I lists only 11 of the 14 T/'s. The omitted T/s (Ts, T13, and Ty4) are also functions of g, the elastic axis
location.

Figure 2 in the present paper contains comparison plots of the T/s listed in Table | and present
calculations of the T/s. The open circles correspond to the tabular values, which are shown in NACA 496
for five values of ¢ (-1, - %5, 0, %, 1). The solid lines correspond to the present calculations, performed in
Matlab® and computed from ¢ =-1to ¢ = 1 in increments of 0.01. The plots show there is excellent
agreement between the original results and the present results.

Theodorsen Circulation Function

Table Il in NACA 496 contains the real part, F, and the negative of the imaginary part, -G, of the
Theodorsen circulation function and their component Bessel functions. All quantities are functions of
reduced frequency, k, and are shown for 16 values of k.

Figure 3 in the present paper contains comparison plots of F and —G listed in Table Il and present
calculations of Fand —G. The horizontal axis is logarithmic to more clearly show (compared to what a
linear axis would show) the comparisons at low values of 1/k. A logarithmic axis “spreads out” the
values of F and —G at the low values of 1/k and compresses them at the high values of 1/k in such a way
that the distance on the page between 1/k of 0.1 and 0.2 is the same as the distance on the page
between 1/k of 10 and 20. The open circles correspond to the tabular values; the solid lines correspond
to the present results, computed in Matlab® from 1/k = 0.1 to 1/k = 40 in increments of 0.004.

For values of 1/k of 5 and below there is excellent agreement between the original results and the
present results. For all values of 1/k except 0.1, the original results and the present results differ by less
than one percent. For values of 1/k of 10 and above the differences vary from 0.2 to 5.6 percent, with
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the largest differences occurring at 10 and 40. These largest differences will produce corresponding
differences seen in the illustrative examples.

Reduced-Frequency-Dependent Portions of the Elements of the Equations of Motion

Table lll in NACA 496 contains the frequency-dependent portions of the real parts of the coefficients of
the equations of motion; Table IV contains the imaginary parts. All quantities in Tables Ill and IV are
functions of reduced frequency, k. Some quantities in Tables Ill and IV are functions of the
nondimensional chordwise location of the elastic axis, a; other quantities are functions of the
nondimensional chordwise location of the aileron hinge, ¢; some quantities are functions of both; and
two quantities are functions of neither. The quantities in Tables Il and IV will be discussed together.

Figure 4 in the present paper contains comparison plots of the real and imaginary parts from Tables Il|
and IV and from present calculations, again performed in Matlab®. As was the case for figure 3, in this
figure the horizontal axis is logarithmic to more clearly show (compared to what a linear axis would
show) the comparisons at low values of 1/k. Figure 4(a) contains elements from the pitching moment
equation; figure 4(b), from the hinge moment equation; and figure 4(c), from the vertical force
equation. For the present calculations the inverse of reduced frequency ranged from 1/k=0.1to 1/k =
40, in increments of 0.0004.

The plots are for values of a and c of -0.4 and 0.5, respectively. Except for the comparison plot for R},

which will be discussed in the next paragraphs, all comparisons show reasonably good agreement. The
comparisons at values of 1/k of 10, 20, and 40 consistently show differences and are due to the
differences in F and —G, discussed above.

The comparison plot for Ry}, in figure 4(a) shows significant differences between the original and
present results. Close examination of the values in Table Ill reveals that, for a = -0.4, R, is very nearly
directly proportional to 1/k, that is, is very nearly linear with 1/k. To more easily see this linearity,

Ry}, as a function of 1/k has been redrawn in figure 4(d) with a linear horizontal axis. A red dashed line
has been added to emphasize the linear relationship between R/}, and 1/k.

If one assumes the values of R, in Table Ill are correct and then employs equation (14/3) to back
calculate to find the values of G necessary to produce these values of R}, one finds that the resulting
G’s are independent of 1/k and equal to the value of G at 1/k =1. (According to Table Il in NACA 496
and figure 3 in the present paper, G varies from about -0.2 to 0 and clearly is a function of 1/k.) The R,
row of Table Ill corresponding to a =-0.4 and c=0.5is in error.

VI. RE-COMPUTATION OF ILLUSTRATIVE EXAMPLES IN NACA 496

This section of the paper presents the re-computation of the illustrative examples contained in Appendix
Il of NACA 496. These examples comprise all three two-degree-of-freedom subcases that may be

15



derived from the three-degree-of-freedom general case. NACA 496 presents no examples for the
general case.

A brief orientation to figures 5 through 17 in the present paper: figure-by-figure they contain scanned
reproductions of the original figures 5 through 17 from NACA 496, but with the addition of the present
re-computations. In all cases, the original results are in black and the re-computed results are in color.
Because of “fuzziness” resulting from the scans, the figure legends for these figures have been re-typed.

Additionally, in figures 5 through 11 and 15 through 17, the colored O and + symbols are results from
the present implementation, but using the tabular values in Tables |, 11, lll, and IV of NACA 496, and the
colored solid and dashed lines are results from the present implementation using present computed
values throughout.

As mentioned in Section Il of the present paper, the plots of 2vs 1/k and F vs £2are comprised of two
values of £, the two quadratic roots obtained from the solution of equation (13/XXV) (as well as two
values each from the solutions of eqns. (13/XXVI) and (13/XXVIl)). With this in mind, the colored solid
lines and the colored O symbols correspond to the first quadratic root; the colored dashed lines and the
colored + symbols correspond to the second quadratic root.

Implementation of NACA 496 Solution Method

The implementation of the NACA 496 solution method was performed by the present author via the
writing and execution of m-files in Matlab®. The equations outlined in the main text and Appendix | of
NACA 496 were solved for 100,001 values of the inverse of reduced frequency, beginning at zero, with
an increment of 0.0005.

Standard Case
Figures 5 through 10 present what NACA 496 calls a “standard” case, represented by the quantities:
k=0.1; ¢=0.5; a=-0.4; x,=0.2; r,?=0.25; x3=Ys0; ri = Yie0; and we, wp oy, variable.

Figures 5 and 6 present results for Subcase 3, torsion-aileron; figures 7 and 8 present results for Subcase
2, aileron-flexure; and figures 9 and 10 present results for Subcase 1, flexure-torsion.

For these three subcases, the first figure in each pair shows its respective plot of Q2versus 1/k; the
second figure in each pair shows its respective plot of F versus £2. However, the quantity F shown in
these figures is not the quantity F defined on the bottom of page 15 and the top of page 16 of NACA 496
(and by egn. (11) in the present paper). The quantity F shown in figures 6, 8, and 10 is actually the
square of the defined quantity. This double use of a symbol to represent not only its original definition,
but also the square of its original definition, represented a significant tripping point for the present
author.
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Subcase 3. — Figures 5 and 6 contain the results for this subcase. While there are some differences
between the original and present results in these figures, the overall magnitudes and shapes of the
respective curves are very similar. In figure 5, the agreement between original and present results is
excellent at values of 1/k greater than 0.5, but progressively less so at lower values of 1/k. In figure 6,
the agreement is better at the lower values of {2, than at the higher values. In both figures, the present
results represented by the colored symbols and colored lines exhibit excellent agreement with each
other, reflecting the excellent agreement between the original tabular quantities and the present
computed quantities, as illustrated in figure 4.

Subcase 2. - Figures 7 and 8 contain the results for this subcase. In each figure, there are three sets of
results, labeled (a), (b), and (c), representing three different values of x5, the center of gravity of the
aileron. The original and present curves (a) and (b) in figure 7 agree fairly well in the overall magnitudes
and shapes of the respective curves. However, the original and present curves (c) do not agree well in
either magnitude or shape. The original and present curves in figure 8 echo the agreement and
disagreement noted for the curves in figure 7. In both figures, the present results represented by the
colored symbols and colored lines exhibit excellent agreement with each other, reflecting again the
excellent agreement between the original tabular quantities and the present computed quantities, as
illustrated in figure 4.

Subcase 1. - Figures 9 and 10 contain the results for this subcase. Once again, in these figures the
original and present results are very similar in terms of the overall magnitudes and shapes of the
respective curves. In figure 9, the original curve does not “touch” the vertical axis, whereas the present
curve does (as did all original and present curves in figures 5 and 7). This trend is repeated in figure 10,
but for the horizontal axis. The present results represented by the colored symbols and colored lines do
not agree as well in figure 9 and 10 as they did in figures 5 and 6 and figures 7 and 8. These differences
are due in part to the errors in R, in Table Ill, and illustrated in figure 4, as previously discussed.

Parameter Variations for Subcase 1

Figures 11 through 14 contain plots of flutter factor, F, as defined on pages 15 and 16 of NACA 496, as
functions of various parameters. Figure 11 presents results for variation in frequency ratio, w:/a»;
figure 12, for variation in the location of the elastic axis, a; figure 13, for variation in the radius of
gyration, r; and figure 14, for variation in the location of the center of gravity, x,. All results in this
subsection of the paper are for Subcase 1, flexure-torsion.

For figures 12, 13, and 14, as a check on the present results, independent calculations were performed
by a colleague of the present author who implemented in Matlab® the equations found in reference 5
for a typical section, including unsteady aerodynamics defined by the Theodorsen circulation function.
The code loops on velocity. For each velocity, the calculations are run through an iterative loop until the
frequencies are converged, followed by an evaluation of damping values to determine if the system is
stable or unstable.
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To be able to directly compare the independent flutter results with the present flutter results, the
independent flutter velocities were converted to flutter factors using equation (12). As will be seen
below, in all cases, the present results and the independent results are in excellent agreement, differing
in F by no more than 0.5% and in reduced frequency by no more than 3.7%, thereby simultaneously
confirming and affording confidence in the present results.

Variation of Frequency Ratio. — The original figure 11 contains theoretical and experimental results, in
black. The present results are shown in colored symbols and colored curves. The quantities specific to
this example are:

xK=Ya00; a=-0.4; x,=0.2; r,=0.5; wi/w;variable.

This figure is similar to figure 10, but as already stated, the F in this figure is the as-defined F. In
addition, in this figure, equation 5(c) has been employed to convert the units of the abscissa from (2, to
w1/ @, (that is, an/@,).

Across the limited range of frequency ratio chosen for this figure, the original theoretical results and
both sets of present results are in excellent agreement. The colored symbols in the figure correspond to
values of 1/k of 10, 20, and 40. The re-computed curve in this figure does not “touch” the horizontal
axis as did the re-computed curve in figure 10 because the much smaller value of mass ratio, «; for
figure 11 changes the character of the solution.

Variation of Elastic Axis Location. — In addition to containing the dependency of F on elastic axis

location, a, figure 12 also contains the dependency of a quantity D on a. According to the sign
convention established in figure 2 of NACA 496, increasingly negative values of a corresponds to a
forward movement of the elastic axis.

The quantities specific to this example are:
K="Ya;, w/w2="%; xu=0.2; ro=0.5; avariable.

In the present effort to re-compute D as a function of a, another tripping point was encountered: D is
never defined in NACA 496. However, the present author attempted to deduce the definition of D so
that a comparison could be made between the original and the re-computed curves.

In the left column on page 16 of NACA 496, there is a short discussion that ends with the equations (un-
numbered in NACA 496 but numbered herein)

Vp = VpT— (14)

Vr = URF (15)

where a and F are defined as above, v is the flutter velocity, vk is a reference velocity defined to be the
divergence velocity for the specific case of the elastic axis located at the mid-chord (that occurs when a
=0), and vp is the divergence velocity for other locations of the elastic axis.
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Velocity vg is a proportionality constant in equations (14) and (15). In equation (15), vk relates the flutter
velocity, v, to the flutter factor, F. The present author speculated that in equation (14) vg might relate
the divergence velocity, vp, to a “divergence factor,” D. If this were so, then according to equation (14),
quantity D would be equal to the inverse of (/2 + a). As a test of this hypothesis the inverse of (5 + a)
was plotted as a function of a. The hypothesis failed; the curve did not match curve D in figure 12.
(Equation (14) is clearly incorrect because, according to the definition of vg, when a is zero, vp should be
equal to vg, but under this condition equation (14) predicts vp to be twice vg.)

This miss-match led the present author to re-derive the expression relating vp to D, which resulted not in
equation (14), but in the following expression

1

- 6
N (16)

UD=U

When the quantity \/ﬁ is plotted as a function of a, the colored dashed curve in figure 12 results.

Except for an area of slight disagreement (less than 5%) between a = -0.2 and a = -0.4, the original and
present curves agree with each other very well. This overall agreement led the present author to
conclude that the original curve D in figure 12 represents the expression the author of NACA 496 knew
to be correct (egn. (16)) and that the expression on page 16 of NACA 496 (equivalent to eqn. (14)) is a
misprint.

The colored circles in figure 12 represent the re-calculation of curve F. Each circle was obtained by
selecting a value of a and executing the NACA 496 solution method for Subcase 1 in which a curve
similar to that in figure 10 is used to find the value of F at the following value of (2, -

= () - () - ()0 = () G-

It is obvious that the re-calculation differs markedly from the original. Not only do the numerical values

significantly differ from each other, but the trends with increasingly negative values of a are opposite
each other. The three large X’s at values of a of -0.2, -0.3, and -0.4 are from the independent calculation
and are in excellent agreement with the present calculation. The present author can offer no
explanation for the significant disagreement between the present calculation and the original.

Variation of Radius of Gyration. — The original figure 13 illustrates the dependency of F on the radius of

gyration, r,. for two different values of frequency ratio, w:/@,. Curve A corresponds to w;/@; = %; curve

B corresponds to ay/@, = 1. Other quantities specific to this example are
xK=Ya a=-0.4; x,=0.2; ryvariable

For ease of presentation and in an attempt to preserve the figure numbering convention described at
the beginning of this section, this figure is divided into “offspring” figures: 13A and 13B. Further, figure
13B has parts (a), (b), and (c).

19



Figure 13A contains colored circles representing the re-calculations intended to match the original curve
A. Each circle was obtained by selecting a value of r, and executing the NACA 496 solution method for
Subcase 1. The agreement between the original and present results is very good at values of r, of 0.75
and greater, but slightly less so at lower values of r,. If original curve A is extrapolated to the left, the
difference between the original and present values of F at r, = 0.25 is about 7.5%. The large X’s at
values of r, 0f 0.50, 0.75, and 1.00 are from the independent calculation and are in excellent agreement
with the present calculations.

Figure 13B(a) contains colored squares representing the re-calculations intended to match the original
curve B. Each square was also obtained by selecting a value of r, and executing the NACA 496 solution
method for Subcase 1. The trends of the original and present results agree (F decreases with increasing
values of r,), but in terms of absolute numbers the agreement is very poor: at the higher values of r,
the magnitudes of the original results are more than a factor of two larger than those of the present
results; at the lower values of r, they approach a factor of two smaller. In fact, the vertical scale of the
original figure had to be extended in order to accommodate the present result at r, = 0.25.

N.B.: In the following discussion there are two uses of the word “square.” The first use refers to the
product of a quantity and itself; the second use refers to the geometric shape of the colored plotting
symbols in figure 13B.

In contemplating the poor agreement between the original and present results, the present author
noticed that the values of the present results, represented by the colored squares, at r,=0.375 and 1.0
(about 1.5 and 0.25, respectively) are approximately equal to the squares of the values of the original
curve at the same r,'s (about 1.25 and 0.5, respectively). This relationship led the present author to
compute and plot the squares of the values of the original curve B (curve labeled in the figure as the
“square of curve B”).

As can be seen in figure 13B(b), the agreement between the present results and the square of curve B is
much better than the agreement between the present results and curve B itself. The better agreement
may be quantified by examining the sums of the squared differences between the results: those of the

former are less than half those of the latter.

This better agreement suggests that an error occurred in the creation of the original curve B. Because
the author of NACA 496 uses the symbol F to mean, at times, a quantity and, at other times, the square
of that quantity, there is ample room for one meaning to be used when the other meaning was
intended. The present author believes such an error occurred in the creation of curve B (but not in the
creation of curve A).

In figure 13B(c), the large X’s at values of r, of 0.50, 0.75, and 1.00 are from the independent calculation
and are in excellent agreement with the present calculations and is supporting evidence that the original
curve B was incorrectly plotted.
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Variation of Center of Gravity Location. — The original figure 14 illustrates the dependency of F on the

location of the center of gravity, x,, for three different combinations of quantities. Each combination is
represented by a different curve, labeled A, B, and C. According to the sign convention established in
figure 2 of NACA 496, increasingly positive values of x, corresponds to an aft movement of the center of
gravity.

Because of the complexity of the results to be presented for this figure and in an attempt to preserve
the figure numbering convention described at the beginning of this section, figure 14 will be divided up
into “offspring” figures: 14A, 14B, and 14C. In addition, each offspring figure will have parts (a), (b), and
(c).

According to the figure legend in the original figure 14, the quantities specific to this example are

for curve A: x=Ya00; a=-0.4; wi/w» =Y, ro=0.5; x,variable
and
for curve B: x=%; a=-0.4; wi/an =%, ro=0.5; x,variable
and

for curve C: x=Y%o00; a=-0.4; wi/a»=1; r,=0.5; x,variable.

The colored circles in Figures 14A are the result of present calculations intended to match the original
curve A; the colored squares in Figures 14B, to match the original curve B; and the colored diamonds in
Figures 14C, to match the original curve C. Each present result represented by a symbol was obtained
by selecting a value of x, and executing the NACA 496 solution method for Subcase 1.

The original figure 14 contains conflicting information regarding curve C. The figure legend defines the
quantities listed above; but, within the figure itself is a notation indicating other quantities — “w,/a» = 1,
4x=.01" — with a leader pointing to curve C. The ratio of frequencies is the same as the ratio specified
in the figure legend; however, the value of x (= Y400) differs from that in the figure legend. Present

calculations were performed for both values of «.

In figure 14A(a), the original results and the present results differ significantly, showing opposite trends
with increasing values of x,. However, the present author observed the following: the present value of
F at x, = 0 is very close to the original value of F at x, = 0.4 and vice versa; the present value of F at x, =
0.1 is very close to the original value of F at x, = 0.3 and vice versa; and the present value of F at x,=0.2
is very close to the original value of F at x,=0.2.

This observation led to figure 14A(b), in which the original curve A has been rotated about the vertical
axis xo = 0.2. The rotated curve A and the colored circles exhibit excellent agreement.

In Figure 14A(c) the large X's at values of x, 0f 0.1, 0.2, and 0.3 are from the independent calculation and
are in excellent agreement with the present results and the rotated curve A. This triple agreement
suggested to the present author that original curve A was incorrectly plotted.
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In the early 1930’s, intricate and multi-stepped engineering calculations (such as those required to
produce the results in NACA 496) were performed by hand; results were recorded and transcribed by
hand; and then plotted by hand. Itis not unrealistic to consider that with the many steps performed by
humans, errors occurred. The present author believes that in the case of curve A, transcription errors
occurred — correct values of F were paired with non-corresponding values of x,— which then led to an
incorrect plot.

The trends observed in figures 14A are repeated in figures 14B and 14C: in figures 14B(a) and 14C(a) the
original results and the present results (represented now by the colored squares and diamonds) differ
significantly, showing opposite trends with increasing values of x,; in figures 14B(b) and 14C(b) the
original curves B and C have been rotated about the vertical axis x, = 0.2 producing excellent agreement
with the present results; and in figures 14B(c) and 14C(c) the large X’s from the independent calculation
are in excellent agreement with the present results and the rotated curves B and C. Again, this time for
curves B and C, the present author believes that transcription errors occurred — correct values of F were
paired with non-corresponding values of x,— which then led to incorrect plots.

Wings A and B

The final three figures in NACA 496 (figs. 15, 16, and 17) present results for two wings, designated in
NACA 496 as Wing A and Wing B. For each wing, experimental results were obtained. Both wings had
symmetrical airfoils with chords of 12.7 centimeters (5 inches) and thickness-to-chord ratios of 0.12.
Both wings were tested at zero degrees incidence.

The text of Appendix Il of NACA 496 states that Wing A was constructed of aluminum with quantities:
x="Yme6;, a=-0.4; x,=0.31,0.173, and 0.038; r,2=0.33; @,=7x27.

The text of Appendix Il of NACA 496 states that Wing B was constructed of wood, with a trailing-edge
control surface, with quantities:

x=Y00; c=0.5; a=-0.4; x,=0.192; r,?=0.178;
xz=0.019; r# =0.0079; w,=17.6x2m.

Figure 15 contains Subcase-1 results for Wing A in which flutter velocity is plotted as a function of
frequency ratio an/w,.

Figure 16 contains Subcase-2 results for Wing B in which flutter velocity is plotted as a function of
frequency ratio wg/ .

Figure 17 contains Subcase-3 results for Wing B in which flutter velocity is plotted as a function of
frequency ratio @,/ wp.
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To obtain the curves in these figures, first the appropriate subcase-specific NACA 496 solution method
was executed, resulting in curves of subcase-specific F (as defined) vs. subcase-specific £2. Next, for each
value of F equation (13) was employed, converting the ordinates in these curves from nondimensional F
to dimensional vs. Finally, the equations for the subcase-specific £2’s from equations (5a), (5b), and (5c)
were employed, converting the abscissas from subcase-specific £2 to subcase-specific frequency ratio.

Referring back to equation (13), it can be seen that to obtain the dimensional flutter velocity reference
values ar and r, are required, which differ from subcase to subcase. For Subcase 1, values of @, and r,
are required; for Subcase 2, a value of ay is required; and for Subcase 3, values of wgand rp are
required. NACA 496 supplies values for @y, ro, and rg, but, in another tripping point, it does not supply
values for @y, and wp. Therefore, for the present calculations for Subcases 2 and 3, values of @, and wp
had to be chosen. The choice was based on a trial-and-error investigation of candidate values and the
selection criterion for the chosen values of @» and wgwas that there be reasonable agreement between
the original and the present curves.

Subcase 1. — Figure 15 contains theoretical and experimental results, in black. The present results are
shown in colored O and + symbols and solid and dashed colored curves. Even though three values of x,
are listed above in the quantities for this subcase, x, = 0.173 was chosen for the present calculation
because it produced the best agreement with the original curve in figure 15. Over the entire frequency
range the trends for original theoretical results and both sets of present results are in very good
agreement. The overall agreement over the first half of the range is excellent with maximum
differences less than 5 percent; over the second half, less so with maximum differences of about 15
percent.

Subcase 2. — Figure 16 contains theoretical and experimental results, in black. The present results are
shown in colored O and + symbols and solid and dashed colored curves. Theoretical results are given
for two values of quantity x,: x3=0.019 and x3=0.01. For this subcase, an assumed value of @, of
5.8x271 was selected because it produced reasonable agreement between the original results and the
present results.

In examining the colored curves, it is seen that the upper (corresponding to higher values of v) and
lower (lower values of v) extremes of both curves extend to a frequency ratio of zero. Both colored
curves are comprised of solid and dashed portions, indicating that two roots of equation (10) are
present in each solution. The transition from solid to dashed occurs between frequency ratios of 0.8
and 0.9. The calculations that produced these curves had a range of 1/k from 0 to 500.

In examining the black theoretical curves, it is seen that the upper extremes of both curves terminate at
a frequency ratio of about 0.75 and the lower extremes terminate at a frequency ratio of about 0.82.
The difference in horizontal extent between the black and colored curves suggests to the present author
that the calculations that produced the original curves had a very limited range of 1/k. Further, because
the frequency ratio at the lower extremes of the black curves corresponds roughly to the frequency
ratio at the transition of the colored curves from solid to dashed, it is possible that the black curves only
capture a single root of equation (13/XXVI).
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Subcase 3. — Figure 17 contains theoretical and experimental results, in black. The present results are
shown in colored O and + symbols and solid and dashed colored curves. For this subcase, an assumed
value of wsof 4.4x21 was selected because it produced reasonable agreement between the original
results and the present results.

As was observed in figure 16 for subcase 2 because the frequency ratio at the lower extreme of the
black curve corresponds roughly to the frequency ratio at the transition of the colored curve from solid
to dashed, it is possible that the black curve only captures a single root of equation (13/XXV).

VII. CONCLUDING REMARKS

This paper has reported on an extensive study of reference 2, NACA Report No. 496, “General Theory of
Aerodynamic Instability and the Mechanism of Flutter,” by Theodore Theodorsen (referred to herein as
NACA 496), including the re-computation of its numerical results. The study included reading and re-
reading the paper, checking its equations, and checking its solution methods. With the few exceptions
noted in the present paper, the study revealed the equations and solution methods of NACA 496 to be
correct. Because of the crude (by today’s standards) computational tools available at the time NACA
496 was written, the author of NACA 496 conceived of and employed several time- and effort-saving
computational shortcuts, pointed out and summarized in a table in the present paper. The study also
revealed some “tripping points,” aspects of NACA 496 that have the potential to cause confusion, and
identified some errors in NACA 496 that were not corrected in the later versions of the paper. Tripping
points and errors are also summarized in tables in the present paper.

Appendix Il in NACA 496 contains a number of numerical examples, all of which were re-computed in
the present paper. The re-computed results were overlaid on the original figures from NACA 496. The
re-computations were accomplished by employing the method developed in the original work, but by
using modern computational tools. In most instances the overall shapes of the original and re-
computed curves are similar, with varying degrees of agreement in magnitude. In some instances, there
is significant dissimilarity between the original and re-computed curves. Most dissimilarities are
attributed to human computational and transcription errors that are speculated to have occurred during
the creation of NACA 496. One dissimilarity (namely, that regarding the quantity F in fig. 12) is
unattributed. Several of the re-computed results were checked by independent calculations and, in
each instance, the re-computed and independent results were in excellent agreement.

Appendix A of the present paper contains NACA 496.

Appendix B contains a Matlab® program that implements the two-degree-of-freedom flutter equations
and the two-degree-of-freedom solution method found in Appendix | of NACA 496. By executing this
program, results in figures 5 through 11 and 15 through 17, found in Appendix Il of NACA 496, may be
re-computed directly. This program produces both physical and non-physical solutions. Physical
solutions are based on real values of the quantity F and the 2's; non-physical solutions are based on
complex values.
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Appendix C of the present paper offers three alternate solution methods, all of which derive from the
two-degree-of-freedom flutter equations of NACA 496. Compared to the number of computations
involved in the NACA 496 solution method, these alternate solution methods are much more
computationally intensive and would have been excluded from consideration in 1934 for that reason.
To accuracies within a tenth of a percent, all three alternate solution methods yielded the same value of
flutter velocity, v, and the same value of flutter reduced frequency, ki, as those predicted by the
solution method of NACA 496.

Appendix D of the present paper offers a solution of the three-degree-of-freedom flutter equations
following the method proposed in NACA 496. This solution method produced an example result for the
“standard case.” In addition, for systematic variations in the dimensional modal frequencies, in the
limit, the three-degree-of-freedom results (vfand k;) approached the two-degree-of-freedom results,
including the number of flutter modes predicted.
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AERONAUTIC SYMBOLS
1. FUNDAMENTAL AND DERIVED- UNIT

Metric English
Symbol " S
: Abbrevia- : revia-
Unit tion Unit tion
Lenéth ______ 1 meter. .. ... m foot (ormile) __________ ft. (or mi)
Time_ .. ____ i gecond. oui s omodhasnaas s second (or hour)_______| sec (or hr)
Force______ F weight of 1 kilogram______ kg weight of 1 pound__.___[ 1b
Power__.____ P horsepower (metrie) ... |- _._____ horsepowir ___________ hp
kilometers per hour______ kph miles per hour_________ mph
Speed-..___- v meters persecond-_______ mps feet persecond. . _.__._ fps
2, GENERAL SYMBOLS
Weight=mg v Kinematic viscosity
Standard acceleration of gravity=9.80665 m/s? p Density (mass per unit volume)
or 32.1740 ft/sec? Standard density of dry air, 0.12497 kg-m™-s? at 15° C
Mass:l—y and 760 mm; or 0.002378 Ib-ft—* sec?

Specific weight of “standard” air, 1.2255 kg/m® or
Moment of inertia=mk: (Indicate axis of 0.07651 Ib/cu ft
radius of gyration k by proper subseript.)
Coeflicient of viscosity

3. AERODYNAMIC SYMBOLS

Area T Angle of setting of wings (relative to thrust line)
Area of wing i Angle of stabilizer setting (relative to thrust
Gap line)
Span Q Resultant moment
Chord Q Resultant angular velocity

2
Aspect ratio, ?S'_ R Reynolds number, p-T—:! where [ is a linear dimen-
True air speed sion (e.g., for an airfoil of 1.0 ft chord, 100 mph,

standard pressure at 15° C, the corresponding

¥ 1
Mmic P e : e
Dymamic pressure, 2° Reynolds number is 935,400; or for an airfoil

Lift, absolute coefficient OL:£ of 1.0 m chord, IQO mps, the corresponding
¢S Reynolds number is 6,865,000)
Drag, absolute coefficient OD=£ o ingie Of fctlmek b
€ ngle of downwas!
Profile drag, absolute coefficient OD‘]:QJ ay Angle of attack, }nﬁmte aspect ratio
S oy Angle of attack, induced
Induced drag, absolute coefficient OD‘:(?S" ag Af;gflf of flt_itﬂ(;k, absolute (measured from zero-
1t position
Parasite drag, absolute coefficient C'D,,ié—)b’i ¥ Flight-path angle

Cross-wind force, absolute coefficient Cc=q%

2626°
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GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF
FLUTTER

By TeeEoDORE THEODORSEN

SUMMARY

The aerodynamic forces on an oscillating airfoil or
wirfoil-aileron combination of three independent degrees
of freedom have been determined. The problem resolves
itself into the solution of certain definite integrals, which
have been identified as Bessel functions of the first and
second kind and of zero and first order. The theory,
being based on potential flow and the Kutta condition,
is fundamentally equivalent to the conventional wing-
section theory relating to the steady case.

The air forces being known, the mechanism of aerody-
namic instability has been analyzed in detail. An exact
solution, involving potential flow and the adoption of the
Kuita condition, has been arrived at. =~ The solution is of
a simple form and is expressed by means of an auxiliary
parameter k. The mathematieal treatment also provides
a convenient cyclic arrangement permitting a uniform
treatment of all subcases af two degrees of freedom. The
Slutter velocity, defined as the air velocity at which flutter

determined as a function of a certain ratio of the fre-
quencies in the separate degrees of freedom for any magni-
tudes and combinations of the airfoil-aileron parameters.

For those interested solely or particularly in the numer:i-

cal solutions Appendiz I has been prepared. The rou-

tine procedure in solving numerical examples is put
down detached from the theoretical background of the
paper.
of constants pertaining to the case, then to perform a few
routine calculations as indicated. The result is readily
obtained in the form of a plot of flutter velocity against
Srequency for any values of the other parameters chosen.
The numerical work of ealeulating the.constants is svm-
plified by referring to a number of tables, which are in-
cluded in AppendizI. A mnumber of illustrative examples
and experimental results are given in Appendic 11.

INTRODUCTION

It has been known that a wing or wing-aileron strue-
turally restrained to a certain position of equilibrium
becomes unstable under certain conditions. At least
two degrees of freedom are required to create a con-
dition of instability, as it can be shown that vibrations

| will be put down.
| 5 N e
starls, and which is treated as the unknown quantity, is | statement regarding the equilibrium of a system of
| forees.

| forces, (2) the restraining forces, and (3) the air forces.

It first is necessary to determine a certain number

of a single degree of {freedom would be damped out by
the air forces. The air forces, defined as the forces due
to the air pressure acting on the wing or wing-aileron
in an arbitrary oscillatory motion of several degrees of
freedom, are in this paper treated on the basis of the
theory of nonstationary potential flow. A wing-
section theory and, by analogy, a wing theory shall he
thus developed that applies to the case of oscillatory
motion, not only of the wing as a whole but also to
that of an aileron. It is of considerable importance
that large oscillations may be neglected; in fact, only
infinitely sma]l oscillations about the position of
equilibrium need be considered. Large oscillations
are of no interest since the sole attempt is to specify
one or more conditions of instability. Indeed, no
particular type or shape of airfoil shall be of concern,
the treatment being restricted to primary effects. The
differential equations for the several degrees of freedom
Each of these equations contains a

The forces are of three kinds: (1) The inertia

There is presumably no necessity of solving a general
case of damped or divergent motion, but only the
border case of a pure sinusoidal motion, applying to the
case of unstable equilibrium. This restriction is par-
ticularly important as the expressions for the air force
developed for oscillatory motion can thus be employed.
Imagine a case that is unstable to a very slight degree;
the amplitudes will then increase very slowly and the
expressions developed for the air forces will be appli-
cable. Tt is of interest simply to know under what
circumstances this condition may obtain and cases in
which the amplitudes are:decreasing or increasing at a
finite rate need not be treated or specified. Although
it is possible to treat the latter cases, they are of no
concern in the present problem. Nor is the internal
or solid friction of the structure of primary concern.
The fortunate situation exists that the effect of the
solid friction is favorable. Knowledge is desired con-
cerning the condition as existing in the absence of the
internal friction, as this case constitutes a sort of lower
limit, which it is not always desirable to exceed.

3
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Owing to the rather extensive field covered in the
paper it has been considered necessary to omit many
elementary proofs, it being left to the reader to verify
certain specific statements. In the first part of the
paper, the velocity potentials due to the flow around
the airfoil-aileron are developed. These potentials
are treated in two classes: The noncirculating flow

potentials, and those due to the surface of discon-
tinuity behind the wing, referred to as ‘‘circulatory”
The magnitude of the circulation for an
wing-aileron iz

potentials.
oscillating

determined next. The

FIGURE 1.—Conformal representaLiDn of the wing profile by a circle.

forces and moments acting on the airfoil are then
obtained by integration. In the latter part of the
paper the differential equations of motion are put
down and the particular and important case of un-
stable equilibrium is treated in detail. The solution
of the problem of determining the flutter speed is
finally given in the form of an equation expressing a
relationship between the various parameters. The
three subcases of two degrees of freedom are treated
in detail.

The paper proposes to disclose the basic nature of
the mechanism of flutter, leaving modifications of the
primary results by secondary effects for future investi-
gations.! Such secondary effectz are: The effects of a
finite span, of section shape, of deviations from poten-
tial flow, including also modifications of results to
include twisting and bending of actual wing sections
instead of pure torsion and deflection as considered in
this paper.

The supplementary experimental work included in
Appendix II similarly refers to well-defined elementary
cases, the wing employed being of a large aspect ratio,
nondeformable, and given definite degrees of freedom
by a supporting mechanism, with external springs
maintaining the equilibrium positions of wing or wing-
aileron. The experimental work was carried on
largely to verily the general shape of and the approxi-
mate magnitudes involved in the theoretically pre-
dicted response characteristics. As the present report
is limited to the mathematical aspects of the flutter
problem, specific recommendations in regard to prac-
tical applications are not given in this paper.

1The effect of internal friction is in some cases essential; this subject will be
contained in a subsequent paper.

VELOCITY POTENTIALS, FORCES, AND MOMENTS OF
THE NONCIRCULATORY FLOW

We shail proceed to calculate the various velocity
potentials due to position and velocity of the individ-
ual parts in the whole of the wing-aileron system.
Let us temporarily represent the wing by a circle (fig.
1). The potential of a source e at the origin is given
by

o= log (2*+3?)
For a source ¢ at (z;,7) on the circle
o= log {G—a)*+ @y—m)?)

Putting a double source 2e at (x;,1) and a double
negative source —2e at (z;,—y,) we obtain for the flow
around the circle

_£ @—e)’+ (y—y)?
¢=52 192 ooy (yT v

The function ¢ on the circle gives directly the sur-
face potential of a straight line pg, the projection of the
circle on the horizontal diameter. (See fig. 1.) In
this case y=+/1—2* and ¢ is a function of z only.

We shall need the integrals: -

Jlll @—a )+ —y)*

o CE@—a )V y?

daz; =2@—e) log N—2+/1—¢* cos ¢

and
24+ (;
[(1og E=AH L, ooyt m—VI=FVT=F
—cos~le(x—2¢)1—2+ (z—c)?log N
i — N=lze—1=2{i=¢

xr—cC

The location of the center of gravity of the wing-
aileron w, is measured from a, the coordinate of the
axis of rotation (fig. 2); xs the location of the center

h
vooe
c.g.of entire wing
L—c o
\7 s L +a
H Gl

s Axis ofrofm‘ron i
c.g.of aileron-' )

FicURE 2.—Parameters of the airfoil-alleron eombination.

of gravity of the aileron is measured from ¢, the coordi-
nate of the hinge; and r, and rs are the radii of gyration
of the wing-aileron referred to ¢, and of the aileron
referred to the hinge. The quantities z3 and r; are
“reduced’” values, as defined later in the paper. The
quantities a, z., ¢, and xp are positive toward the rear
(right), & is the vertical coordinate of the axis of rota-
tion at @ with respect to a fixed reference frame and is
positive downward. The angles « and g are positive
clockwise (right-hand turn). The wind velocity v is to
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the right and horizontal. The angle (of attack) «
refers to the direction of », the aileron angle g refers to
the undeflected position and nof to the wind direction,
The quantities r, and rs always occur as squares.
Observe that the leading edge is located at —1, the
trailing edge at +1. The quantities a, ¢, Z4, T, 7a
and rg, which are repeatedly used in the following
treatment, are all dimensionless with the half chord &
as reference unit.

The effect of a flap bent down at an angle 8 (see fig.
2) is seen to give rise to a function ¢ obtained by sub-
stituting —»8b for ¢; hence
28b

™

?y= [vV1—2fcos™'c— (z—¢) log V]

To obtain the effect of the flap going down at an

angular velocity B, we put ¢= —(z,—c)8b® and get
. -
.pé=gi_’r[\/l — 2T —x*+cos~le(z — 2¢) V1 — 22

—(z—c)® log N]

To obtain the effect of an angle « of the entire air-

foil, we put ¢= — 1 in the expression for ¢, hence
¢, = vab \/I -z
To depict the airfoil in downward motion with a veloc-
ity & (+ down), we need only introduce %’ instead of «.

Thus .
¢;=hby/1 =2

Finally, to describe a rotation around point @ at an
angular velocity & we notice that this motion may be
taken to consist of a rotation around the leading edge
¢=—1 at an angular velocity & plus a vertical motion
with a velocity —&(1 +a)b. Then

ab? ——— 5
pa=G-m(et D J1-F—a(l+a)by1-2
~ (e -a V1=

The following tables give in succession the velocity
potentials and a set of integrals * with associated eon-
stants, which we will need in the calculation of the air
forces and moments.

VELOCITY POTENTIALS

wa=vab~/1 — 22
er=hb1—2?

pa= dbz(%ac e a)v’l —

- ,11,‘35[1,"1_*? cos™lc— (x—¢) log N]

™
0i= 51;_ BbH AT =12+ (z—2¢) 1 — 2% cos™lc
—(x—c)? log N]

N=l—ecz —J1=23J1=¢
z—c

where

? Some of the more difficult infegral evaluations are given in Appendix I1I.

INTEGRALS

1
f eadr = &b*Ty
[

! b
ﬁ‘i’ﬂd:’::_é}'yﬁjé
. b .,

J;ﬁﬂdI:""ﬂBfg

1 +1
J: oz —c¢)daz= — %mTl f—l go(z—c)do= — gfuam

1 . -
f gilr—e)dz= — %th f+1¢&(x —cide=— %hcw
c =1

1 +1
f palz—c)dz=ab* T, ﬁl oa(x—ec)dr=a&b*Ty,x

+1 b
f 1 es(z—c)dz= — évﬁTg

. b
I; wplz—c)dx= ~g;vBT2 ~
_ BTy
2

LI b ., +
J: wple—c)dr= *2}5]'3 f_l pslz—e)de-

: CONSTANTS
T\= *E\fi —c2(2+¢®) +c¢ cos~le
Ty=c(1—¢3) — +/1—c*(1 + cHeos e+ c(cos™¢)?

T,=— (é+ c"‘) (cos’lc)2+ic VI—¢® cos~e(7 + 2¢%)

i

= é(l —c%) (5c+4)

Ty = —cosle+eyT— ¢

Ty = — (1= ¢?) — (cos~1e)? + 2e+/1— ¢* cos™c
Th=T,

7] 1 2 -1 1 R a2
T;=—(g+e*) cosTe+ge1—¢(7+2¢")
T el JI—¢ 22+ 1) +ccos™' ¢

3
Tﬁél:% (W/TCE)JH:T.]&% (—p+aT)

where p= — l% (VI_:?)‘
Tp=+1—c+cos™' ¢
Ty=cos™lc(1—2e)++1—¢ (2—¢)
Tu=+1—¢ (2+¢)—cos™ ¢ (2c+1)

Ta=31-Ti— (=) T}]

T14=i+lac

16 2
FORCES AND MOMENTS

The velocity potentials being known, we are able to
calculate local pressures and by integration to obtain
the forces and moments acting on the airfoil and

aileron.
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Employing the extended Bernoulli Theorem for un-
steady flow, the local pressure is, except for a constant

O
( ot

where w is the local velocity and ¢ the velocity poten-

Pr=

tial at the point. Substituting w;v+g—€° we obtain

ultimately for the pressure dl,fTelencc between the
upper and lower surface at =

%%)

p==2 v ort ot

where v is the constant velocity of the fluid relative to |
the airfoil at infinity. Putting down the integrals for
the force on the entire airfoil, the moment on the flap |

e

FiGUuRE 3.—Conformal representation of the wing profile with reference to the
circulatory flow.

around the hinge, and the moment on the entire air-
foil, we obtain by means of partial integrations

S
P= *Lpr' @dx
-1

I '
My == —Zpbzf ele—¢)det Bpi,‘b‘J edi

P +l ‘+l
M,= —2pb? f . ¢(x—c)dz+ 2pvbJ 1 odx

+1
—dprI‘l@(B*ﬂ)dm ‘
Or, on introducing the individual veloeity potentials |
{from page 3,

P=—pb* [owa + wh—brai— o T\ — bT\B] (1)

1
;Jabﬁ]

+pvbz[ P R erbB:[

My= — pb? [ — 0T~ T+ 2Tgbs— L o7 -

= w[vzm— (20 + 1) beic + 27T 5b%: + 1{;”5@?5
1, 1. o Lowm s P e !
’}'(T—rfg“; fg)bl‘ﬁ*;IJ"]gﬁﬁ’Tﬂ}h_]th] (”) |

M, —pr[~ oot vr(% +a2) Ba+ o T\+ {T,— T

—(c—a) Ty} 0B+ {— T — (c—a) T, }b%8

m— ai |

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

VELOCITY POTENTIALS, FORCES, AND MOMENTS
OF THE CIRCULATORY FLOW

In the following we shall determine the velocity
potentials and associated forces and moments due to a
surface of discontinuity of strength U extending slong
the positive = axis from the wing to infinity. The
velocity potential of the flow around the circle (fig. 3)
resulting from the vortex element — AT at (X,, 0) is

: -+ X, )Y
zg,:r tan ™! (__‘)‘_l—u—
Xz—(xo+y)x+ Yot
0.

where (X, Y) are the coordinates of the variable
and Xj is the coordinate of — AT on the r axis.

Introducing X, +

> =2
By o ]

or Xy=rp+ >~ | on the z axis

and X == and ¥=/1—2% on the circle

| the equation becomes

AT /1-
Crpg= — or tan~1¥=

This expression gives the
around the airfoil due to the

—9 9¢
TR ( 2t t? c)x)

But, since the element —AI' will now be regarded as
moving to the right relative to the airfoil with a
veloeity »

clockwise circulation
element — AI' at .

We have: p=

Q¢_0¢

of  0xg
- O¢ Q¢
Hence, p szi(aE 55,

Further

(1 —”x:ro)z
1
z? (0= r)
and
1 Ly r
—+ Y T (R,
2 E‘fu /1—:?(1 II()) \.I'g -1 ¥ (1 *C(':Z‘U)z
AT 2r, Y 14+ 02’ 1)
(17&".-"0)

| By addition:

ap +a

27 \,/1—3: \/J[, —1

or " ory
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To obtain the force on the aileron, we need the
integral

LG e [ i

Ar

Tot @

1412

dz

AT
27

Thus, for the force on the aileron

AP,= leb* ( /

ey
'\/-f 0

2

AP, = — pvb—[v,

o+l
el

Integrated, with AT = Udu,
P = = &

b[(cos”'cf '170‘)1.
’1—rf \/““den

for c=—1 we obtain the expression for P, the force
on the whole airfoil

P*—pbbf

Since U is considered stationary with respect to the
fluid elements

i l\fl—c) or

{cos"c* V1—¢ %)

cos e+
V‘

-

Vi=é]

avy

U=1(st —2y)

where £ is the time since the beginning of the motion.
U is thus a function of the distance from the location
of the first vortex element or, referred to a system
moving with the fluid, {J is stafionary in value.
Similarly we obtain for the moment on the @ileron

f gﬁ (x e fwh_—ci 1(/?+x)d
AN e = g
= (% - Tnﬂ)cosﬂ{[

o @t g-ovite

= O =1
+2(1 Z.TDG)COh c]

(\f"l —c*—c cos"c)

V=1

(( 057 'e —o4/T- "):l

Finally
)

AMy= — pob? ﬁ[‘/__ TB(1+8)

ﬁcos“c(c+2>} \/3‘“‘{ L (eos e — ey 1,(.) :I

Putting AT = [/dz, and integrating

{Vl (1+—4
ﬂw%HﬁW

+ (cos"lc —cy/(1—¢

pl.b

Mﬂ‘

= Uda
1 ALy

=0
W’Io =

V)

Further, for the moment on the entire airfoil around «

+ —
f_ D‘P )(c a)dz= — o ‘/m[(»ﬁu‘r )‘ﬂl_rz

b(La) oosm s | 40 L (L
2 Zol ) COS ) e \fA’Fil 3 Tl T
: 1
5= T8
and AMa= — ppb*Al' ==
R
Integrated, this becomes
= 1
520
— o : 7
M, prb 1 w’zuz—lbdr"
=1 1 1
_ 2 §+§x0 IL((H_ )U(Iru
- — b SEE
1 -\,/.EUZ—‘I \f;ligz—l

fzo+ 1

20— 1

1
2

=*pvbzfm[
Ji

THE MAGNITUDE OF THE CIRCULATION

The magnitude of the circulation is determined hy
the Kutta condition, which requires that no infinite
velocities exist at the trailing edge,
or, at =1

o : s 5
6;{;(“;1‘ + oot eit vat st o) = finite
Introducing the values of ¢, ete. from page 5 and
, from g page 6 gives the important relation:

1'._
2

\’Iu
'\’In

de[, —pa+ h+ b(i - a)a

IH

.3 (VII)

»ﬁ +

This relation must be satisfied to comply with the

Kutta condition, which states that the flow shall leave
the airfoil at the trailing edge.

Tt is observed that the relation reduces to that of the

Kutta condition for stationary flow on putting z,= o,
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and in subsequence omitting the variable pérameters
a, B, and j.

Let us write

f \/”ﬂ“_i_l Dda’ofba—*—h-%-b(f—‘z)

TlO .6+le16 Q

Introduced in (IV)

‘\/3’«'0 L dI‘g

\/mﬁ 1
from (V) f
Mg= —2pvb* (1/1———4;2(1 +%)7cos“ c(c +%))>(

P=— QWW_DQ

J Formi Vi Iy
. Vmo cos“c—cwflfcz) Q
Zo—1 " 0T
100 - ! i =
. = 1 B
P p—
.60 = : 1
.60
.40
_,(2;0 y S G
0 248 °i2 16 20 24 28 32 36 40
Lk~ A
FIGURE 4.—The functions F and Gs;;amst x
and from (VI)
f Udz,
M= —2mp0b? %— ‘h" :_]i
Lo
f \/.c -1 Udz,
Introducing
Ud
f 1/;1:“ =1 .
+
e
we obtain finally
P=—2mbr(Q (VIID)

My= —2pvb? I:( ﬂ(l + %) —cos™! c(c + %))0
+ 1 (cos™ e cwfm] Q= — pb(TuC—ToQ (IX)

M,*Zfrpﬁ)bz[(a +%)C’— %:!Q

0.9)

where @ is given above and C'= C(k) will be treated in
the following section.

VALUE OF THE FUNCTION C (k)
s
Put 7= Uye ' [k (b"")“""’]
where s=vt (s— =), the distance from the first vortex

element to the airfoil, and k a positive constant deter-
mining the wave length,

then
S| SR v:kxodxo
J‘ '\/‘xo -1 1°
o= ® ‘\/ Eprl T 2ot 1 4o _zxzodru W
:rnﬂ —

These integrals are known, see next part, formulas
(XIV)—(XVII) and we obtain®

™ T
CH) = RN gy
*%JL*gYngYF%Jo —(+TY)+i (Y —Jy
_ AV — (it Vo) —i(¥y =)
i+ ¥o)' + (¥, = op)*
T+ V) + ViV =)
N YR (Y J)?
IR AOED RPN
@A ALE) A A LI
where St T, .
_JiJi+ Yo+ Y (Y =)
P T T+ (0= T &
6= V¥t didy (XTIT)

AT (T o)

These functions, which are of fundamental import-
ance in the theory of the oscillating airfoil are given

graphically against the argument 7 1 in ﬁgure 4.
SOLUTION OF THE DEFINITE INTEGRALS IN C BY MEANS OF BESSEL
FUNCTIONS
We have
K, (2) =f et cosh nt di
L]
(Formula (34), p. 51—Gray, Mathews

& MacRobert: Treatise on Bessel

Functions. London, 1922)
where

inx
K,(t)=e? @, (@it)
(Eq. (28), sec. 3, p. 23, same reference)

G@=-T.0+[log 2-v+ 5 [0

and

but

V@) =5 Ya (@) + (log 2= ), (@)

(where Y,(z) is from N. Nielsen:
Handbuch der Theorie der Cylinder-
funktionen. Leipzig, 1904).

+ This may also be expressed in Hankel functions, C= Eﬁﬁ@
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Thus,
Gu(@) = =51 Ya (@) —ida )]
We have

. @ @ elk:
Kn(_ik):f e"‘"”“h‘dtﬁj; —/,z,ldm
[ VI

or
T . _ [=cos kxdx | . (=sin kzdx
tho(k)+1§Jo(k) =L Eet +1 e BT
Thus,
e Y, (X1v)
*sin kzd o
! e A0 (XV)
Further,
— — © ik cosh ¢ s mei zxdl.
K, (—ik) ﬁ e coshtdt I; ST
i6h (k) = —i5 ¥ (k) =5 (k)
= ﬁ’ﬁ (cos kz+1 sin k) da
Thus,
® g cos kxdz T
I\ e XVD)
. x—jff—ﬁi LIV () (XVII)

TOTAL AERODYNAMIC FORCES AND MOMENTS
TOTAL FORCE
From equations (I) and (VIII) we obtain

P=— pb2(?)7m'z + ’Jl'}l'/ — rhad— ’urﬂi,é - leﬁ) ’
- 2-,rpz:50{m +h+ b(é - a,)e'x Jr-TlFTm@'B
1. .
5 b2—wT,,ﬁ} (XVIII)
TOTAL MOMENTS

From equations (IT) and (IX) we obtain similarly
M= *pbzl:{ ol — Tyt T4(a~%)}vbc’:+ 2T b

1 m m 1 3 1 -
+1_r712,3(15* T, 10)_2_1;7)65T4T11_;T3b2!3
— Tk |- T fow (5 )

+ %Tm”ﬂ + bél;rTlhé} XIX)

4082690 41— -2

From equations (ITT) and (X)
M,=— pbz[r(% = a)vb(x + ﬂb’(é— + rﬁ):‘i

i+ (T:: + Tm)”z.@

s (;!1 P () By YO

— (T—, +(c—a) Tl)sz', avrb?f::l
- ol od ool d )

+ 2 pvb?m tz+§ O va+ 4 b(-éfﬂ, &
1 1,,

+;Tw@‘5+b:_;;rf11ﬁ> (XX)

DIFFERENTIAL EQUATIONS OF MOTION

Expressing the equilibrium of the moments about «
of the entire airfoil, of the moments on the aileron
about ¢, and of the vertical forces, we obtain, respec-
tively, the following threec equations:

a: —La—Ip—ble—a)Ss— Sh—al+ M, =0
B8: — Iy — T~ blc—a)aSs— hSs— B0+ M; =0
L —hM— 8.~ BSs—hC, 1+ P=0

Rearranged:

a: al +BUs+b(c—a)Ss) +hSat ally— M.=0
g: ii(]ﬁ+b(c—a)Sﬁ)+BIg-% hSﬁl BC—Msz=0
ks &S+ BSs+ EM+hC,— P=0

The constants are defined as follows:

2, mass of air per unit of volume.

b, half chord of wing.

M, mass of wing per unit of length.

Sy Ss, static moments of wing (in slugs-feet) per

unit length of wing-aileron and aileron,
respectively. The former is referred to
the axis a; the latter, to the hinge c.

I,I;, moments of inertia per unit length of
wing-aileron and aileron about @ and ¢,
respectively.

[6/% torsional stiffness of wing around a, cor-
responding to unit length.

Cs, torsional stiffness of aileron around ¢, cor-
responding to unit length.

G, stiffness of wing in deflection, correspond-

ing to unit length.

DEFINITION OF PARAMETERS USED IN EQUATIONS

the ratio of the mass of a eylinder of air of
a diameter equal to the chord of the
wing to the mass of the wing, both taken
for equal length along span.

_meb?
KTAM
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s \/ L1 the radius of gyration divided by b.

S.

SVi% the center of gravity distance of the wing

To=

from @, divided by b.

wu:\/ %; the frequency of torsional vibration
- around a.
r,;:\/ iéi—z; reduced radius of gyration of aileron

divided by &, that is, the radius at
which the entire mass of the airfoil
would have to be concentrated to give
the moment of inertia of the aileron Ij.

COMMITTEE FOR AERONAUTICS

S, 0 5
] rg= j/T%’ reduced center of gravity distance from e.
wp= %: frequency of torsional vibration of aileron

around c.

Wy =

\/%: frequency of wing in deflection,

FINAL EQUATIONS IN NONDIMENSIONAL FORM

On introducing the quantities M,, Mj;, and P,
replacing Ty and T}, from page 5, and reducing to
nondimensional form, we obtain the following system
of equations:

1 1 Co | T, T, 7.1, , 1\
(A) iil:r;*x('8+m2):|+d%x(-é—-a)Jram+ﬁ[r;-l—(c~"a,);r3—-;r—x—(c—a)-;'x]Jr;rBK%[prf(Efa>14:|

i P Ol e ) Ty

ﬁx?p;(ﬂ+lm)+h Ia_ﬂ-i()%“QK(CLJF%)?’C(k) =y %+(§~ )d’T 1025 iﬂ]:U
\ 1.
(B) [r +(c*a)l‘g'—x—-—((‘*a)—x]-i-a(p T, — T.} +B(rs ;)*gygBTQTni‘;K
T o0k h
‘3[%2* 2ng(T TdTm):lﬂ—h 25— 7le)b+flx?Cb( ) ”;" b+ »2— >a+ LEB+ S '5]70
©) a(a-u—m)+agﬁ—ﬁ(xr%f,x)—ﬁgm SRR IRAR
+2J£—]-‘- N h+(2— ) T‘°”5+7JB] 0

SOLUTION OF EQUATIONS

As mentioned in the introduction, we shall only have
to specify the conditions under which an unstable
equilibrium may exist, no general solution being
needed. We shall therefore introduce the variables at
once as sine functions of the distance s or, in complex

form with % as an auxiliary parameter, giving the
ratio of the wave length to 2 times the half chord b:

it
a=qaye’

8
i (k‘-‘f )
= B,e b

h= hogi (k%’Lﬁ)

where s is the distance from the airfoil to the first

and

3
vortex element, fi]t =, and ® and ¢, are phase angles |

of 8 and & with respect to a,

Having introduced these quantities in our system of
2
equations, we shall divide through by (%k) K.

We observe that the velocity » is then contained in
only one term of each equation. We shall consider
this term vonmmmv » as the unknown parameter QX.
To distinguish terms containing X we shall employ a
bar; terms without bars do not contain X,

We shall resort to the following notation, taking care
to retain a perfectly cyclic arrangement. Let the
letter A refer to the coefficients in the first equation
not containing C(k) or X, B to similar coefficients
of the second equation, and C to those in the third
equation. Let the first subscript « refer to the first
variable @, the subscript 8 to the second, and k to the
third. Let the second subseripts 1, 2, 3 refer to the
second derivative, the first derivative, and the argu-
ment of each vnmblo respectively. A, thus refers

| to the coefficient in the first equation associated with
the second derivative of « and not containing C(k) or
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X; O3 to the constant in the third equation attached to
f, etc. These coeflicients * are as follows:

Aal = 7‘:2 = (é F t12>
1
11,‘2 = (E = E)

Ap=0

11,31 =8

-0 (2-3)
ASF;[*?IP(gw) 7.]

A= ( i+ 1)
A,,l:j-:ffa
K
Ay =0
Ap=0
2 lral
rs

Bu="2-Tr4 o) (% n)

1 1,
B02=1r(p7T17§F4)

By=0

(=Agm)

2

_re_1
Bﬁl s X ,”2

Ty

1
By = —E_PTJTH

1 m 2]
353=P(15*14Tm)
4 1
Bm=%g*;r 1
BM—O
Bys=0
Cu="=a  (=4u)
Cu=1
0u3=0
Cn= 1’ (=Bw)
1
Cﬁ: _;Tg
0§3=0
Cu=1+1
K
Cr=0
Cs=0

+The factor - or — is not included in these constants. See the expressions for

ke
the R's and I's on next page.

11

The solution of the instability problem as contained
in the system of three equations A, B, and C is given
by the vanishing of a third-order determinant of com-
plex numbers representing the coefficients.  The solu-
tion of particular subcases of two degrees of [reedom
is given by the minors involving the particular co-
efficients. We shall denote the case {forsion-aileron
(a, B) as case 3, arleron-deflection (8, ) as case 2, and
deflection-torsion (h, a) as case 1. The determinant
form of the solution is given in the major case and in
the three possible subcases, respectively, by:

< Yoo
Itaa“i"’:Iau; Raﬁ E"ijuﬂy lga}rfi"ilah

Em—: Byuttlhe, R,,ﬂ—{—in, Ryptily, | =0
Roat-ilwy Rog+il s, Rontilo
and ~ R ;
W | it Bkine <0 O
T Lt i 70 o
W= | Botilon Bl o o0

t Raia+%laﬂ: I{aa+7~IM |

REAL EQUATIONS IMAGINARY EQUATIONS

Ramerﬂ Iac«]uﬁ RaaRaﬁ ! “ IzaIaﬁ

- = | = | =0 Case3
Bouionl | LuLog| =0 1 LBy | | Roultys| =0 O
RnﬁRnn IhBIMx! Rb.@RM- ‘Ibﬂlbh l

e = = 2
;Rcﬁch, IcﬁIc)x . Icﬁ[an [RcﬁRch! o C'lse
RMRcrx IchJ-Tcar RchRsa c)aIm | e o]
et sl s U Bt >

NoTE.—Terms with bars contain X; terms without bars do not contain X.

The 9 quantities R,., Ras, etc., refer to the real parts
and the 9 quantities .., I, etc., to the imaginary
parts of the coefficients of the 3 variables «, 8, and A
in the 3 equations A, B, €' on page 10. Denoting the
coefficients of &, &, and « in the first equation by p,
q, and r,

1 b b
Rua+1[aa :;[710--1*19{ ]L€7+ r (]T’L‘) :'

which, separated in real and imaginary parts, gives
the quantities B,, and I,,. Similarly, the remaining
quantities ® and T are obtained. They are all func-
tions of & or C(k). The terms with bars R, B,
and R, are seen to be the only ones containing the
unknown X. The quantities 2 and X will be defined
shortly. The quantities R and I are given in the
following list:
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AR T 3 S 2(% + m)[(}u u,)a—iF] (1)

Ru=—An+ du+ 5 (ot 2)[n,a 2] TwF:l @

B i e 2(@ +3)@ @)
e
B,=—Bs +;L;§Baa’i- QX — 5o I:T“(’ 2ka14]
Boy=—Bu -3¢ ©)
Rem—Cu—} 2[(% a)GﬁlF] @
B s ———[1,16* ZTM,CF:I ®)
Bo=—0Cn+0,X 120 )

L= kl:2(a+ ){(z-a)m G} —Aa| an
Ias:**J:"(a+§)<T1,F+2ETm(})fA,;z] a2)

o= p2(atg)F .
Iw:z[& ((G-o)r+3]+8a] (14)
Le=1 T”(Tnl"—i—Q I’mG)-I-BBZ:’ (15)
IM—%@ F (16)
La=y| 2[(G-o)r+{ @) +au] (17)
Lo= i 2(2uP+24106)+ 0 | (18)
L= ]c"F (19)

The solution as given by the three-row determinant
shall be written explicitly in X. We are immediately
able to put down for the general case a cubic equation
in X with complex coefficients and can easily segregate
the three subcases. The quantity D is as before the
value of the determinant, but with the term containing
X miczsing The quantities Il/[,m, My, and M, are
the minors of the elements in the diagonal squares
aa, bB, and ¢h, respectively. They are expressed ex-
plicitly in terms of B and I under the subcases treated
in the following paragraphs.

‘ Ayt 2 X A A
D=4, Ap+2X Ay =0
AGO‘ AL’H Acn+‘QhX

where A,.,=R

ot 1 e €tC,

omplex cubic equation in X:

QaRsX° + (Qalls Aont L A yut 22 A ) X

-+ (SlmMaa+QﬁMb|?+ Q)chi:)X+D=O (XXI)
Case 3, (o, 8):
Q2 X2+ (U A s+ Qp Age) X+ Mip=0 (XXII)
Case 2, (B, h):
Qe X+ (Qa Ao+ U Apg) X4 Mo =0 (XXIII)
Case 1, (k, a):
QX2+ (YA et Qa As»)X M},ﬂz (XXTIV)
ol'a brrwr
BaX = k"‘ﬂdfu ( )
wgrﬂ br,w,
05X~ )
OB br,cu,
WX =B, (mfr,) )
and finally
-1 bro,
X «\ ok )

We are at liberty to introduce the reference param-
eters w, and r,, and the convention adopted is: w, is
the last w in cyclic order in each of the subcases 3, 2,
and 1.

Then Q,= (—
w,

-1t 1

Wnl'n

2
) and ©,4,=1, thus for

. _{(@ara)? N
Case 3, g"*(w,grﬂ) and Q=1
2
Case 2, Qﬂ:(w%%) and Q,=1
3

2
Case 1, ﬂ,‘:(i"" ) and 9,=1
Wal'y

To treat the general case of three degrees of freedom
(equation (XXI)), it is observed that the real part
of the equation is of third degree while the imaginary
part furnishes an equation of second degree. The
problem is to find values of X satisfying both equa-
tions. We shall adopt the following procedure: Plot

graphically X against % for both equations. The points

of intersection are the solutions. We are only con-

cerned with positive values of 715 and positive values of

X. Observe that we do not have to solve for %, but
may reverse the process by choosing a number of
values of k and solve for X. The plotting of X

against % for the second-degree equation is simple

enough, whereas the task of course is somewhat more
laborious for the third-degree equation. However,
the general case is of less practical importance than
are the three subcases. The equation simplifies con-
siderably, becoming of second degree in X.
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We shall now proceed to consider these three sub-
cases. By virtue of the cyclic arrangement, we need
only consider the first case (e, 8). The complex
quadratic equations (XXID)-(XXIV) all resolve
themselves into two independent statements, which
we shall for convenience denote ‘‘Imaginary equa-
tion” and ‘““Real equation”, the former being of first
and the latter of second degree in X. All constants
are to be resolved into their real and imaginary parts,
denoted by an upper index R or I, respectively.

Let My,=M?~,,+iM%, and let similar expressions
denote My and M,

Case 3, (¢,8). Separating equation (XXII) we obtain.
(1) Imaginary equation:

(lebg{» QﬁIaQ)X+ M‘vm:(]
Mrch

A== nu[ﬁﬂ + Qﬁlua

(2) Real equation:
QaQﬂX2+ (QccRbB + Q&Ra:x) X+~Mﬂch:
Eliminating X we get

Qaﬂﬁ (M[::h) A (Qa:R 23 + ‘Qﬁ-Raa) (thlﬁﬁ + QﬂIau)MIch
—i—MRg,,(Q,‘ID,a—l- Qﬁlmx)Z: 0

By the convention adopted we have in this case:

. wa 2 T 2
« wsg, rs !
Arranging the equation in powers of Q. we have:

Qo[ =M . (Roslva) + MPan Lol 4 Qul (M ea)?
— M (Boalvg+ Laallon) +2MP o o] o]
H—M Bl yat M* 100" =0

and 25=1

Wy == Wg,

But we have
(M) — M o (Boad optTaallos)
=M GlBoaltp—RogloatBoploa— Ryadsg—Boalsp— Brplua]
=—M o (Boplvat Loshhe)
Finally, the equation for Case 3 («, 8) becomes:
QA ME I g — M nRogl 1) + Qul — M on (Rop T vat-TopRba)
F2ME o L ol g+ MPod o — M pBool0a=0 (XXV)
where
Mo =RouRip—RusRon— L g+ Luolie
AMIchERuaIbﬂ_Raﬂ]ba +IaaRbﬂ* IaﬂRba

The remaining cases may be obtained by cyclic
rearrangement;

2
Case 2, (8,h) (?) rg Q=1
h
QM T — MoaRonl o) + Qal — Miia(Bund g+ LnBleg)
+2ME Ll o)+ M-I g*— MRy Te=0 (XX V)
MRua: RbﬂRch e RthcB_ IbSIah‘I'Ithcﬂ
iM:anbﬂicix—Rbh[cﬁ'+' Ib.BRch“_'IkaEE

2
1
W=, Slh:(g’f) o

B (MEslal— MigR o1 o) + Gl — Mig(B ool i+ T calRan)
F2Mis Tt ] + MBI o — MisR oI =0 (XXVII)
Miy=RoRa—Realu—Iadat Leal
Mig=RBoloa—BoalantLonBoa— LoaBon
Equations (XXV), (XXVI), and (XXVII) thus
give the solutions of the cases: forsion-aileron, aileron-

deflection, and deflection-torsion, respectively. The
quantity @ may immediately be plotted against

W, =Wy Qp=

where

Case 1, (h,a) Q=1

where

% for any value of the independent parameters,

The coefficients in the equations are all given in terms
of R and 7, which quantities have been defined above.
Routine calculations and graphs giving @ against

% are contained in Appendix I and Appendix IIL.

Knowing related values of @ and %, X is immediately
expressed as a function of € by means of the first-
degree equation. The definition of X and @ for each
subease is given above. The cyclic arrangement of
all quantities is very convenient as it permits identical
treatment of the three subcases.

It shall finally be repeated that the above solutions
represent, the border case of unstable equilibrium.
The plot of X against 2 gives a boundary curve between
the stable and the unstable regions in the XQ plane.

It is preferable, however, to plot the quantity ,’%2 }T{

instead of X, since this quantity is proportional to the
square of the flutter speed. The stable area can easily
be identified by inspection as it will contain the axis

El;‘%zﬂ, if the combination is stable for zero velocity.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
Narronasl Apvisory COMMITTEE FOR AERONAUTICS,
LaneLey Fienp, Va., May 2, 1934.
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APPENDIX 1
PROCEDURE IN SOLVING NUMERICAL EXAMPLES

(1) Determine the R’s and I’s, nine of each for a | tions of the two independent parameters @ and ¢ only.®
major case of three degrees of freedom, or those per- | The formulas are given in the following list.
taining to a particular subcase, 4 R’s and 4 I's.  Refer F

w=2(e3){(3-2) o}

to the following for the R’s and I’s involved in each
case:

o, 111 1 O 8
The numerals 1 to 9 and 11 to 19 are used for con- | p ﬂﬂ:§f{(T,f T E+(a+§)(TuG—ETmF)[ @)
venience. ™ |

(Major case) Three gL 1Ny
degrees of freedom R arn:"2(a+§)6 (3)
1 RBe Lo 11 z 17
R ba = __"'1}{(2 )(;7 2 (4)
2 Ry I, 12
3 B I 13 ” 1 1 T12 v 7 3 e
ah an B \g= 7T TwG— 7Tyl k(l T.Tw) (5)
4 Rpe L 14
” 17 ;
5 Ry Iy 15 R bfz:—'E—;EEG (8)
& By T 18 1.1/1 2
e ~
7 B W I7 z ¢ )
8 Ry Is 18 RV = ,,M(Tl,g 2T k) ®)
9 Ba Ia 19
(Case 3) Torsional- R" = *§2 a (9)

aileron (e, B)

1 1 1 1

1 B I, 11 Iaa=“2((1,4-5)'(5—@)17.}_E@}_i_ﬁ_a (1)
2 Ry s 12 it *l[(@+%)(T11F+%II'1OG)+QY} a2)
4 Ry I, 14
5 Ry Iy 15 (“a)n}

(Case 2) Aileron- 1

deflection (ﬁ, h) an -2\ at 2 I (13)
5 Rbﬁ Inﬂ 15 I {( )FA*O (})'—T]_"“*T) (14)
6 Eun I, 16 .
8 Ry Iz 18 Where p=—73 (1—e2)??
9 Ry Ia 19 1 e -

Is=5_v Tnz(Tnf"wLE TwG')fT,]H} (15)

(Case 1) Deflection-

torsion (h, a) I T”F 16)
7 R. I 17
9 R, I, 19 Im=2{(%-— a,)FJr%Gl +1 (17)
1 Ry T 11 ‘g 5 ‘
3 Ry Iw 13 Top=— KI“F 5 Tmﬂ) -7 _.} (18)
It has been found convenient to split the B's in two | Tm=2F (19)

pﬂ,I‘tS R=R’ +R”, the former bEillg independent, of s The quantities I given in the appendix and used in the following calwlm.mm

are seen to differ from the I's given in the body of the paper by the factor k It

the argument%. The quantities I and B’ are func-

may be noticed that this factor drops out in the first-degree equations.

14

41




GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF FLUTTER

Choosing certain values of @ and ¢ and employing
the values of the 17s given by the formulas of the report
(p. 5) or in table I and also using the values of F and
@ (formulas (XII) and (XIII)) or table II, we evaluate
the quantities / and R’’ for a certain number of%
values. The results of this evaluation are given in
tables II1 and IV, which have been worked out for
¢=0,—0.2, and—0.4, and for ¢=0.5 and ¢=0. The

range u[%is from 0 to 40. These tables save the work

of calculating the I’s and R""’s for almost all cases of
practical importance. Interpolation may be used for
intermediate values. This leaves the quantities £ to

be determined. These, being independent of %: are as

a result easy to obtain. Their values, using the same
system of numbers for identification, and referring to
the definition of the original independent variables on
pages 9 and 10, are given as follows:

bl (L1,
B == (5 *@) W
S __fﬁ_z —(e—a) ™ I? == ﬁ
B 5= v (e—a) N + 7 +le—a) ™ @
R = _.fo +a @)
R .=same as R/ 5 “)
rg 1
R’aF*erT'rzTa ®)
Bl 7;‘55.}. lT (G)
Bh I
R'.,=same as ', @
R’ s=same as [, (8)
1
R/m: _;_ I (9)

Because of the symmetrical arrangement in the
determinant, the 9 quantities are seen to reduce to
6 quantities to be calculated. It is very fortunate,
indeed, that all the remaining variables segregate them-

selves in the 6 values of R’ which are independent of %,

while the more complicated 7 and R’/ are functions
solely of ¢ and @. In order to solve any problem it is
therefore only necessary to refer to tables IIT and IV
and then to calculate the 6 values of I2’.

The quantities (1) to (9) and (11) to (19) thus

having been determined, the plot of 2 against ’,]‘;: which

constitutes our method of solution, is obtained by
solving the equation aQ*-}-6Q-|-¢=0. The constants
a, b, and ¢ are obtained automatically by computation
according to the following scheme:

Case 3
Find produects 1.5 2.4 11,15 12.14
Then114%,,:1.5—2.4——%(11.15—12.14)
Find produects 1.15 2.14 11.5 12.4

Then M7,,=1.15—2.144-11.5—12.4
and a=M%,(15) — M?,,(5.15)
b= — M7, (2.14412.4) + 2 M2, (11.15)

e=M®,(11)2—M?,,(1.11)  Find Q.
ion: L _ (1511
Solution: <= M,
Similarly
Case 2
5.9 6.8 15.19 16.18
MRM=5.9—6.8m%(ls.lg—lﬁ.ls)
5.19 6.18 15.9 16.8
M ,=5.19—6.18+15.9—16.8
a=MP,,(19)*— M, (9.19)
b=—M".(6.18+16.8)
+2M®,(6.18+ 16.8)
o=M?%,(15)*— M7, (5.15) Find 95
1 9(19)+15
X M,
and
Case 1
9.1 7.3 19.11 17.13
MP,,—0.1—7.3 --%(19.1147.13)

9.11 7.13 19.1 17.3

M5=9.11—7.13419.1—17.3
@=MPps(11)— M,5(1.11)
= —M%s(7.13417.3) +2M*%,5(19.11)
= MR, 5(10)— M1,5(9.19)  Find 0
_L, .n(ll)‘»‘ﬂlg
XK= My

w,

2
Q. is defined as ( "’:") for case 3;
(]

wgi

2
Qg is defined as (mw'i”) for case 2; and
h

;35 Hebnell 5 ( @

Wal'«

2
) for case 1.
T ity — i ”—k)zb definiti
10 quantity s ol g7 ) by definition.
Since both Q and ‘:)l? are calculated for each value of

%, we may plot 7:-2 ?IZ directly as a function of 2. This

quantity, which is proportional to the square of the
flutter speed, represents the solution.
We shall sometimes use the square root of the above

quantity, viz,]% ‘/%, = g":‘; and will denote this
< W Ty
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quantity by F, which we shall term the ““flutter factor.”

The flutter velocity is consequently obtained as
v=F —-bw{'
vk

Since F is nondimensional, the quantity bw,'i'
VK

must

obviously be a velocity. It is useful to establish the
significance of this velocity, with reference to which
the flutter speed, so to speak, is measured. Observing

2
that « :% and that the stiffness in case 1 is given by

TpoRtt=C,

The velocity v is thus the velocity at which the total
force on the airfoil mpvg?2b attacking with an arm g
equals the torsional stiffness C, of the wing. This
statement means, in case 1, that the reference velocity
used is equal to the “divergence” veloeity obtained
with the torsional axis in the middle of the chord. This
velocity is considerably smaller than the usual diver-
gence velocity, which may be expressed as

Vp=10 L
D— VR
1

gt

1 5
where ¢ ranges from 0 to—fé- We may thus express
the flutter velocity as

=gk

In case 3 the reference velocity has a similar signifi-
cance, that is, it is the veloecity at which the entire lift of

the airfoil attacking with a leverage é b equals numeri-

cally the torsional stiffness (s of the aileron or movable
tail surface,

In case 2, no suitable or useful significance of the
reference velocity is available.

TABLE I.-VALUES OF T

a
I

1 =14 =0 ‘c=ﬁ‘/i‘ c=-—1

0 ~1.6967 | —3.1416 1
] —4,8356 | —9.8667 |
0 | —11.1034 |
0 I |
0

0 7 697
Q 1964 | 343

0 —. 4333 | —1.4805 | —3.1416
o | 2, 5708 i 2. 9604 3.1416 |
o 3.5708 |  6.3538 9.4248 |
0 | 07066 (4202 | 126800 | 3.1416 |

TABLE II.—-TABLE OF THE BESSEL FUNCTIONS J,, J,
Yo, Y1 AND THE FUNCTIONS F AND &

F) _ DY)+ V(Y- Joy
(Yo +(Yi—Jo)?
IR A0/ O R Ty )
g {Si-Yo) 2+ (Y —Ju)?

k -,1 Ju Ji Y ! ¥, ¥ -G !

i L
©

P

6

4

2

1

.8

.6

.5

]

.3 3 3

2 ! L 0v95

i | 10 0499

L05 20
{ L 025 40
‘ 0 | @
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TABLE III.—VALUES OF R

1
k 0 Yo 1% 4% 14 1 1% 124 2 21 | 814 5 10 20 40
c a
0 0/—0.00664 —0. 01566 —0, 03520| —0. 14265 —0, 58965 —0. 93656 —1, 72330/ —2. 56300| —4. 11000 —7.68720|—18, 66150 —85.38300, —365., 72000/ —1, 528, 2000
R | —2 0 — 00353 —. 00981 —.02208| —. 08905 —.36586) —.58061 —1. 08158 —1. 57400\ —2. 51580 —4.68430|—11,31010) —51,42400) —219,74900 —917. 3520
—.4 0| —.00123 —.00341 —.00767| —.03084| —.12505 —.19936 —. 36305 —. 53676| —.85520) —L.58540| —3.80774 —17.20670| —73.35520 —305.9280
0 0 —. 00163 —. 00452 —.01020| —. 04175| —. 18016 —.29384| —, 56223| —. 87212|—1. 43083 —2.84988| —7.46300 —38.29650, —172.36360 —741. 7972
0 —.2 0 .00030, .00033 .00184| 00679 01922 02266 .01629| — 01400 —. 08803| —.29517| —1.20480| —10.24500] —52.49020| —241, 3664
i —4 0 .00222 00617 .01388 .05531| .21861] .33914| .59409| 84414 1.30365  2.25914| 4.87340] 17.80470 67.88320] 250, 0648
» it
E [ 00510| .01932( .06418) .08876| .12176| .12260 12205 —.02900| —.93535 —10.48970] —B9.16180 —268.7236
0.5 —2 0 01336 .05278| .20325 .31065 .53062( .73222( 1.10233| 1.81135 3.55230 10.14740 31.40620  101. 6340
| —4 0 02170 656 34361 53463 .04336) 1.34762) 2.00100] 3.66913 8.08235 30.07080|  120.80760  475.2502
I o o —. 00763 90/ —. 10030| —. 14560 —. 302000 —.41500] —.60000] —.94300 —1.62600  —2.64000)
R'a o —2 o —. 00426/ —.01734| —. 06018 —.08736) —. 13482 —. 18120| —. 24000, —.36000, —.56580 —.97560  —L. 58400
—4 0 —. 00502 —.01003| —.02006] —.02508| —.03236| —. 04012 —.05015 —.06683 —.10030 ~—. 20060 —. 40120
o 0 00482 .01948 .08055 .12821 .23541) .35010( 56143 1.05008  2.54920| 11.66330 49.95700 208, 7520
o —2 0 00503 .02027| .08326| .13210| .24169| .35836| .57276) L.00650  2.57490 1170770 5003000 208, 8500
. —4 0 00523| .02106( .08603| .13616 .24766| .36661| .58410) 1.08286 2.60068 11 75220 50.10160) 208, 9490
ba
o 0 .00079) .00321| .01327] .02112) .03878| 05767 .09248)  .17206| 41088  1.92110 8. 22870) 34.3850
0.5 —2 0 00083 .00334| .01372 .02177| .03981| . .05903 .09434|  .17566| 42413  1.92840 8. 24060 34,4007
-4 0 (00086 .00347| .01417 .02243] .04084| .06039 .09621f  .17836 . 42837  1.93575 8, 25246 34. 4169
R [ 0 00772 03101 .12642] .19830 35807 .52400 .B2030] 151630) B.54070 1536120 64.02240( 263, 2340
d 5 @ o 00196| .00785| .03170| .04980) .08935| .13000| .20440|  .36940 84070  3.55050] 14. 56740 59. 3188
R'sh 0 0 .00104( .00394| .01370f .01989) .03177| .04125| .05669  .08196] . 12881 . 22211 . 36062 L4918
5 @0 .00016) 00065 .00226| .00328 .00506) .00680| .00934  .01350 02122 . 03659 . 05940 . 0810
0 -0 .01128 08132 07058 .28530| 1.17930] 1.87710 3.44670) 5.12600] 5.22000; 15.37450, 3732300 170.76600 731 44000 3,056,4000
R @) —.2 0 .0L178 .03270( .07362) .20084| 1.21954| 1.93540 3.53860| 5.24680| 8.38600 15.61440 37.70020| 17141640  732.49600 3, 057.8400
—.4 0 .01228 08 .07668| .30838) 1.25050| 1.99360 3.63050] 5.36760 8.55200| 15.85440 38.07740 17206680  733.55200 3, 059.2800
R 0 @ 0 —.00963 —. 02673 —. 06018| —. 24260 —1. 00561 — 1. 58246| 2. 89371( 4. 29100| —6. 55898( — 15. 49965 —80. 84330| — 140. 26370 — 5099, 41300 —2, 502. 3470
< .5 0 .00660 .01840( .04150] .16810] 69850 111453 2.05320 3.00224| 4.92530 0.24438 2254400 103.67300,  444.86400 1,851.0600
R e (3] (@ 0 .00250 .00690 .01420/ .05780 .20060 .26120 .44940] .G0400[ .83000] 1.20000{ 1.88600 3. 25200 5. 28000 7. 2000
! Independent of ¢. 2 Independent of a.
TABLE IV.—VALUES OF I
1
3
0 o ¥ ¥ % 1 134 124 2 2% 3%% 5 10 20 0
c a
0 | 0.25000 | 0.25096 | 0.25255 | 0.25578 | 0.27240 | 0.33055 | 0.36855 | 0.4403 0.60275 | 0.76750 07920 | 1.70320 | 2.68450 | 3.61750
Taa| (1) | —.2| .40000 | .40050 | .40131 | .40302 | . 5018 68671 | .78070 | .96021 | 1.32040 | 1.60140 | 245470
—. 4| .81000 | .81014 | .81087 [ 81086 | .81145 (87050 | .90030 | .95763 | 1.07300 | 1.26400 | 1.44630
-0 17805 | . 17874 | .17985 | .18219 19433 44690 | 57526 | 82035 | 1.8312i3 | 2.10476 | 2.85063
0 | -2 55300 | .63002 | .77708 | 1.07215 | 1.54773 | 2.00065
7 -4 (65908 | .68475 | .73377 | .B2313 | .89065 | 1.14163
1] -
2 0 85051 | 46379 | .65073 | 1.05124 | 1.65524 | 2.22869
0.5 —.2 134916 | 41173 | 52629 | 76420 | 1.12651 | 1.47067
—.4 33881 | .35006 | 39884 | 47714 59792 | .71
—. 62450 5 . .
In | 2 7470 | —. 39900 | —. 43656 | —. 50752
4 —.12490 | —.13300 | —. 14552 | —. 16014
0 34204 | .B1954 | .27696 | .10172
0 | -2 35011 | .33771 | .29683 | .21469
i -4 137617 | 33508 | 31671 | .23703
b
- 0 06644 | 06273 | 03672 | 04168
0.5 —.2 : . i 206925 | 06572 | .05899 | .04548
—.4 | 07887 | .07885 | .07882 | 07867 07848 07668 07529 | .07416 | .07205 | 06871 | .06226 | .04928
s | © () | .32297 | .32288 | .32273 | .32241 32075 31090 30342 | .20721 | 28625 | .26872 | (23524 | 16806
. 04270 | .04270 | .04270 [ .04270 04240 04095 03930 | .03904 | .03760 | .03386 | .03080 | .02200
| © (2) | .06830 | .06840 | .06850 | 06880 07010 07570 07610 | .08240 | .08530 | .00080 | .00840 | .11550
.5 L01125 | .01126 | .01120 | .0L133 01154 01247 01302 | .01357 | .01405 | .01406 | .01637 | .01803 | 02117
0 | 1.50000 | 1.49808 | 1,49480 | 1.48844 | 1.45520 | 1. 1.26200 | 1.11640 | 99900 | .74950 | .46500 | —. 15840 |—1.40630 (—3.36900
La | ()| —.2|1.70000 | 1.69832 | 1.69562 | 1.68992 | 1.66036 | 1. 1.48454 | 1.35092 | 1.24020 | 1.04430 | .73100 13264 |—L1.06802 |—3. 00460
—. 4| 1.90000 | 1,80856 | 1.89634 | 1.89140 | 1.88552 | L. 1.70618 | 1.58244 | 1.48410 | 1.31410 | .99700 42370 | —. 72074 |—2. 64020
I 0 (3) | 1.06830 | 1.06690 | 1.06470 | 1.06000 | 1.03580 89150 | .78100 | .60110 | 52840 | .27380 | —. 21640 [—1.20010 |—2, 78550
4 .5 40220 | 40100 | .30880 | .30450 37240 (24640 | .15510 | .07610 | —.05180 | —. 26030 | —. 65220 |—1.43520 |—2. 64380
I | ()| (2 | 1.00000 | 1.00120 | 1.00360 | 1.00740 | 1.02580 | 1.07900 | 1.10820 | 1.15760 | 1,20600 | 1,24900 | 1.33000 | 1,45520 | L. 69140 | 1,82200

1 Independent of ¢.

2 Independent of a.
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APPENDIX II
NUMERICAL CALCULATIONS

A number of routine examples have been worked out |
to illustrate typical results. A “‘standard” case has
been chosen, represented by the following constants:

k=0.1, ¢=0.5, a=—04, z,=0.2,

1 1

2 5 _=— ¢ P
raf=0.25, xg 30’ " =160
Way wg, w, vaTiable.

We will show the results of a numerical computation
of the three possible subcases in succession.

160 v
Vi
g

120 >
N,

80 -

e 1

40 ==

v A £ .3 .4 S o6 .7 8 9
L7k

: . 1
FI1GURE 5.—Case 3, Torsion-aileron (e, 8): Standard case. Showing Qu againsg ¢+

Lo

Case 3, Torsion-aileron («,p): Figure 5 shows the £,

; 1
against T

F 7"(:.:31* b) against 2, (w;:‘;) ( )

relation and figure 6 the final curve

20

16

/2]
r R

8 i I

\ A
# TN g
\4...__ [ l
0 20 40 60 60 _ 100 720 /40 160 180

a
F1GURE 6.—Case 3, Torsion-aileron (a, 8): Standard case.
F against Q..

Showing flutter factor

Case 2, Aileron-flexure (8, h): Figure 7 shows the

. 1 . ?
Q3 against T relation® and figure 8 the final eurve K(wlb)
h

against Qp= (wﬂﬁ) 160(@)
h i

6 Ic is realized that considerable care must be exercised to get these curves reason-
ably accurate. i

18

The heavy line shows the standard case, while the
remaining curves.show the effect of a change in the

1 1
value of xs to 10 and 160"
Case 1, Flexure-torsion (h, «): Figure 9 shows again
2N
/‘(- xg=1/40 \

Y v
@ / @\) aa\

/an j“\‘x*;;#é. \
Y \

(I

012

~.004 D

-008 J

L 7 e 3 P
1/

FiGURE 7.—Case 2, Aileron-deflection (8, #): (a) Standard case. (b), (¢}, (d) indicate
dependency onzg. Case (d), 75=—0.004, reduces to a point. .

the @, against ;_relﬁt.mn and figure 10 the final result

() o= (2

Case 1, which is of importance in the propeller theory,
has been treated in more detail. The quantity F'shown

9

1 3 ac 1 - .
in the figures is « ord

Figure 11 shows the dependency on—" oy

wz

figure 12 shows the dependency on the location of the
axis a; figure 13 shows the dependency on the radius of
gyration r,=r; and figure 14 shows the dependency
on the location of the center of gravity x, for three
different combinations of constants.

EXPERIMENTAL RESULTS

Detailed discussion of the experimental work will not
be given in this paper, but shall be reserved for a later
report. The experiments given in the following are
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restricted to wings of a large aspect ratio, arranged with
two or three degrees of freedom in accordance with the

14
\
AN
\\‘

RN /
i N

Q (vl

N
8 |

g = 1/80
F i /
6 N
(x5 1740
-4 -
Unstable
/,
2
//
= PSR
0 00z 004 006 008 .00 012 .0i
2,

FiGuRE 8.—Case 2, Aileron-deflection (8, #): Final curves giving flutter factor F
against Qa corresponding to cases shown in figure 7.

theoretical cases. The wing is free to move parallel to
itself in a vertical direction (h); is equipped with an

120

100/

80

60

40,

20

gt

0 2 4 6 ) 0
1k

. ‘ . 1
Fi16URE 9.—Case 1, Flexure-torsion (h, a): Standard case. Showing 2» agxmﬁtf-

axis in roller bearings at (@) (fig. 2) for torsion, and
with ap aileron hinged at (). Variable or exchange-

19

able springs restrain the wing to its equilibrium
position.

14 r
\

L.z —

-

N

N e

T

o 4 8 2 6 20

g
FiGuRre 10.—Case 1, Flexure-torsion (h, &): Standard case, Showing flutter factor
F against 2.

We shall present results obtained on two wings, both
of symmetrical cross section 12 percent thick, and with
chord 26=12.7 cn, tested at 0°.

1.50 T
e
CA .
1.00 A
[
F (- ™~ s eur
../
.50 i
I
T
0 s 5 2 T
w, S,
FIGURE 11.—Case 1, Flexure-torsion (h, a): Showing dependency of ¥ on E-"- The
upper cutveis experimental. Air[UiEwithr—i% a=—04;2=02; 4'11-01?2 variable.

Wing A, aluminum, with the following constants:

K:ﬁ, 4=—04, 7.=031,0.173, and 0.038,
respectively;
rl=0.33 and w,=7X27
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20
Wing B, wood, with flap, and the constants:

x=ﬁ), ¢=0.5, a=—04, z,=0.192, r2=0.178,
75=0.019, 74#°=0.0079, and w. kept -constant
=17.6> 27

The results for wing A, case 1, are given in figure 15;
and those for wing B, cases 2 and 3, are given in figures
16 and 17, respectively. The abscissas are the fre-
quency ratios and the ordinates are the velocities in
cm/sec. Compared with the theoretical results calcu-
lated for the three test cases, there is an almost perfect

3.00

2.50

2.00 ,/

/
150 =

.00

50—

a -.2 = =&

a
FiGURE 12.—Case 1, Flexure-torsion (h, «): Showing dependency of F on location
1.w

1, "
= A aw .
— ariable

of axis of rotation a. Airfoil with ,£% FT=0.2;x =
agreement in case 1 (fig. 15). Not only is the minimum
velocity found near the same frequency ratio, but the
experimental and theoretical values are, furthermore,
very nearly alike. Very important is also the fact that
the peculiar shape of the response curve in case 2, pre-
dicted by the theory, repeats itself experimentally.
The theory predicts a range of instabilities extending
from a small value of the velocity to a definite upper
limit. It was very gratifying to observe that the upper
branch of the curve not only existed but that it was
remarkably definite. A small increase in speed near
this upper limit would suffice to change the condition
from violent flutter to complete rest, no range of transi-
tion being observed. The experimental cases 2 and 3
are compared with theoretical results given by the
dotted lines in both figures (figs. 16 and 17).

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

The conclusion from the experiments is briefly that
the general shapes of the predicted response curves re-

2.00
1.50

N

{.00 \\ \
B \\‘
.50 ‘\
N
a S 1.0 1.5
xr

FIGURE 13.—Case 1, Flexure-torsion (&, «): Showing dependency of F on the radius
of gyration ra=r. -
i

A, airfoil with a= —0.4; x=lE =02 Egl; r variable.
4 wy 6

B, nirfoil with a= —0.4; ~=%: z=0.2) :’T;=1.oo; r variable.

2.50

2.00 }/ /
' /

Sy

/
F
//
1.00 =t
\\\
[5)
c =L =14aKk=0/
“z
.50
L
o 2 “ 6
Lo

F1GURE 14.—Case 1, Flexure-torsion (h, a): Showing dependency of F on za, the
location of the center of gravity.

fp 1. 1. _1. 3

A, airfoil with r=75 a=—0.4; k=g5" :.T;=E' T variable.
irfoll with r=-i; g=—0.4; =i &= 1 i

B, dirfoil with r= 5 6=—0.4 «=7 el z variable.

C, airfoil with r:-;—- a=—0.4; x=i$ %;=1; T variable.

100

peat themselves satisfactorily. Next, that the influ-
ence of the internal friction’ obviously is quite appreci-

7 This matter is the subject of a paper now in preparation.
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able in case 3. This could have been expected since
the predicted velocities and thus also the air forces on
the aileron are very low, and no steps were taken to
eliminate the friction in the hinge. The outline of the
stable region is rather vague, and the wing is subject

50
40
™
% T
| \ Experimental
. 30 Unsitable
e N
]
R 20
10
a .2 4 .6 . .0 L2 1.4
[ Wa

Figure 15.—Case 1. Wing A. Theoretical and experimental curves giving flutter
velocity # against frequency ratio Z—: Deflection-torsion.

to temporary vibrations at much lower speeds than
that at which the violent flutter starts. The above
experiments are seen to refer to cases of exaggerated
unbalance, and therefore of low flutter speeds. It is
evident that the internal friction is less important at
larger velocities. The friction does in all cases increase
the speed at which flutter starts.
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FiGURE 16.—Case 2. Wing B. Theoretical and experimental curves giving flutter
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FiGURE 17.-—Case 3, Theoretical curve giving futter velocity against the fre-

quency ratio “i:- The experimental unstable area is indefinite due to the im-
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portance of internal friction at very small velocities. Torsion-sileron (e, 8).
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Positive directions of axes and angles (forces and moments) are shown by arrows

Axis

Designation Sggil'

Moment about axis Angle Velocities
Force T I
(parallel | Linear J‘
ts‘)::l’{)lﬁ)] Desianation Sym- Positive Designa- | Sym- | (compo- | Al
Yy g bol | direction | tion bol |nent along | “"8WAr
axis)

X X L Y—2Z @ " P
Y Y M Z—X [ v q
Z Z N X—=Y ¥ w T
Absolute coefficients of moment Angle of set of control surface (relative to neutral
0 _ L o.M o _N position), §. (Indicate surface by proper subseript.)
T gbS ™ geS " gh8
(rolling) (pitching) (yawing)

D Diameter

P Geometric pitch
p/D  Pitch ratio

v’ Inflow velocity

V.  Slipstream velocity

3 T
T Thrust, absolute coefficient OT:pnTD’

Q Torque, absolute coefficient Co=

1 hp=176.04 kg-m/s=550 ft-Ib/sec

1 metric horsepower=0.9863 hp
1 mph=0.4470 mps
‘1 mps=2.2369 mph

Q
pniLP

4. PROPELLER SYMBOLS

; P
P Power, absolute coefficient. Op:pnaa
. 5o V3
C, Speed-power coefficient= P

Efficiency
Revolutions per second, rps

Effective helix angle= tarr’( L)
2xrn

s S

5. NUMERICAL RELATIONS

11b=0.4536 ke
1 kg=2.2046 1b
1 mi=1,609.35 m=5,280 It
1 m=3.2808 ft

U. 5. GOVERNMENT PRINTING OFFICE: 1941
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APPENDIX B
MATLAB® PROGRAM FOR RE-COMPUTING RESULTS IN NACA 496

This appendix contains a Matlab® program that implements the two-degree-of-freedom flutter
equations and the two-degree-of-freedom solution method found in Appendix | of NACA 496. By
executing this program, results in figures 5 through 11 and 15 through 17, found in Appendix Il of NACA
496, may be re-computed directly. The re-computation of results in figures 12 through 14 is discussed
below.

The program is structured as depicted in the simplified flow chart, below, on the left. There are four
“groups” of re-computed figures that may be chosen, according to the table, below, on the right. The
user inputs an integer from 1 to 4, thereby specifying a group. Then, based on the integer, the program
selects a set of quantities (x X, re X5 g etc.), computes the coefficients of the equations of motion,
solves the equations of motion and plots the results. The “cases” in the table are consistent with
subsection titles in section VI of the main body of the present paper.

/ User selects group i /

'

Quantiti Group Quantities NACA 496 Figures
i Number, i for Case - Reproduced
defined for group i
l 1 Standard 5thru 10
. ] 2 Parameter Variation 11
Coefficients for equations
of motion (EOM) created 3 Wing A 15
for group i
l 4 Wing B 16 & 17

EOM solved and results
plotted for group i

The re-computation of results in figures 12 through 14 requires multiple executions of the program, with
the user selecting group number 2 and supplying appropriately modified sets of quantities (see figure
legends of figs. 12 through 14) for this group.

During the normal execution of the solution method, the computed quantity F and the computed (2's
may be, at times, real and, at other times, complex. Only real values of F and the {2's represent physical
solutions; complex values of F and the (2's represent non-physical solutions.

The Matlab® program in this appendix produces both physical and non-physical solutions. When
plotting, Matlab® does not distinguish between real quantities and complex quantities and, if a quantity
is complex, Matlab® will plot its real part and issue a warning message in the command window. The
user is cautioned to check the command window for such messages, and if present, carefully examine
the variable F and the (2's to discern which values in the solution are real and which are complex. By so
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doing the user may determine if a particular locus of points in a figure represents a physical solution or a
non-physical solution.

%% This program reproduces figs 5 --> 11 and 15 --> 17 from NACA 496
% Figs 12 --> 14 require multiple executions of group number 2 with
% appropriately modified input quantities

% Implemented using NACA 496 equations and 2DOF solution method
% Boyd Perry, 111

% NASA-Langley Research Center

% May 2015

clc
clear
close all

%% Define k and kinv

N = 10001;
oneoverkmax = 100;
deltaoneoverk = oneoverkmax/(N-1);

for i=1:N
kinv(i) = (i-1)*deltaoneoverk;
k(i) = 1/kinv(i);

end

%% Define Quantities

a=1[0 -0.2 -0.4];
c = [0 0.5];
% For all calculations a = -0.4 and ¢ = 0.5

group = input("Enter group number (1, 2, 3, or 4) %)

% Group number may be 1, 2, 3, or 4

%  Group number 1 is for the Standard Case and reproduces figs 5 --> 10
%  Group number 2 is for the Standard Case and reproduces fig 11

%  Group number 3 is for Wing A and reproduces fig 15

%  Group number 4 is for Wing B and reproduces figs 16 & 17

% Input quantities for group number 1

if group ==

kappa = 0.1;

xa = 0.2;

ra2 = 0.25;

xb = 1/80; % Corresponds to curve (a) in figs 7 & 8
%xb = 1/40; % Corresponds to curve (b) in figs 7 & 8
%xb = 1/160; % Corresponds to curve (c) in figs 7 & 8
rb2 = 1/160;

end
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% Input quantitie for group number 2

if group ==
kappa = 1/400;
xa = 0.2;

ra2z = 0.25;

xb = 1/80;

rb2 = 1/160;
end

% Input quantitie for group number 3

if group ==
kappa = 1/416;
%xa = 0.31;
Xa = 0.173;
%xa = 0.038;
ra2 = 0.33;

xb = 1/80;

rb2 = 1/160;
omegaa = 7*2*pi;
b =2.5/12;
end

% Input quantitie for group number 4

if group ==

kappa = 1/100;

xa = 0.192;

ra2 = 0.178;

xb = 0.019;

%xb = 0.01;

rb2 = 0.0079;
omegaa = 17.6*2*pi;

omegah = 5.8*2*pi;
omegab = 4.4*2*pi;
b =2.5/12;

end

% Other relationships

ra
rb

sgrt(ra2);
sqrt(rb2);

%% Define array indices

%

% For Ti constants:

% Ti(kk)

% kk ~ variation of quantity c
%

% For R" arrays:

% R"(g,kk)

% j ~ variation of quantity a
% kk ~ variation of quantity c
%

% For F and G, real and imag parts of Theodorsen Function:
% F(1) and G(i)
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% i~ var

% For R"™ a
% R"(1,J,k
% i~ var

J ~ var
% kk ~ va

%% Define T
for kk=1:2
c2(kk)
TiTerml
TiTerm2
TiTerm3
TiTerm4
TiTermb
TiTerm6
T1(kk)
T2(kk)
T3(kk)
(174)*c(kk)
T4(kk)
T5(kk)
T6(kk)
T7(kk)
T8(kk)
T10(kk)
T11(kk)
T12(kk)
end

%% Define
for i1=1:N
Jo(i)
J1(n)
YO(i)
Y1(1)

Tn

TheoTer
TheoTer

Fnumer(
Gnumer (

denom(i

F(1)
G(1)

end

%% Define R
for kk=1:2
for j=1

iation of reduced frequency

nd 1 arrays:

k) and 1(i,]j,kk)

iation of reduced frequency
iation of quantity a
riation of quantity c

i
% loop on quantity c [0, 0.5]

= c(kk)*c(kk);

1 + c2(kk);

1 - c2(kk);

sqrt(TiTerm2);

acos(c(kk));

1/8 + c2(kk);

7 + 2*c2(kk);

-(1/3)*TiTerm3*(2+c2(kk)) + c(kk)*TiTerm4;
c(kk)*TiTerm2 - TiTerm3*TiTerm1l*TiTerm4 + c(kk)*TiTerm4*TiTerm4;
-TiTerm5*TiTerm4*TiTerm4 +
*TiTerm3*acos(c(kk))*TiTerm6 - (1/8)*TiTerm2*(5*c2(kk)+4);
-TiTerm4 + c(kk)*TiTerm3;

-TiTerm2-TiTerm4*TiTerm4 + 2*c(kk)*TiTerm3*TiTerm4;
T2(Kk);

-TiTerm5*TiTerm4 + (1/8)*c(kk)*TiTerm3*TiTerm6;
-(1/3)*TiTerm3*(2*c2(kk)+1) + c(kk)*TiTerm4;

TiTerm3 + TiTerm4;

; TiTerm4d*(1-2*c(kk)) + TiTerm3*(2-c(kk));
= TiTerm3*(2+c(kk)) - acos(c(kk))*(2*c(kk)+1);
and G
besselj(0,k(1));
besselj(1,k(1));
bessely(0,k(1));
bessely(1,k(1));
mi(i) = J1(i) + YO(i);
m2(i) = Y1(i) - JO(i);
i) = J1(i)*TheoTerml(i) + Y1(i)*TheoTerm2(i);
i) = YI(D)*YO(i) + J1(i)*Jo(i);
) = TheoTerml(i)”2 + TheoTerm2(i)"2;

Fnumer(i)/denom(i);
-Gnumer(i)/denom(i);

" Terms
% loop on quantity ¢ [0, 0.5]
:3 % loop on quantity a [0 -0.2 -0.4]
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Raap(J ,kk)
Rabp(J ,kk)
a(d))*T1(kk)/pi;
Rahp(J ,kk)

Rbap(J ,kk)
Rbbp(j ,kk)
Rbhp(J , kk)

Rcap(( ,kk)
Rebp(J , kk)
Rchp(J ,kk)

end
end

-ra2/kappa - (1/8 + a(g)*a(g));
-rb2/kappa - (c(kk)-a(j))*xb/kappa + T7(kk)/pi + (c(kk)-

-xa/kappa + a(J);

Rabp(j,kk);
-rb2/kappa + T3(kk)/(pi*pi);
-xb/kappa + T1(kk)/pi;

Rahp(J,kk);
Rbhp(J,kk);
-1/kappa - 1;

%% Define R and 1 Terms
% Equations (1)->(9) and (11)->(19) on p. 14

for kk=1:2

% loop on quantity c [0, 0.5]

p = -(1/3)*(1-c(kk)*c(Kk))"(3/2);

for j=1:3
for i=1:N

RITerml
RITerm2
RITerm3

% loop on quantity a [0 -0.2 -0.4]
% loop on reduced frequency

(a()+0.5);
(0.5-a(i))*G(i) - kinv(i)*F(i);
T11(KK)*G(i)-2*kinv(i)*T10(KK)*F(i);

Raapp(i,j,.kk) = kinv(i)*2*RITerm1*RITerm2;

Rabpp(i,j,kk) =
kinv(1)*(1/pi)*((T4(kk)+T10(kk))*kinv(i)+RITerm1*RITerm3);

Rahpp(i,j,kk) = Kinv(i)*2*RITerm1*G(i);

Rbapp(i,j.kk) = -kinv(i)*(T12(kk)/pi)*RITerm2;

Rbbpp(i,j,kk) = -kinv(i)*(1/pi)*(1/pi)*((T12(kk)/2)*RITerm3-
kinv(1)*(T5(kk)-T4(kk)*T10(kk)));

Rbhpp(i,j,kk) = -kinv(1)*(T12(kk)/pi)*G(i);

Rcapp(i,j,kk)
Rcbpp(i, j,kk)
Rchpp(i, j,kk)

RITerm4
RITerm5

laa(i, j,kk)
lab(i,j,kk)

a(d))*Ta(kk));

lah(i, ji.kk)

1ba(i, j,kk)
1bb(i, j.kk)
1bh(i, j.kk)

-kinv(1)*2*RITerm2;
-kinv(1)*(1/pi)*RITerm3;
-kinv(1)*2*G(1);

(0.5-a(i))*F(i) + kinv(i)*G(i);
T11(KK)*F (1) +2*Kinv(i)*T10(KK)*G(i);

-2*RITerm1*RITerm4 + (0.5-a(§));
-(/pi)*RITerm1*RITerm5 + 2*p + (0.5-

-2*RITerm1*F(i);

(T12(KK)/pi)*RITerm4 +(1/pi)*(p-T1(kk)-0.5*T4(kk));
(0.5/(pi*pi))*(T12(kk)*RITerm5-T4(kk)*T11(kk));
(T12(Kk)/pi)*F(i);
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Ica(i,j,kk)
1cb(i,j,KK)
Ich(i,j,kK)

2*RI1Termd + 1;
(A/pi)*(RITerm5-T4(kk));
2*F(i);

end
end
end

%% Create R"s and I"s for j=3 (a=-0.4) and kk=2 (c=0.5)

for i1=1:N

R1(i)
R2(i)
R3(i)

RACi)
R5(i)
R6(i)

R7(i)
R8(i)
RO(i)

111(i)
112(i)
113(i)

Raap(j,kk) + Raapp(i,
Rabp(j,kk) + Rabpp(i,
Rahp(J ,kk) + Rahpp(i,

kk);
kKk);
.kKk);

N 1 N 1

Rbap(j,kk) + Rbapp(i,
Rbbp(J ,kk) + Rbbpp(i,
Rbhp(j ,kk) + Rbhpp(i,

,kk);
,kk);
,KK);

(ST ST

Rcap(J ,kk) + Rcapp(i,
Rcbp(J ,kk) + Rcbpp(i,
Rchp(J ,kk) + Rchpp(i,

,kk);
,KK);
,kK);

(ST ST =

laa(i,j,kk);
lab(i,j,kk);
lah(i,j,kk);

114(i)
115Ci)
116 (i)

Iba(i,j,kk);
Ibb(i,j,kk);
Ibh(i,j,kk);

117(i)
118(i)
119(i)

Ica(i,j,kk);
Icb(i,j,kk);
Ich(i,j.kk);

end
%% Solve Case 3 Example Using Equations from Appendix I (Figs 5 & 6)
if group == 1

% Compute quadratic coefficients
for i=1:N

MRch(i) = R1(i)*R5(i) - R2(i)*R4(i) - Kinv(i)*kinv(i)*(111(i)*115Ci)-

112(1)*114(i));
Mich(i) = RL(I)*I115(i) - R2(i)*114(i) + I111(i)*R5(i) - 112(i)*R4(i);
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MRch(i)*115(i)*115Ci) - MIch(i)*R5(i)*115(i);

B(1) ; -MIch(D)*(R2(i))*114(1D)+ 112(1)*R4(i)) + 2*MRch(i)*111(1)*115(i);
C(i) = MRch(D)*111(i)*111(i) - MIch(i)*R1(i)*I111(i);
end

% Solve quadratic equation
for 1=2:N

Quad = [A(i) B(i) C(i)];
r = roots(Quad);
OmegaAlphal(i) = r(1);
OmegaAlpha2(i) = r(2);

X1(1) = -MIch(i)/(OmegaAlphal(i)*115(1)+111(i));
X2(i) = -MiIch(i)/(OmegaAlpha2(i)*115Ci)+111(i));
F1L(1) = kinv(i)*kinv(i)/X1(i); % This is actually the square of F
F2(1) = kinv(i))*kinv(i)/X2(i1); % This is actually the square of F
end
figure(b)
plot(kinv, OmegaAlphal, "r.", kinv, OmegaAlpha2, "b.");
grid

axis([0 1 0 160])

xlabel ("1/k", "FontWeight™, "bold");

ylabel ("Omega-Alpha*, "FontWeight®, "bold™);

title("Fig 5, Case 3, Standard Case", "FontWeight","bold");

figure(6)

plot(OmegaAlphal, F1, "r.", OmegaAlpha2, F2, "b.");

grid

axis([0 180 0 22])

xlabel (*Omega-Alpha®, "FontWeight®, "bold");

ylabel ("F", "FontWeight", "bold");

title("Fig 6 Case 3, Standard Case", "FontWeight®, "bold");

end
%% Solve Case 2 Example Using Equations from Appendix 1 (Figs 7 & 8)
if group == 1

% Compute quadratic coefficients
for i=1:N

MRaa(i) = R5(i)*RO(i) - R6(i)*R8(i) - Kinv(i)*kinv(i)*(115(i)*119(i)-
116(1)*118(i));
Mlaa(i) = R5(i)*119(i) - R6(i)*118(i) + 115(i)*RI(i) - 116(i)*R8(i);

A(I) = MRaa(i)*119(i)*119(i) - Mlaa(i)*RO(i)*119(i);
B(i) = -Mlaa(i)*(R6(i)*118(i)+ 116(i)*R8(i)) + 2*MRaa(i)*115(i)*119(i);
C(i) = MRaa(i)*115(i1)*115(1) - Mlaa(i)*R5(i)*115(i);
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end

% Solve quadratic equation
for i=2:N

Quad = [A(i) B(i) C(i)];
r = roots(Quad);
OmegaBetal(i) = r(1);
OmegaBeta2(i) = r(2);

X1(1) = -Mlaa(i)/(OmegaBetal(1)*119(i1)+115(i));
X2(1) = -Mlaa(i)/(OmegaBeta2(1)*119(i)+115(i));
F1(1) = kinv(i)*kinv(i)/X1(i); % This is actually the square of F
F2(1) = kinv(i)*kinv(i)/X2(i); % This is actually the square of F
end
figure(7)
plot(kinv, OmegaBetal, "r.", kinv, OmegaBeta2, "b.");
grid

axis([0 4 -0.008 0.014])
xlabel ("1/k", "FontWeight", "bold");
ylabel ("Omega-Beta", "FontWeight", "bold");
title("Fig 7, Case 2, Standard Case®, "FontWeight®,"bold");
annotation("textbox”,"String",{["xb = ", num2str(xb)]}, "FontWeight®, "bold",
"FontSize",10, ...

"BackgroundColor®,[1 1 1]);

figure(8)
plot(OmegaBetal, F1, "r.", OmegaBeta2, F2, "b.");
grid
axis([0 0.014 0 1.5])
xlabel ("Omega-Beta“”, "FontWeight","bold");
ylabel ("F", "FontWeight", "bold");
title("Fig 8, Case 2, Standard Case", "FontWeight","bold");
annotation("textbox", "String”,{["xb = ", num2str(xb)]}, "FontWeight", "bold",
"FontSize",10,...
"BackgroundColor®,[1 1 1]);

end
%% Solve Case 1 Example Using Equations from Appendix 1 (Figs 9 & 10)
if group ==

% Compute quadratic coefficients
for 1=1:N

MRbb(i) = RO(i)*R1(i) - R7(i)*R3(i) - Kinv(i)*kinv(i)*(119(i)*111(i)-
117(1)*113(i));
MIbb(i) = RO(I)*111(i) - R7(i)*113(i) + 119(i)*R1(i) - 117(i)*R3(i);

A(i) = MRbb(i)*111(i)*111(i) - MIbb(i)*RL(i)*111(i);
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~MIbb(i)*(R7(I)*113(i)+ 117(i)*R3(i)) + 2*MRbb(iI)*119(i)*111(i);
MRbb(i)*119(i)*119(i) - MIbb(i)*RO(i)*119(i);

W
~
O

i

% Solve quadratic equation
for 1=2:N

Quad = [A(i) B(i1) C(i)];
r = roots(Quad);
OmegaH1(1) = r(1);
OmegaH2(1) = r(2);

X1(i) = -MIbb(i)/(OmegaH1(1)*111(1)+119(i));
X2(1) = -MIbb(i)/(OmegaH2(i)*111(1)+119(i));
F1(1) = kinv(i)*kinv(i)/X1(i); % This is actually the square of F
F2(1) = kinv(i)*kinv(i)/X2(i); % This is actually the square of F
end
figure(9)
plot(kinv, OmegaHl, "r.", kinv, OmegaH2, "b.");
grid

axis([O 10 -30 120])

xlabel (*1/k", "FontWeight®,"bold");

ylabel ("Omega-H", "FontWeight®, "bold");

title("Fig 9, Case 1, Standard Case", "FontWeight®,"bold");

figure(10)

plot(OmegaH1, F1, "r.", OmegaH2, F2, "b.");

grid

axis([0 22 0 1.5])

xlabel (*Omega-H", "FontWeight®,"bold");

ylabel ("F", "FontWeight","bold");

title("Fig 10, Case 1, Standard Case", "FontWeight","bold");

end
%% Solve Case 1 Example Using Equations from Appendix 1 (Fig 11)
if group == 2

% Compute quadratic coefficients
for i=1:N

MRbb(i) = RO(i)*RL(i) - R7(i)*R3(i) - Kinv(i)*kinv(i)*(119(i)*111(i)-
117(1)*113(i));
MIbb(i) = RO(I)*111(i) - R7(i)*113(i) + 119(i)*R1(i) - 117(i)*R3(i);

A(i) = MRbb(I)*111(i)*111(i) - MIbb(I)*R1(i)*111(i);
B(i) = -MIbb(i)*(R7(1)*113(i)+ 117(i)*R3(i)) + 2*MRbb(i)*119(i)*111(i);
C(i) = MRbb(i)*119(i)*119(i) - MIbb(i)*RO(i)*119(i);
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end

% Solve quadratic equation
for 1=2:N

Quad = [A(i) B(i1) C(i)];
r = roots(Quad);
OmegaH1(1) = r(1);
OmegaH2(1) = r(2);

X1(i) = -MIbb(i)/(OmegaH1(1)*111(1)+119(i));
X2(1) = -MIbb(i)/(OmegaH2(i)*111(1)+119(i));
F1(i) = Kkinv(i)/sqrt(X1(i)); % F as defined on pp. 14-15
F2(i) = kinv(i)/sqrt(X2(i)); % F as defined on pp. 14-15
omlom21(i) = ra*sqrt(OmegaHl(i));
omlom22(i) = ra*sqrt(OmegaH2(i));

end

figure(1l)

plot(omlom21, F1, "r.", omlom22, F2, "b.");

grid

axis(J0 1.6666666667 0 1.75])

xlabel (*omega-1 / omega-2-,"FontWeight®,"bold");
ylabel ("F", "FontWeight","bold");

title("Fig 11, Case 1, Standard Case (but with kappa =
1/400) ", "FontWeight", "bold");

end
%% Solve Case 1 Example Using Equations from Appendix 1 (Fig 15)
if group == 3

% Compute quadratic coefficients
for 1=1:N

MRbb(i) = RO(i)*R1(i) - R7(i)*R3(i) - Kinv(i)*kinv(i)*(119(i)*111(i)-
117(i)*113(i));
MIbb(i) = RO(I)*111(i) - R7(i)*113(i) + 119(i)*R1(i) - 117(i)*R3(i);

A(1) = MRbb(D)*I111(1)*111(i1) - MIbb(i)*R1(i)*111(i);

B(i) = -MIbb(i)*(R7(i))*113(i)+ 117(i)*R3(i)) + 2*MRbb(i)*119(i)*111(i);
C(i) = MRbb(1)*119(i)*119(i) - MIbb(i)*RO(i)*I119(i1);

end

% Solve quadratic equation
for 1=2:N

Quad = [A(i) B(i) C(i)];

r = roots(Quad);
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OmegaH1(i) = r(1);
OmegaH2(i) = r(2);

X1(1) = -MIbb(i)/(OmegaH1(i)*111(1)+119(i));
X2(1) = -MIbb(i)/(OmegaH2(i)*111(1)+119(i));
F1(1) = kinv(i)/sqrt(X1(i)); % F as defined on pp. 14-15
F2(i) = kinv(i)/sqrt(X2(i)); % F as defined on pp. 14-15
facl = b*omegaa*ra/sqrt(kappa);
fac2 = 12/39.37; % convert from fps to mps
vell(i) = F1(i)*facl*fac2;
vel2(i) = F2(i)*facl*fac2;
omlom21(i) = ra*sqrt(OmegaHl(i));
omlom22(i) = ra*sqrt(OmegaH2(i));
end
figure(15)
plot(omlom21, vell, "r.", omlom22, vel2, "b.");
grid

axis([0 1.5 0 50])
xlabel ("omega-h / omega-alpha”, "FontWeight", "bold");
ylabel("Velocity, meters per sec”, "FontWeight®, "bold");
title("Fig 15, Case 1, Wing A", "FontWeight®, "bold");
annotation("textbox”,"String",{["xa = ", num2str(xa)]}, "FontWeight®, "bold",
"FontSize",10,...

"BackgroundColor®,[1 1 1]);

end
%% Solve Case 2 Example Using Equations from Appendix 1 (Fig 16)
if group == 4

% Compute quadratic coefficients
for i=1:N

MRaa(i) = R5(i)*RO(i) - R6(i)*R8(i) - Kinv(i)*kinv(i)*(115(i)*119(i)-
116(1)*118(i));
Mlaa(i) = R5(i)*119(i) - R6(i)*118(i) + 115(i)*RI(i) - 116(i)*R8(i);

A(1) = MRaa(i)*I119(1)*119(i) - Mlaa(i)*R9(i)*119(i);

B(i) = -Mlaa(i)*(R6(i)*118(i)+ 116(i)*R8(i)) + 2*MRaa(i)*115Ci)*119(i);
C(i) = MRaa(i)*115Ci)*115(i) - Mlaa(i)*R5(i)*115(1);

end

% Solve quadratic equation
for 1=2:N

Quad = [A(i) B(i) C(i)];
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r = roots(Quad);
OmegaBetal(i) = r(1);
OmegaBeta2(i) = r(2);

X1(1) = -Mlaa(i)/(OmegaBetal(i)*119(1)+115(1));
X2(1) = -Mlaa(i)/(OmegaBeta2(i)*119(i)+115(i));
F1(i) = Kkinv(i)/sqrt(X1(i)); % F as defined on pp. 14-15
F2(i) = kinv(i)/sqrt(X2(i)); % F as defined on pp. 14-15
facl = b*omegah/sqgrt(kappa);
fac2 = 12/39.37; % convert from fps to mps
vell(i) = F1(i)*facl*fac2;
vel2(i) = F2(i)*facl*fac2;
omlom21(i) = sqrt(OmegaBetal(i))/rb;
omlom22(i) = sqrt(OmegaBeta2(i))/rb;
end
figure(16)
plot(omlom21, vell, "r.", omlom22, vel2, "b.");
grid

axis([0 1.8 0 50])
xlabel (*omega-beta / omega-h-,"FontWeight®,"bold");
ylabel("Velocity, meters per sec”,"FontWeight®,"bold");
title("Fig 16, Case 2, Wing B, "FontWeight®, "bold");
annotation("textbox", "String”,{["xb = ", num2str(xb)]}, "FontWeight", "bold",
"FontSize",10,. ..
"BackgroundColor®,[1 1 1]);

end

%% Solve Case 3 Example Using Equations from Appendix 1 (Fig 17)

if group ==

% Compute quadratic coefficients

for i=1:N

MRch(i) = R1I(i)*R5(i) - R2(i)*R4(i) - kinv(i)*kinv(i)*(111(i)*115(i)-

112(1)*114(i));
Mich(i) = RL(I)*I115(i) - R2(i)*114(i) + I111(i)*R5(i) - 112(i)*R4(i);

A(1) = MRch()*I115(1)*115(1) - MIch(i)*R5(i1)*115(i);

B(i) = -MIch(i)*(R2(i))*114(i)+ 112(i)*R4(i)) + 2*MRch(i)*111(i)*115(i);
C(i) = MRch(i)*111(i)*111(i) - MIch(i)*R1(i)*I111(1);

end

% Solve quadratic equation
for 1=2:N
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Quad = [A(i) B(i1) C(i)];
r = roots(Quad);
OmegaAlphal(i) = r(1);
OmegaAlpha2(i) = r(2);

X1(1) = -Mlch(i)/(OmegaAlphal(i)*115Ci)+111(i));
X2(1) = -MIch(i)/(OmegaAlpha2(i)*115(1)+111(i));
F1(1) = kinv(i)/sqrt(X1(i)); % F as defined on pp.-
F2(1) = kinv(i)/sqrt(X2(i)); % F as defined on pp.
facl b*omegab*rb/sqrt(kappa) ;

fac2 12/39.37; % convert from fps to mps

vell(i)
vel2(i)

F1(i)*facl*fac2;
F2(i)*facl*fac2;

omlom21(i)
omlom22(i)

sqgrt(OmegaAlphal(i))*(rb/ra);
sqrt(OmegaAlpha2(i))*(rb/ra);

end

figure(17)

plot(omlom21, vell, "r.", omlom22, vel2, "b.");

grid

axis([0 2.8 0 40])

xlabel ("omega-alpha / omega-beta”, "FontWeight", "bold");
ylabel("Velocity, meters per sec”,"FontWeight®, "bold");
title("Fig 17, Case 3, Wing B", "FontWeight®, "bold");

end
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APPENDIX C
ALTERNATE TWO-DEGREE-OF-FREEDOM SOLUTION METHODS

Three alternate solution methods are offered, all of which are based on the two-degree-of-freedom
flutter equations of NACA 496. Compared to the number of computations involved in the NACA 496
solution method, these alternate solution methods are much more computationally intensive and would
have been excluded from consideration in 1934 for that reason. But with today’s computational
resources, these alternate solution methods require only a few seconds of execution time on a desktop
computer. The solution methods will be presented in order of increasing complexity.

Although these alternate solution methods are appropriate for all three subcases mentioned in NACA
496, the equations for Subcase 1, flexure — torsion, are chosen to illustrate the methods. The starting
point for each alternate solution method is equation (XXIV) on page 12 of NACA 496, quadratic in X with
complex coefficients, re-written here

QpQeX? + (QpAge + QeAc)X + Mpg =0

with companion equations

P 1 (brra)r)z

K\ vk
2
— Wh
2 = ()
0, = (wara)z
W, Ty

where, for Subcase 1, the reference quantities, @- and r,, are chosen to be w, and r,, respectively.

An illustrative example will be presented for each alternate solution method. The problem-specific
guantities chosen for the example are those employed in NACA 496 for its “standard case”:

x=0.1; c=0.5; a=-0.4; x,=0.2; r2=0.25;
and with o, =100, @, =50,and b =1
Using the appropriate values in equations (C3) and (C4), the values of 2, and £2, are both 1.

Because equation (C1) is quadratic, zero, one, or two flutter solutions are possible. However, for the
problem-specific quantities chosen, only one flutter solution is obtained.

As expected and as will be seen, all three alternate solution methods will yield almost exactly the same
value of flutter velocity, v, and almost exactly the same value of flutter reduced frequency, ki, as those
predicted by the two-degree-of-freedom solution method of NACA 496. The family of solutions for

Subcase 1 for the standard case already exists in figures 9 and 10. When (2, = 1 is used in these figures
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the problem-specific solution is obtained: vs=173.26 feet per second (fps) and kf= 0.4355. The first
row of Table Cl contains this result.

On occasion throughout this appendix, the abbreviation ASM will be used to denote “alternate solution
method.”

Alternate Solution Method No. 1

This alternate solution method is directly analogous to the three-degree-of-freedom solution method
discussed in NACA 496. It employs the computational shortcut of creating two equations, each with real
coefficients, by separating the real and imaginary parts of equation (C1), thereby eliminating complex
arithmetic. The right-hand side of both new equations is zero.

Qe X? + (QpRaq + QuRep)X + Mfp =0 (Cs)
(Qnlaa + Qalcn)X + Mpg =0 (C6)

The first equation, (C5), is quadratic in X and is obtained from the real parts of Asq, Ach, and Mg the
second equation, (C6), is linear in X and is obtained from the imaginary parts.

At this point in ASM No. 1, the artifice of treating X as a parameter, rather than as a known quantity, is
employed. Equations (C5) and (C6) are each solved for their roots, identified herein as X , Xp, and X;,
for a large number of reduced frequencies. But, because from equation (C2), it is seen that X is
proportional to the inverse square of velocity, only the real positive values of Xp , Xz, and X; are
retained.

Next, the real positive roots are plotted as functions of the inverse of reduced frequency on the same
set of axes. The intersection of either of the Xz’'s with the X; identifies the value of X and the value of
reduced frequency that simultaneously solve equations (C5) and (C6), and therefore also solves the
original quadratic equation with complex coefficients, equation (C1). These values are the flutter values
- Xfand kf.

With Xrand ks known, the artifice of treating X as a parameter is abandoned and equation (C2) is
employed, which when re-written to solve for flutter velocity, becomes

1 1 bwgr,
= ——_‘aa c7
vf /Xf\/E kf ( )

Plugging X, ks, and the other quantities into equation (C7) yields the flutter velocity.

lllustrative Example for Alternate Solution Method No. 1. — ASM No. 1 was implemented in Matlab®
where equations (C5) and (C6) were solved 10,000 times for values of the inverse of reduced frequency
ranging from 0.001 to 10 in increments of 0.001. Figure C1 presents the results from this
implementation: the ordinate represents the real positive roots of equations (C5) and (C6); the abscissa
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is the inverse of reduced frequency. The solid black line represents the locus of the X , the first real
positive root of equation (C5); the dashed black line represents the locus of the X, , the second real
positive root of equation (C5); and the solid red line represents the locus of the X;, the real positive root
of equation (C6). The circle represents the intersection of the X5 locus with the X; locus and was

obtained using an interpolation scheme.

By inverting the horizontal coordinate of the intersection, the flutter reduced frequency is obtained. By
using it and the vertical coordinate in equation (C7), the flutter velocity is obtained. Both results are
contained in the second row of Table Cl and are seen to agree extremely well with the NACA 496 results.

Alternate Solution Method No. 2

This alternate solution method is closely related to ASM No. 1 and also eliminates complex arithmetic
via the same computational shortcut. But, rather than initially treating X as a parameter, as was done in
ASM No. 1, in this solution method, X is assigned values and the flutter solution is obtained via
systematic trial and error.

ASM No. 2 employes an outer loop on velocity and an inner loop on reduced frequency and, using
equation (C2), it computes a value of X at each passing. These X’s are then substituted into the
following equations

QpQeX? + (QpRaq + QuRep)X + Myp = Z; (C8)
Qnrlag + Qalep)X + MlI;ﬁ =12, (C9)
producing values of Z; and Z; at each passing.

Recall that the flutter condition is obtained when Z; and Z are both zero for the same values of v and k.
However, unless luck intervenes or infinitesimally small increments in v and k are chosen for the outer
and inner loops, it is almost assured that no combination of v and k will be found, which results in Z; and
Z, being exactly zero simultaneously. This being the case, two different interpolation schemes are
employed to find the combination of v and k that does result in Z; and Z; being exactly zero
simultaneously.

When each inner loop is complete (that is, for each velocity), curves of Z; and Z; as functions of reduced
frequency are created. Because equation (C8) is quadratic, there can be zero, one, or two values of
reduced frequency that cause Z; to be zero. Because equation (C9) is linear, there can be zero or one
value of reduced frequency that causes Z; to be zero.

The Z; and Z, curves may or may not pass through zero. For curves that do pass through zero, a first
interpolation scheme is employed to identify the values of reduced frequency at the zero crossings and
these values and their corresponding velocity are potential solutions and are stored in arrays. There can
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be up to three arrays: two for the Z;'s and one for the Z;’s. These identified reduced frequencies are
defined as kZ11’ k212 and k,,, respectively.

When the outer loop is complete, the reduced frequencies at the zero crossings, k211’ kzlzand k,,, are
plotted as functions of velocity. Each point on the kzlland kzlzcurves (that is, each reduced frequency
and its companion velocity) corresponds to Z; being exactly equal to zero. Likewise, each point on the
kZ2 curve corresponds to Z; being exactly equal to zero. The flutter condition is obtained when either
the kzllcurve or the kzlzcurve intersects the k, curve. Via a second interpolation scheme, the values of
v and k at the intersection are determined. These values are vrand kf because they cause Z; and Z; to be
zero simultaneously.

lllustrative Example for Alternate Solution Method No. 2. — This alternate solution method was also

implemented in Matlab® where equations (C2), (C8), and (C9) were solved within nested loops. The
inner loop varied reduced frequency from 0.01 to 2 in increments of 0.01; the outer loop varied velocity
from 160 fps to 185 fps in increments of 0.5 fps. (The limits of the outer loop were chosen based on the
knowledge of flutter velocity gained from the previous illustrative example.)

Figure C2 presents a plot of Z; and Z; as functions of reduced frequency for a velocity of 160 fps, well
below the flutter velocity. As can be seen Z;, the solid curve, intersects zero at two points, kZ11: 0.3706

and k212= 0.5317, and Z;, the dashed curve, intersects zero at one point, k22= 0.4740. These values of

reduced frequency are combined with similar reduced frequencies for the other velocities to form the
arrays that are plotted in the next figure.

Figure C3 presents a plot of kzll’ k212' and , k,,as functions of velocity. As can be seen kzlz' the dashed

curve, intersects the kZZ, the dashed-dotted curve, at the values of velocity and reduced frequency
indicated in the third row of Table Cl. As with the results for ASM No. 1, those for ASM No. 2 are in
excellent agreement with the results from NACA 496.

Alternate Solution Method No. 3

This alternate solution method is very straightforward, but uses complex arithmetic. It also initially
employs the artifice of treating X as a parameter and later abandons it.

Treating X as a parameter, equation (C1), quadratic in X with complex coefficients, is solved for X directly
for a large number of reduced frequencies. Because the coefficients are complex the resulting X’s are
also complex, but the X’s are not complex conjugates. These complex X’s are designated X; and X..

With X; and X; and their corresponding reduced frequencies known, the artifice is abandoned and
equation (C10)

_ 1 1 bwary (C10)
VXV Kk

v
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is employed, yielding velocities, v; correspondng to X;, and v, corresponding to Xz, that are also
complex and also not complex conjugates.

All the complex X’s, and therefore all the complex v's and their corresponding k’s, satisfy equation (C1)
and are therfore all flutter solutions. However, because in actual practice the flutter velocity is real, not
complex, the task now is to examine all of the complex v's to determine if any have a zero imaginary
part, that is to determine if any are real.

A convenient way to perform this examination is to plot the imaginary part of v; against the real part of
vz and the imaginary part of v, against the real part of v;, yielding two curves in the complex plain. Each
point on each curve corresponds to a different value of reduced frequency. If one of the curves crosses
the real axis, at the crossing, the imaginary part is zero, the real part is the flutter velocity, and the
examination is complete. Interpolation is then employed, taking the complex velocities immediately
before and immediately after the crossing to determine the value of the corresponding real part at the
crossing, which is vs, and the corresponding value of reduced frequency at the crossing, which is k.

lllustrative Example for Alternate Solution Method No. 3. — This alternate solution method was also

implemented in Matlab® where equations (C1) and (C10) were solved 10,000 times for reduced
frequencies ranging from 0.005 to 50 in increments of 0.005.

Figure C4 presents plots of the imaginary parts of v; and v; as functions of their respective real parts.
The solid line is v;; the dashed line, v,. By the nature of the curves, it is apparent that, as stated above,
vz and v; are not complex conjugates. As can be seen in the figure, the dashed curve crosses the real
axis and the interpolated values of velocity and reduced frequency at the crossing are indicated in the
fourth row of Table Cl. The results for ASM No. 3 are in perfect agreement with the results from NACA
496.

Table CI

Comparison of Flutter Predictions for
Standard Case

Solution Method Vs ke
fps
NACA 496 173.26 0.4355

Alt. Soln. Meth. No. 1 173.22 0.4356

Alt. Soln. Meth. No. 2 173.21 0.4358

Alt. Soln. Meth. No. 3 173.26 0.4355
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APPENDIX D
THREE-DEGREE-OF-FREEDOM SOLUTION METHOD

This appendix provides a solution to the three-degree-of-freedom flutter equation following the
procedure recommended in NACA 496. Equation (XXI) on page 12 of NACA 496, re-written here as
equation (D1), is the three-degree-of-freedom flutter equation

Qe Q0 X3 + (QeQpAch + QpQpAgy + QnQpApp)X?

(D1)
+(QuMaq + QMyg + QuMp)X +D =0
with companion equations
2
% l (brrwr) (D2)
K\ vk
0 = (2e)” (D3)
a Wy
WpTp\?
0y = (LE) (D4)
wrrr
0 = (2 )2 (D5)
= oy
In equation (D1) the A’s, M’s, and D are complex quantities, making equation (D1) cubic in X with
complex coefficients.
The subsection entitled “Solution Methods” within section Il of the main body of the present paper
outlines the three-degree-of-freedom solution method. To recap, this solution method involves the
artifice of treating X as a parameter and the computational shortcut of creating two equations, each
with real coefficients, by separating the real and imaginary parts of equation (D1), shown here as
equations (D6) and (D7)
Q0 X3 + (QuQpRon + QpQpRay + QnQyRpp)X?
(D6)
+H(QeME, + QsMEs + QM5 )X + DR =0
(I + QpQulaq + UQqlpp)X? 07
D7

+(QeMly + QMg + QML )X + D' =0

Equations (D6) and (D7) are each solved for their roots, identified herein as Xz , Xg,, Xg,, X;, and X, , for
a large number of reduced frequencies. But, because from equation (D2), it is seen that X is
proportional to the inverse square of velocity, only the real positive values of Xp , Xg,, Xg,, X;, and

Xp,are of interest.
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Next, all of the real positive roots are plotted as functions of the inverse of reduced frequency on the
same set of axes. The intersection(s) of any of the Xz’'s with any of the X/'s identify(ies) the value(s) of X
and the value(s) of reduced frequency that simultaneously solve equations (D6) and (D7), and therefore,
also solves the original cubic equation with complex coefficients, equation (D1). These values are the
flutter values - Xsand k;.

With Xfand the ks known, the artifice of treating X as a parameter is abandoned and equation (D2) is
employed, which when re-written to solve for flutter velocity, becomes

1 ibwrrr (D8)

Plugging X;, ks, and the other quantities into equation (D8) yields the flutter velocity.

The three-degree-of-freedom solution method is capable of finding zero, one, two, or three flutter
modes, depending on the problem-specific quantities chosen.

lllustrative Example for Three-Degree-of-Freedom Solution Method

The problem-specific quantities chosen for this example are those employed in NACA 496 for its
“standard case”:

k=0.1; ¢=0.5; a=-0.4; x,=0.2; r,?=0.25; x3="Ys0; rf = Ye0;
and with @, =100; @wp=125; @n=50; b=1; o =1; r,=1

This solution method was implemented in Matlab® where equations (D6) and (D7) were solved 10,000
times for values of the inverse of reduced frequency ranging from 0.0005 to 5 in increments of 0.0005.

Figure D1 presents the results from this implementation: the ordinate represents the real roots of
equations (D6) and (D7); the abscissa is the inverse of reduced frequency. The three black lines (solid,
dashed, dotted) represent the loci of the roots of equation (D6); the two red lines (solid, dashed)
represent the loci of the roots of equation (D7); the open blue circle indicates the intersection of the
locus of Xp, with the locus of X; and is the flutter solution (a single flutter mode) for the quantities

chosen.

By inverting the horizontal coordinate of the intersection point, the flutter reduced frequency is
obtained. By using it and the vertical coordinate of the intersection point in equation (D8), the flutter
velocity is obtained. The results are contained in Table DI.
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Table DI
3DOF Flutter Prediction for
Standard Case

Vs ke
fps
179.49 0.4476

The problem-specific quantities for the illustrative examples in Appendices C and D of the present paper
are the same, including the dimensional values of @, and @n. As stated in Appendix C of the present
paper, alternate solution method no. 1 for the two-degree-of-freedom (2DOF) flutter equation is directly
analogous to the three-degree-of-freedom (3DOF) solution method. Thus, in comparing these two
illustrative examples, one might expect their results to be similar in some ways, which is, in fact, the
case.

Comparing first the values of flutter velocity and flutter reduced frequency from the two illustrative
examples, from Tables Cl and DI, it is seen that the respective values of vfand k¢ differ by only 3.5% and
2.7%. These differences are attributed, obviously, to the presence of the third degree of freedom in the
3DOF solution.

Comparing next the loci of the roots in figures C1 and D1, an obvious difference is the number of loci in
each figure — three in the former and five in the latter. However, in figure D1, if one ignores the loci of
the third “real” root, AR, and the second “imaginary” root, X1 (those attributed to the presence of the
third degree of freedom), the remaining loci agree very well in their general character with the loci in
figure C1. In each figure: (1) with increasing values of the inverse of reduced frequency, the loci of the
first and second roots from the higher-order (“real”) equation (shown in solid and dashed black)
approach each other; (2) the locus of the root from the lower-order (“imaginary”) equation (shown in
solid red) lies between the other two loci; and (3) the locus of the “imaginary” root intersects the locus
of the second “real” root.

Results from 3DOF Solution Method Asymptotically Approach Results from 2DOF Solution Method

Three examples are presented for the 3DOF solution method. In each example, two of the three modal
frequencies (@wq, wp, an) are fixed and the third is varied from its initial value to a very high value. In the
limit, each example corresponds to one of the three subcases discussed in the main body of the present
paper. For example, for Subcase 1, which has as degrees of freedom a and h, @, and o are fixed while
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wpis varied. With the value of the third modal frequency at least an order of magnitude higher than the
highest value of the other two, the expectation is that the flutter velocities (vf) and flutter reduced
frequencies (kf) obtained using the 3DOF solution method will asymptotically approach those quantities
obtained using the appropriate 2DOF solution method.

Results from 2DOF solution method. — The 2DOF solution methods are solved as described in the main

body of this paper with quantities @- and r, defined according to which of the three 2DOF solution
methods is employed.

Each of these examples employs the problem-specific quantities from the NACA 496 “standard case”:
k=0.1; ¢=0.5; a=-0.4; x,=0.2; r,?=0.25; x5="Ys0; rf =Yieo0

The following table contains the natural frequencies and the corresponding values of frequency ratios
for the three subcases.

Table DII

Summary of Natural Frequencies and Frequency Ratios for Examples

Wo wp Wh £, p (P
rps rps rps
Subcase 1 100 X 50 1 X 1
Subcase 2 X 44.721 50 X 0.005 1
Subcase 3 100 75 X 71.111 1 X

To obtain the 2DOF flutter solutions for Subcase 1, figures 9 and 10 are used with (2, = 1; for Subcase 2,
figures 7 and 8 are used with £23=0.005; and for Subcase 3, figures 5 and 6 are used with (2, =71.111.

Figures D2(a) and D2(b) contain close-up views of portions of figures 9 and 10; figures D3(a) and D3(b)
contain close-up views of portions of figures 7 and 8; and figures D4(a) and D4(b) contain expanded
views of figures 5 and 6. Following the convention established in the main body of the present paper,
these curves are red, indicating they were created using present calculations. In each figure, the solid
black line indicates the target value of its particular £2. Intersections of the solid black line with the red
curves produce the dashed black lines, which indicate the corresponding values of 1/kfand F, from
which kfand vy, respectively, are obtained. (Recall that in figures 6, 8, and 10, although labelled “F” the
guantity plotted is actually the square of the defined quantity, which has ramifications on the extraction
of vgfrom F.)

In figures D2(a) and D2(b), there is only a single intersection of the black line with the red curves,
indicating only one flutter mode is predicted for Subcase 1; but in figures D3(a) and D3(b) and in figures
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D4(a) and D4(b), because there are two intersections of the black line with the red curves, two flutter
modes each are predicted for Subcases 2 and 3.

The following table presents a summary of the 2DOF flutter predictions:

Table DIl

2DOF Flutter Predictions for Standard Case

Mode 1 Mode 2
vy ks vy ks
fps fps
Subcase 1 | 173.26 0.4355 X X

Subcase 2 | 19.521 2.587 120.65 0.4727
Subcase 3 | 14.668 8.045 234.05 0.4458

Results from 3DOF solution method. — Figures D5, D6, and D7 contain the results of many 3DOF flutter

solutions. These figures are comprised of semi-log plots of vfand kr as functions of the w appropriate to
the subcase. The solid blue circles represent the values of vfand k¢ predicted using the 3DOF solution
method, where each corresponding pair came directly from an intersection such as the one indicated by
the open blue circle in figure D1. The dashed red lines in the figures represent the values of vfand k¢
predicted using the 2DOF solution method and contained in Table DIII.

The nominal starting value for variable frequencies w3, @., and @y in figures D5 through D7 was 100 rps.
However, for Subcases 1 and 3, the fixed value of @, is also 100 rps. For these two subcases, the flutter
modes that ultimately became the asymptotic solutions did not develop until their respective variable
frequencies were above 100 rps: 125 rps for Subcase 1; 175 rps for Subcase 3.

As can be seen in figure D5, the 3DOF solution method predicts a single flutter mode, as did the 2DOF
solution method. Also, with increasing values of @y, the circles approach the dashed lines, indicating
that, in the limit, the values of vfand ks predicted by the 3DOF solution method approach those
predicted by the 2DOF solution method, thereby confirming the initial expectation.

As can be seen in figure D6, the 3DOF solution method predicts two flutter modes, as did the 2DOF
solution method. In each plot, with increasing values of w,, the circles approach the dashed lines, again
indicating that, in the limit, the values of vfand k¢ predicted by the 3DOF solution method approach
those predicted by the 2DOF solution method, and again confirming the initial expectation. The
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comparatively higher density of circles for this subcase between @, =100 rps and @, = 250 rps was
necessary in order to capture the region of high curvature and the inflection in figure D6(c).

As can be seen in figure D7, the 3DOF solution method again predicts two flutter modes, as did the
2DOF solution method. In each plot, with increasing values of an, the circles approach the dashed lines,
once again indicating that, in the limit, the values of vfand k¢ predicted by the 3DOF solution method
approach those predicted by the 2DOF solution method, and once again confirming the initial
expectation.

For each subcase, in the limit, the 3DOF solution method predicts the same number of flutter modes
and the same values of flutter velocity and flutter reduced frequency as did the 2DOF solution method.
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TABLE I. - TRIPPING POINTS IN NACA 496

Tripping Point Identified herein Occurs in
on page - NACA 496 -
Three versions of NACA 4 --
496 dated 1934, 1940,
and 1949.
No errata for some of 4 --
the errors in 1934
version that were
corrected in 1940 and
1949 versions.
Assignment of the 12 pp. 12, 14, 15
same equation
numbers, (1) - (9) and
(11) - (19), to different
expressions.
The use of the same 13 pp.12 & 14
symbol, /;, to represent
a quantity and that
guantity divided by
reduced frequency.
The use of the same 16 figs 6, 8,10 —
symbol, F, to represent the square of
a quantity and the the quantity
square of that quantity. -
figs 11-14 —
the quantity
Quantity D is never 18 D is plotted
defined. in fig 12
Omission of values for 23 these values
wn and wp. required to
produce figs
16 and 17
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TABLE Il. — IDENTIFIED ERRORS IN NACA 496

No. Identified Error Identified herein  Occurs in
on page(s) - NACA 496
on page -
1 The Ry}, row of Table Ill corresponding to 15 17
a=-04andc=0.5isin error.
2 Expression vp = vR$ is incorrect. 19 16
—-—t+a
2
1
Should be vy = VR Fs
3 As presented in figure 13, the values 20 20
comprising curve B are the square roots
of the proper values.
4 Transcription errors: 22 20

As presented in figure 14, correct values
of F were paired with non-corresponding
values of x, — that led to incorrect curves
A, B, and C.
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TABLE Ill. - COMPUTATIONAL SHORTCUTS IN NACA 496

No. Computational Shortcut Benefit Identified herein Occurs in
on page(s) - NACA 496
on page(s) -
1 Separating an equation with Avoids complex arithmetic. 9, 10, 66, 67, 12 and 13
complex coefficients into its and 70
real and imaginary parts,
yielding two equations with
real coefficients.
2 Eliminating the factor 1/b Relieves engineers of extra, 12 12
from equation (10/C), but unnecessary,
resulting in equations (12/3), multiplications in the hand-
(12/6), (12/9), (12/13), calculation of these
(12/16), and (12/19). expressions
3 Eliminating the factor 1/k Relieves engineers of extra, 12 14

from equations (12/11)
through (12/19), resulting in
equations (14/11) through
(14/19).

but unnecessary,
multiplications in the hand-
calculation of these
expressions
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Figure 1. — Parameters of the airfoil-aileron combination
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Figure 2. — Constants resulting from the integration of velocity potentials.
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Figure 4. — Reduced-frequency-dependent portions of the elements of the equations of motion.
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FIGURE 13. — Case 1, Flexure-torsion (h, a): Showing dependency of F on the radius
of gyrationr,=r.
A, airfoil witha=-0.4; x=%; x=0.2; ®,/o, = %; r variable.

B, airfoil with a = -0.4; k= %; x = 0.2; o,/®, = 1.00; r variable.

Figure 13A. - Curve A
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FIGURE 13. — Case 1, Flexure-torsion (h, @): Showing dependency of F on the radius
of gyrationr, =r.
A, airfoil witha =-0.4; x=%; x = 0.2; o,/®, = %; r variable.

B, airfoil with a =-0.4; k= %; x = 0.2; o,/®, = 1.00; r variable.

(a) Comparison of present calculation and Curve B of NACA 496

Figure 13B. — Curve B
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FIGURE 13. — Case 1, Flexure-torsion (h, @): Showing dependency of F on the radius
of gyrationr, =r.
A, airfoil witha =-0.4; x=%; x = 0.2; o,/®, = %; r variable.

B, airfoil with a =-0.4; k= %; x = 0.2; o,/®, = 1.00; r variable.

(b) Comparison of present calculation and square of Curve B of NACA 496

Figure 13B. — Curve B
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FIGURE 13. — Case 1, Flexure-torsion (h, @): Showing dependency of F on the radius
of gyrationr, =r.
A, airfoil witha =-0.4; x=%; x = 0.2; o,/®, = %; r variable.

B, airfoil with a =-0.4; k= %; x = 0.2; o,/®, = 1.00; r variable.

(c) Comparison of present calculation, independent calculation, and square of Curve B of NACA 496

Figure 13B. — Curve B
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FIGURE 14. — Case 1, Flexure-torsion (h, &): Showing dependency of F on x,, the
location of the center of gravity.
A, airfoil with r =%; a=-0.4; k=1 ,4; o,/®, = %; x variable.
B, airfoil with r = %; a =-0.4; x=Y%; o,/®, = ¥%; x variable.

C, airfoil with r = %; a=-0.4; x=1/,y; ®,/®, = 1; x variable.

(a) Comparison of present calculation and Curve A of NACA 496
Figure 14A. - Curve A
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FIGURE 14. — Case 1, Flexure-torsion (h, &): Showing dependency of F on x,, the
location of the center of gravity.
A, airfoil with r =%; a=-0.4; k=1 ,4; o,/®, = %; x variable.
B, airfoil with r = %; a =-0.4; x=Y%; o,/®, = ¥%; x variable.

C, airfoil with r = %; a=-0.4; x=1/,y; ®,/®, = 1; x variable.

(b) Comparison of present calculation and rotated Curve A of NACA 496
Figure 14A. — Curve A

96



I T 1 T
— NACA 496 calculation

2.50]-| ® Present calculation - A
X Independent calculation - A

2.00 }f /
' /

.50 / /A

/

L ®
[

]

—Curve A rotated
about x,, =0.2
|

[.00 i
- IR

()
C I t2 =14Kk=0/
@z
.50
o .2 4 &
Koy

FIGURE 14. — Case 1, Flexure-torsion (h, @): Showing dependency of F on x,,, the
location of the center of gravity.
A, airfoil with r =%; a=-0.4; k=1 ,4; o,/®, = %; x variable.
B, airfoil with r = %; a =-0.4; x=Y%; o,/®, = ¥%; x variable.

C, airfoil with r = %; a=-0.4; x=1/,y; ®,/®, = 1; x variable.

(c) Comparison of present calculation, independent calculation, and rotated Curve A of NACA 496

Figure 14A. - Curve A
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FIGURE 14. — Case 1, Flexure-torsion (h, &): Showing dependency of F on x,, the
location of the center of gravity.
A, airfoil with r =%; a=-0.4; k=1 ,4; o,/®, = %; x variable.
B, airfoil with r = %; a =-0.4; x=Y%; o,/®, = ¥%; x variable.

C, airfoil with r = %; a=-0.4; x=1/,y; ®,/®, = 1; x variable.

(a) Comparison of present calculation and Curve B of NACA 496

Figure 14B. — Curve B
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FIGURE 14. — Case 1, Flexure-torsion (h, &): Showing dependency of F on x,, the
location of the center of gravity.
A, airfoil with r =%; a=-0.4; k=1 ,4; o,/®, = %; x variable.
B, airfoil with r = %; a =-0.4; x=Y%; o,/®, = ¥%; x variable.

C, airfoil with r = %; a=-0.4; x=1/,y; ®,/®, = 1; x variable.

(b) Comparison of present calculation and rotated Curve B of NACA 496
Figure 14B. — Curve B
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FIGURE 14. — Case 1, Flexure-torsion (h, &): Showing dependency of F on x,, the
location of the center of gravity.
A, airfoil with r =%; a=-0.4; k=1 ,4; o,/®, = %; x variable.
B, airfoil with r = %; a =-0.4; x=Y%; o,/®, = ¥%; x variable.

C, airfoil with r = %; a=-0.4; x=1/,y; ®,/®, = 1; x variable.

(c) Comparison of present calculation, independent calculation, and rotated Curve B of NACA 496

Figure 14B. — Curve B
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FIGURE 14. — Case 1, Flexure-torsion (h, &): Showing dependency of F on x,, the
location of the center of gravity.
A, airfoil with r =%; a=-0.4; k=1 ,4; o,/®, = %; x variable.
B, airfoil with r = %; a =-0.4; x=Y%; o,/®, = ¥%; x variable.

C, airfoil with r = %; a=-0.4; x=1/,y; ®,/®, = 1; x variable.

(a) Comparison of present calculation and Curve C of NACA 496

Figure 14C. - Curve C
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FIGURE 14. — Case 1, Flexure-torsion (h, &): Showing dependency of F on x,, the
location of the center of gravity.
A, airfoil with r =%; a=-0.4; k=1 ,4; o,/®, = %; x variable.
B, airfoil with r = %; a =-0.4; x=Y%; o,/®, = ¥%; x variable.

C, airfoil with r = %; a=-0.4; x=1/,y; ®,/®, = 1; x variable.

(b) Comparison of present calculation and rotated Curve C of NACA 496
Figure 14C. - Curve C
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FIGURE 14. — Case 1, Flexure-torsion (h, &): Showing dependency of F on x,, the
location of the center of gravity.
A, airfoil with r =%; a=-0.4; k=1 ,4; o,/®, = %; x variable.
B, airfoil with r = %; a =-0.4; x=Y%; o,/®, = ¥%; x variable.

C, airfoil with r = %; a=-0.4; x=1/,y; ®,/®, = 1; x variable.

(c) Comparison of present calculation, independent calculation, and rotated Curve C of NACA 496

Figure 14C. - Curve C
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FIGURE 15. — Case 1. Wing A. Theoretical and experimental curves giving flutter
velocity v against frequency ratio o,/m,. Deflection-torsion.
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FIGURE 16. — Case 2. Wing B. Theoretical and experimental curves giving flutter
velocity v against frequency ratio wg/e,. Aileron-deflection (8, h).

-- with assumed value of @, = 5.8x27 --
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FIGURE 17. — Case 3. Theoretical curve giving flutter velocity against the fre-
quency ratio o,/@g. The experimental unstable are is indefinite due to the im-
portance of internal friction at very small velocities. Torsion-aileron («, f).

-- with assumed value of @y = 4427 --
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Figure C1 — lllustrative example for Alternate Solution Method No. 1.
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Figure C2 — lllustrative example for Alternate Solution Method No. 2
—Z,and Z, as functions of reduced frequency at a velocity of 160 fps.
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Figure C3 — lllustrative example for Alternate Solution Method No. 2
— Reduced frequencies as a function of velocity.
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Figure C4 — lllustrative example for Alternate Solution Method No. 3.
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Figure D1 — lllustrative example for Three-Degree-of-Freedom Solution
Method; “standard case” quantities chosen, with @, = 100, Wy = 125, @, = 50.
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(a) Recreation of Figure 9 (b) Recreation of Figure 10
Figure D2 — Results from 2DOF Solution Method, Subcase 1;
®, =100, m, =50, r,>=0.25, ), = 1.
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(a) Recreation of Figure 7 (b) Recreation of Figure 8
Figure D3 — Results from 2DOF Solution Method, Subcase 2;
@g=44.721, @, = 50, r = 1/160, X ;= 1/80, £2,=0.005.
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(a) Recreation of Figure 5 (b) Recreation of Figure 6

Figure D4 — Results from 2DOF Solution Method, Subcase 3;
o, =100, g = 75, ra2 =0.25, rﬁz =1/160, Xp= 1/80, £0,=71.111.
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Figure D5 — Results from 3DOF Solution Method, “Subcase 17;
w, =100, v, = 50, Wy variable, “standard case”.
220 1 1 1 1 L] 1 LI 260 1 1 1 1 1 1 LI
. . — 1 T T 11 e e e e Y
21.5¢- . s g o e walh v ol vl s ades §ol of 2Bl g : o wing B el
° : | e 3DOF Solution| : e )| * 3DOF Solution| :
a : | - - -2DOF Solution | : o? ‘|- - - 2DOF Solution | :
210k o e < S T ——] 250 o5 v« B N E B 0 - e T
; : iz 2 8y o ' : ; '
vf o : ; S A kf * : : S
205} A o B S WA © Y SE T a3 e 245 | vz o @i v w BoE e S G R R0 D R 3 RN Y e
L ]
L ; T . . . = & %t § id
200F - R PO v+ o vk B s 5 B el 0wl e ol b b
e : S P : : : : L
: e T o : : S
. S S _— S R S
100 200 . 500 1000 100 200 500 1000
wg, torsion natural frequency W, torsion natural frequency
(a) Mode 1 flutter velocity vs @, (b) Mode 1 flutter reduced frequency vs @,
1208 T T T T T T 0.510 T T T T T T
il TR B s B sl mions § sy o b )0 | PO SRPR: IPSE SR S A N
120.6:.._. g T S B Gl o 050L ..................] ® 3DOF Solution|. . _|
f - AR . § |- - -2DOF Solution|
1205f oo r e B 0495 ¢ i
vf : : S kf : . L
120 bmes = s & 3505 5 L@ : — .t 0490 - g -t
@ e 3DOF Solution] : : : P % i e
1203 .. ... ... .. ®. ... - - - 2DOF Solution|. . _| 0485 ... % .. al
: . 2L e
... . . S .. . ; y : . 2w
12024 - - R T - T 0.480} - - . o . R
® e . : ; E I :® e . . = & 8 @
R e e P 2 pille. . 0475 we o 5 s Sl T den a0 pabn phs sl vl
: ; A A B s s e
120.0 i i i i I I | 0.470 i 1 i 1 | I I |
100 200 | 500 1000 100 200 500 1000
g, torsion natural frequency g, torsion natural frequency
(c) Mode 2 flutter velocity vs @, (d) Mode 2 flutter reduced frequency vs @,

Figure D6 — Results from 3DOF Solution Method, “Subcase 2”;
w,=44.721, @, = 50, rﬁ2 =1/160, Xg= 1/80, w, variable.
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Figure D7 — Results from 3DOF Solution Method, “Subcase 3”;
w,, =100, wz=75, r,2=0.25, rﬁ2 =1/160, x4 =1/80, w, variable.
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